404
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Complexity in the therapeutic delivery of RNAi medicines: an analytical challenge

, , &

Bibliography

  • Alabi C, Vegas A, Anderson D. Attacking the genome: emerging siRNA nanocarriers from concept to clinic. Curr Opin Pharmacol 2012;12(4):427-33
  • Chou LYT, Ming K, Chan WCW. Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 2010;40(1):233-45
  • Zhou J, Shum KT, Burnett JC, Rossi JJ. Nanoparticle-based delivery of RNAi therapeutics: progress and challenges. Pharmaceuticals (Basel) 2013;6:85-107
  • Hackett PB, Largaespada DA, Switzer KC, Cooper LJ. Evaluating risks of insertional mutagenesis by DNA transposons in gene therapy. Transl Res 2013;161:265-83
  • Thompson H. After 40 years, fate of recombinant DNA committee under review. Nat Med 2013;19:1074
  • Friedmann T. Medical ethics. Principles for human gene therapy studies. Science 2000;287:2163-5
  • Wirth T, Parker N, Yla-Herttuala S. History of gene therapy. Gene 2013;525:162-9
  • Montgomery MK. RNA interference: historical overview and significance. Methods Mol Biol 2004;265:3-21
  • Davis ME, Zuckerman JE, Choi CHJ, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010;464:1067-70
  • Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009;8:129-38
  • Schmidt FR. About the nature of RNA interference. Appl Microbiol Biotechnol 2005;67:429-35
  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001;409:363-6
  • Zhang H, Kolb FA, Jaskiewicz L, et al. Single processing center models for human Dicer and bacterial RNase III. Cell 2004;118:57-68
  • Hammond SM. Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett 2005;579:5822-9
  • Parker JS, Roe SM, Barford D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 2005;434:663-6
  • Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001;15:188-200
  • Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000;101:25-33
  • Meister G, Landthaler M, Patkaniowska A, et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004;15:185-97
  • Liu J, Carmell MA, Rivas FV, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004;305:1437-41
  • Chalfie M, Horvitz HR, Sulston JE. Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 1981;24:59-69
  • Muljo SA, Kanellopoulou C, Aravind L. MicroRNA targeting in mammalian genomes: genes and mechanisms. Wiley Interdiscip Rev Syst Biol Med 2010;2:148-61
  • Reichardt LF, Bossy B, Carbonetto S, et al. Neuronal receptors that regulate axon growth. Cold Spring Harb Symp Quant Biol 1990;55:341-50
  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11
  • Kim DH, Behlke MA, Rose SD, et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 2005;23:222-6
  • Seyhan AA, Vlassov AV, Johnston BH. RNA interference from multimeric shRNAs generated by rolling circle transcription. Oligonucleotides 2006;16:353-63
  • Wang Z, Rao DD, Senzer N, Nemunaitis J. RNA interference and cancer therapy. Pharm Res 2011;28(12):2983-95
  • Rose SD, Kim DH, Amarzguioui M, et al. Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res 2005;33:4140-56
  • Hohjoh H. Enhancement of RNAi activity by improved siRNA duplexes. FEBS Lett 2004;557:193-8
  • Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet 2007;8:173-84
  • Elmen J, Thonberg H, Ljungberg K, et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 2005;33:439-47
  • Sun X, Rogoff HA, Li CJ. Asymmetric RNA duplexes mediate RNA interference in mammalian cells. Nat Biotechnol 2008;26:1379-82
  • Juliano R, Bauman J, Kang H, Ming X. Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm 2009;6:686-95
  • Behlke MA. Chemical modification of siRNAs for in vivo use. Oligonucleotides 2008;18:305-19
  • Merkel O, Librizzi D, Pfestroff A, et al. In vivo SPECT and real-time gamma camera imaging of biodistribution and pharmacokinetics of siRNA delivery using an optimized radiolabeling and purification procedure. Bioconjug Chem 2009;20:174-82
  • van de Water FM, Boerman OC, Wouterse AC, et al. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab Dispos 2006;34:1393-7
  • Almeida JP, Chen AL, Foster A, Drezek R. In vivo biodistribution of nanoparticles. Nanomedicine (Lond) 2011;6:815-35
  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008;5:505-15
  • Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Rel 2010;145:182-95
  • Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 2009;66:2873-96
  • Rejman J, Bragonzi A, Conese M. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther 2005;12:468-74
  • El-Sayed A, Harashima H. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther 2013;21(6):1118-30
  • Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J Control Rel 2011;151:220-8
  • Vercauteren D, Vandenbroucke RE, Jones AT, et al. The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol Ther 2010;18:561-9
  • von Gersdorff K, Sanders NN, Vandenbroucke R, et al. The internalization route resulting in successful gene expression depends on both cell line and polyethylenimine polyplex type. Mol Ther 2006;14:745-53
  • Danhier F, Vroman B, Lecouturier N, et al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. J Control Rel 2009;140:166-73
  • Danhier F, Pourcelle V, Marchand-Brynaert J, et al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles. Methods Enzymol 2012;508:157-75
  • Mickler FM, Mockl L, Ruthardt N, et al. Tuning nanoparticle uptake: live-cell imaging reveals two distinct endocytosis mechanisms mediated by natural and artificial EGFR targeting ligand. Nano Lett 2012;12:3417-23
  • de Bruin K, Ruthardt N, von Gersdorff K, et al. Cellular dynamics of EGF receptor-targeted synthetic viruses. Mol Ther 2007;15:1297-305
  • Nel AE, Madler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 2009;8(7):543-57
  • Nguyen J, Szoka FC. Nucleic acid delivery: the missing pieces of the puzzle? Acc Chem Res 2012;45(7):1153-62
  • Kichler A, Mason AJ, Bechinger B. Cationic amphipathic histidine-rich peptides for gene delivery. Biochim Biophys Acta 2006;1758(3):301-7
  • Fattal E, Nir S, Parente RA, Szoka FC. Pore-Forming Peptides Induce Rapid Phospholipid Flip-Flop in Membranes. Biochemistry 1994;33(21):6721-31
  • Tian WD, Ma YQ. Insights into the endosomal escape mechanism via investigation of dendrimer-membrane interactions. Soft Matter 2012;8(23):6378-84
  • Caracciolo G, Amenitsch H. Cationic liposome/DNA complexes: from structure to interactions with cellular membranes. Eur Biophys J 2012;41(10):815-29
  • Xu YH, Szoka FC. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 1996;35(18):5616-23
  • Higuchi Y, Kawakami S, Hashida M. Strategies for in vivo delivery of siRNAs recent progress. BioDrugs 2010;24:195-205
  • Rettig GR, Behlke MA. Progress toward in vivo use of siRNAs-II. Mol Ther 2012;20:483-512
  • Kubo T, Zhelev Z, Ohba H, Bakalova R. Chemically modified symmetric and asymmetric duplex RNAs: an enhanced stability to nuclease degradation and gene silencing effect. Biochem Biophys Res Commun 2008;365:54-61
  • Bruno K. Using drug-excipient interactions for siRNA delivery. Adv Drug Deliv Rev 2011;63:1210-26
  • Thierry AR, Norris V, Molina F, Schmutz M. Lipoplex nanostructures reveal a general self-organization of nucleic acids. Biochim Biophys Acta 2009;1790:385-94
  • Buyens K, de Smedt SC, Braeckmans K, et al. Liposome based systems for systemic siRNA delivery: stability in blood sets the requirements for optimal carrier design. J Control Release 2012;158:362-70
  • Ragelle H, Vandermeulen G, Preat V. Chitosan-based siRNA delivery systems. J Control Release 2013;172(1):207-18
  • Raemdonck K, Martens TF, Braeckmans K, et al. Polysaccharide-based nucleic acid nanoformulations. Adv Drug Deliv Rev 2013;65(9):1123-47
  • Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 2009;6:659-68
  • Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 2004;3:1023-35
  • Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater 2013;12(11):967-77
  • Uprichard SL. The therapeutic potential of RNA interference. FEBS Lett 2005;579:5996-6007
  • Dejneka NS, Wan S, Bond OS, et al. Ocular biodistribution of bevasiranib following a single intravitreal injection to rabbit eyes. Mol Vis 2008;14:997-1005
  • Cho WG, Albuquerque RJ, Kleinman ME, et al. Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth. Proc Natl Acad Sci USA 2009;106:7137-42
  • Barros SA, Gollob JA. Safety profile of RNAi nanomedicines. Adv Drug Deliv Rev 2012;64:1730-7
  • Judge AD, Sood V, Shaw JR, et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005;23:457-62
  • te Boekhorst BCM, Jensen LB, Colombo S, et al. MRI-assessed therapeutic effects of locally administered PLGA nanoparticles loaded with anti-inflammatory siRNA in a murine arthritis model. J Control Release 2012;161:772-80
  • Mura S, Hillaireau H, Nicolas J, et al. Biodegradable nanoparticles meet the bronchial airway barrier: how surface properties affect their interaction with mucus and epithelial cells. Biomacromolecules 2011;12(11):4136-43
  • Grabowski N, Hillaireau H, Vergnaud J, et al. Toxicity of surface-modified PLGA nanoparticles toward lung alveolar epithelial cells. Int J Pharm 2013;454(2):686-94
  • Romero G, Estrela-Lopis I, Zhou J, et al. Surface engineered poly(lactide-co-glycolide) nanoparticles for intracellular delivery: uptake and cytotoxicity-a confocal raman microscopic study. Biomacromolecules 2010;11(11):2993-9
  • Kariko K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005;23:165-75
  • Eberle F, Giessler K, Deck C, et al. Modifications in small interfering RNA that separate immunostimulation from RNA interference. J Immunol 2008;180:3229-37
  • Forsbach A, Muller C, Montino C, et al. Impact of delivery systems on siRNA immune activation and RNA interference. Immunol Lett 2012;141(2):169-80
  • Ballarín-González B, Howard KA. Polycation-based nanoparticle delivery of RNAi therapeutics: adverse effects and solutions. Adv Drug Deliv Rev 2012;64:1717-29
  • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010;140(6):805-20
  • Ma Z, Li J, He F, et al. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem Biophys Res Commun 2005;330:755-9
  • Moghimi SM, Peer D, Langer R. Reshaping the future of nanopharmaceuticals: ad iudicium. ACS Nano 2011;5:8454-8
  • Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature 2004;431:371-8
  • Kovalchuk NM, Starov VM. Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions. Adv Colloid Interface Sci 2012;179-182:99-106
  • Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev 2011;63:456-69
  • Walkey CD, Chan WC. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 2012;41:2780-99
  • Salvati A, Pitek AS, Monopoli MP, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 2013;8:137-43
  • Braeckmans K, Buyens K, Bouquet W, et al. Sizing nanomatter in biological fluids by fluorescence single particle tracking. Nano Lett 2010;10:4435-42
  • Wittmaack K. In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what? Environ Health Perspect 2007;115:187-94
  • Ding T, Sun J, Zhang P. Immune evaluation of biomaterials in TNF-alpha and IL-1beta at mRNA level. J Mater Sci Mater Med 2007;18:2233-6
  • Lundqvist M, Stigler J, Elia G, et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 2008;105:14265-70
  • Walczyk D, Bombelli FB, Monopoli MP, et al. What the cell “sees” in bionanoscience. J Am Chem Soc 2010;132:5761-8
  • Moghimi SM, Andersen AJ, Ahmadvand D, et al. Material properties in complement activation. Adv Drug Deliv Rev 2011;63:1000-7
  • Moghimi SM, Farhangrazi ZS. Nanomedicine and the complement paradigm. Nanomedicine 2013;9:458-60
  • Cedervall T, Lynch I, Foy M, et al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed Engl 2007;46:5754-6
  • Szebeni J, Muggia F, Gabizon A, Barenholz Y. Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv Drug Deliv Rev 2011;63:1020-30
  • Hamad I, Al-Hanbali O, Hunter AC, et al. Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere-serum interface: implications for stealth nanoparticle engineering. ACS Nano 2010;4:6629-38
  • Xiong S, George S, Ji Z, et al. Size of TiO(2) nanoparticles influences their phototoxicity: an in vitro investigation. Arch Toxicol 2013;87:99-109
  • Xiong S, George S, Yu H, et al. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles. Arch Toxicol 2013;87:1075-86
  • Oberdorster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 2010;267:89-105
  • Oberdorster G. Nanotoxicology: in vitro-in vivo dosimetry. Environ Health Perspect 2012;120:A13
  • Oberdorster G, Maynard A, Donaldson K, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2005;2:8
  • Han X, Corson N, Wade-Mercer P, et al. Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology 2012;297:1-9
  • Moghimi SM, Wibroe PP, Helvig SY, et al. Genomic perspectives in inter-individual adverse responses following nanomedicine administration: the way forward. Adv Drug Deliv Rev 2012;64:1385-93
  • Bell NC, Minelli C, Tompkins J, et al. Emerging techniques for submicrometer particle sizing applied to Stöber silica. Langmuir 2012;28:10860-72
  • Haskell RJ. Characterization of submicron systems via optical methods. J Pharm Sci 1998;87:125-9
  • Kapoor M, Burgess DJ, Patil SD. Physicochemical characterization techniques for lipid based delivery systems for siRNA. Int J Pharm 2012;427:35-57
  • Troiber C, Kasper JC, Milani S, et al. Comparison of four different particle sizing methods for siRNA polyplex characterization. Eur J Pharm Biopharm 2013;84:255-64
  • Treuel L, Malissek M, Gebauer JS, Zellner R. The influence of surface composition of nanoparticles on their interactions with serum albumin. ChemPhysChem 2010;11:3093-9
  • Jans H, Liu X, Austin L, et al. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal Chem 2009;81:9425-32
  • Nienhaus GU, Maffre P, Nienhaus K. Studying the protein corona on nanoparticles by FCS. Methods Enzymol 2013;519:115-37
  • Lucas B, Remaut K, Braeckmans K, et al. Studying pegylated DNA complexes by dual color fluorescence fluctuation spectroscopy. Macromolecules 2004;37:3832-40
  • Barran-Berdon AL, Pozzi D, Caracciolo G, et al. Time evolution of nanoparticle-protein corona in human plasma: relevance for targeted drug delivery. Langmuir 2013;29:6485-94
  • Capriotti AL, Caracciolo G, Caruso G, et al. Differential analysis of "protein corona" profile adsorbed onto different nonviral gene delivery systems. Anal Biochem 2011;419:180-9
  • Tremblay GA, Oldfield PR. Bioanalysis of siRNA and oligonucleotide therapeutics in biological fluids and tissues. Bioanalysis 2009;1:595-609
  • Deverre JR, Boutet V, Boquet D, et al. A competitive enzyme hybridization assay for plasma determination of phosphodiester and phosphorothioate antisense oligonucleotides. Nucleic Acids Res 1997;25:3584-9
  • Leeds JM, Graham MJ, Truong L, Cummins LL. Quantitation of phosphorothioate oligonucleotides in human plasma. Anal Biochem 1996;235:36-43
  • Maier M, Fritz H, Gerster M, et al. Quantitation of phosphorothioate oligonucleotides in human blood plasma using a nanoparticle-based method for solid-phase extraction. Anal Chem 1998;70:2197-204
  • Wang L. Oligonucleotide bioanalysis: sensitivity versus specificity. Bioanalysis 2011;3:1299-303
  • Clamme JP, Krishnamoorthy G, Mely Y. Intracellular dynamics of the gene delivery vehicle polyethylenimine during transfection: investigation by two-photon fluorescence correlation spectroscopy. Biochim Biophys Acta 2003;1617:52-61
  • Sonawane ND, Szoka FC Jr, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 2003;278:44826-31
  • Hunter AC, Moghimi SM. Cationic carriers of genetic material and cell death: a mitochondrial tale. Biochim Biophys Acta 2010;1797:1203-9
  • Moghimi SM, Symonds P, Murray JC, et al. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther 2005;11:990-5
  • Florence AT. Pharmaceutical Nanotechnology: more than size ten topics for research. Int J Pharm 2007;339:1-2
  • Summers HD, Rees P, Holton MD, et al. Statistical analysis of nanoparticle dosing in a dynamic cellular system. Nat Nanotechnol 2011;6:170-4
  • Hamada M, Ohtsuka T, Kawaida R, et al. Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3’-ends of siRNAs. Antisense Nucleic Acid Drug Dev 2002;12:301-9
  • Jackson AL, Bartz SR, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003;21:635-7
  • Kleinman ME, Yamada K, Takeda A, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 2008;452:591-U1
  • Scacheri PC, Rozenblatt-Rosen O, et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA 2004;101:1892-7
  • Khan AA, Betel D, Miller ML, et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol 2009;27:549-55
  • Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006;441:537-41
  • Hutvagner G. Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation. FEBS Lett 2005;579:5850-7
  • Meyer SU, Kaiser S, Wagner C, et al. Profound effect of profiling platform and normalization strategy on detection of differentially expressed microRNAs - a comparative study. PLoS One 2012;7:e38946
  • Wang B, Howel P, Bruheim S, et al. Systematic evaluation of three microRNA profiling platforms: microarray, beads array, and quantitative real-time PCR array. PLoS One 2011;6:e17167
  • Pradervand S, Weber J, Thomas J, et al. Impact of normalization on miRNA microarray expression profiling. RNA 2009;15:493-501
  • Bissels U, Wild S, Tomiuk S, et al. Absolute quantification of microRNAs by using a universal reference. RNA 2009;15:2375-84
  • Overhoff M, Wünsche W, Sczakiel G. Quantitative detection of siRNA and single-stranded oligonucleotides: relationship between uptake and biological activity of siRNA. Nucleic Acids Res 2004;32:e170
  • Cheng A, Li M, Liang Y, et al. Stem-loop RT-PCR quantification of siRNAs in vitro and in vivo. Oligonucleotides 2009;19:203-8
  • Ballarin-Gonzalez B, Dagnaes-Hansen F, Fenton RA, et al. Protection and systemic translocation of siRNA following oral administration of chitosan/siRNA nanoparticles. Mol Ther Nucleic Acids 2013;2:e76
  • Colombo S, Nielsen HM, Foged C. Evaluation of carrier-mediated siRNA delivery: lessons for the design of a stem-loop qPCR-based approach for quantification of intracellular full-length siRNA. J Control Release 2013;166(3):220-6
  • Tabernero J, Shapiro GI, LoRusso PM, et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov 2013;3:406-17
  • Shi B, Abrams M. Technologies for investigating the physiological barriers to efficient lipid nanoparticle-siRNA delivery. J Histochem Cytochem 2013;61:407-20
  • Stratford S, Stec S, Jadhav V, et al. Examination of real-time polymerase chain reaction methods for the detection and quantification of modified siRNA. Anal Biochem 2008;379:96-104
  • Pei Y, Hancock PJ, Zhang HC, et al. Quantitative evaluation of siRNA delivery in vivo. RNA 2010;16:2553-63
  • Pei Y, Tuschl T. On the art of identifying effective and specific siRNAs. Nat Methods 2006;3:670-6
  • Lasham A, Herbert M, Coppieters ’t Wallant N, et al. A rapid and sensitive method to detect siRNA-mediated mRNA cleavage in vivo using 5’ RACE and a molecular beacon probe. Nucleic Acids Res 2010;38:e19
  • Davis S, Lollo B, Freier S, Esau C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 2006;34:2294-304
  • Wei J, Jones J, Kang J, et al. RNA-Induced silencing complex-bound small interfering RNA is a determinant of RNA interference-mediated gene silencing in mice. Mol Pharmacol 2011;79:953-63
  • Lennox KA, Behlke MA. A direct comparison of anti-microRNA oligonucleotide potency. Pharm Res 2010;27:1788-99
  • Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005;438:685-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.