874
Views
137
CrossRef citations to date
0
Altmetric
Review

Titania nanotube arrays for local drug delivery: recent advances and perspectives

(Resarch Professor, Australian Future Fellow) , (Research Associate) , (Research Fellow, ARC DECRA Fellow) , (PhD Student) & (PhD Student)

Bibliography

  • KKJain. Drug delivery systems. Humana Press, Springer Science + Business Media, LLC. Humana Press, Tatowa, NJ, USA; 2008. p. 1-50
  • RMMainardes, LPSilva. Drug deliverysystems: past, present, and future. Curr Drug Targets 2004;5:449-55
  • JDrews. Drug discovery: a hystorical perspective. Science 2000;287:1960-4
  • AFahr, XLiu. Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv 2007;4:403-16
  • OKayser, ALemke, NHTrejo. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 2005;6:3-5
  • ASHoffman. The origins and evolution of “controlled” drug delivery systems. J Control Release 2008;132:153-63
  • DVan, TMcGuire, RLanger. Small scale systems for in vivo drug delivery. Nat Biotechnol 2003;21:1184-91
  • RDuncan. Nanomedicine gets clinical. Nanotoday 2005;8:16-17
  • JBWolinsky, YLColson, MWGrinstaff. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric,films, rods, and wafers. J Control Release 2012;159:14-26
  • PWu, DWGrainger. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials 2006;27:2450-67
  • KMAinslie, TMDesai. Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. Lab Chip 2008;8:1864-78
  • MZilberman, JJElsner. Antibiotic-eluting medical devices for various applications. J Control Release 2008;130:202-15
  • SLTao, TADesai. Microfabricated drug delivery systems: from particles to pores. Adv Drug Deliv Rev 2003;55:315-28
  • GJeon, YSeung Yang, JKKim. Functional nanoporous membranes for drug delivery. J Mater Chem 2012;22:14814-34
  • EGultepe, DNagesha, SSridhar, MAmiji. Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv Drug Deliv Rev 2010;62:305-15
  • MArruebo, NVilaboa, JSantamaria. Drug delivery from internally implanted biomedical devices used in traumatology and in orthopedic surgery. Exp Opin Drug Deliv 2010;7:1-15
  • DLosic, SSimovic. Self-ordered nanopore and nanotube platforms for drug delivery. Exp Opin Drug Deliv 2009;6:1363-81
  • PRoy, SBerger, PSchmuki. TiO(2) nanotubes: synthesis and applications. Angew. Chem Int Ed Engl 2011;50:2904-39
  • VZwilling, EDarque-Ceretti, ABoutry-Forveille, et al. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interfac Anal 1999;27:629-37
  • CAGrimes. Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem 2007;17:1451-7
  • JMMacak, HTsuchiya, AGhicov, et al. TiO(2) nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 2007;11:3-18
  • SBauer, PSchmuki, et al. Engineering biocompatible implant surfaces, Part I: materials and surfaces. Prog Mater Sci 2013;58:261-326
  • KSBrammer, CJFrandsen, JSungho Jin. TiO2 nanotubes for bone regeneration. Trends Biotechnol 2012;30:315-22
  • SRani, SCRoy, MPaulose, et al. Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys Chem Chem Phys 2010;12:2780-800
  • KGulati, MSAw, DFindlay, DLosic. Local drug delivery to the bone by drug-releasing implants: perspectives of nano-engineered titania nanotube arrays. Ther Deliv 2012;3:857-73
  • MSAw, MKurian, DLosic. Non-eroding drug-releasing implants with ordered nanoporous and nanotubular structures: concepts for controlling drug release. Biomater Sci 2014;2:10-34
  • DLosic, LVelleman, KKant, et al. Self ordering electrochemistry: a simple approach for engineering nanopore and nanotube arrays for emerging applications. Aust J Chem 2011;64:294-301
  • AGhicov, PSchmuki. Self-ordering electrochemistry: a review on growth andfunctionality of TiO2 nanotubes and other self-aligned MOx structures. Chem Commun 2009;20:2791-808
  • KGulati, MSAw, DLosic. Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection. Nanoscale Res Lett 2011;6:571
  • JMMacak, HTsuchiya, PSchmuki. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed 2005;44(14):2100-2
  • QYCai, MPaulose, OKVarghese, CAGrimes. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J Mater Res 2005;20:230-6
  • HEPrakasam, KShankar, MPaulose, et al. A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem C 2007;111:7235-41
  • KVasilev, ZPoh, KKant, et al. Tailoring the surface functionalities of titania nanotube arrays. Biomaterials 2010;31(3):532-40
  • NKAllam, CAGrimes. Formation of vertically oriented TiO2 nanotube arrays using a fluoride free HCl aqueous electrolyte. J Phys Chem C 2007;111(35):13028-32
  • MPaulose, LPeng, KCPopat, et al. Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J Membr Sci 2008;319(1–2):199-205
  • SPAlbu, DKim, PSchmuki. Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. Angew Chem Int Ed Engl 2008;47(10):1916-19
  • BChen, KLu. Hierarchically branched titania nanotubes with tailored diameters and branch numbers. Langmuir 2012;28:2937-43
  • SPAlbu, AGhicov, SAldabergenova, et al. Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv Mater 2008;20(21):4135-9
  • SHOh, RRFinones, CDaraio, et al. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 2005;26(24):4938-43
  • TDey, PRoy, BFabry, PSchmuki. Anodic mesoporous TiO2 layer on Ti for enhanced formation of biomimetic hydroxyapatite. Acta Biomater 2011;7:1873-9
  • APittrof, SBauer, PSchmuki. Micropatterned TiO< sub> 2</sub> nanotube surfaces for site-selective nucleation of hydroxyapatite from simulated body fluid. Acta Biomater 2011;7:424-31
  • YRSmith, BSarma, SKMohanty, MMisra. Light-assisted anodized TiO2 nanotube arrays. ACS Appl Mater Interfaces 2012;4(11):5883-90
  • MPNeupane, ISPark, TSBae, MHLee. Sonochemical assisted synthesis of nano-structured titanium oxide by anodic oxidation. J Alloys Compound 2013;581:418-22
  • HMatsuno, AYokoyama, FWatari, et al. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 2001;22:1253-62
  • KCPopat, LLeoni, CAGrimes, TADesai. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 2007;28:3188-97
  • BSSmith, SYoriya, LGrissom, et al. Hemocompatibility of titania nanotube arrays. J Biomed Mater Res Part A 2010;95A:350-60
  • NSwami, ZCui, LSNair. Titania nanotubes: novel nanostructures for improved osseointegration. J Heat Transfer 2010;133:034002-8
  • LMBjursten, LRasmusson, SOh, et al. Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res 2010;92A:1218-24
  • KCPopat, MEltgroth, TJLaTempa, et al. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 2007;28:4880-8
  • KCPopat, MEltgroth, TJLa Tempa, et al. Titania nanotubes: a novel platform for drug-eluting coatings for medical implants. Small 2007;3:1878-81
  • KBurns, CYao, TJWebster. Increased chondrocyte adhesion on nanotubular anodized titanium. J Biomed Mater Res Part A 2009;88A:561-8
  • SOh, CDaraio, LHChen, et al. Significantly accelerated osteoblast cellgrowth on aligned TiO2 nanotubes. J Biomed Mater Res Part A 2006;78A:97-103
  • SOh, SJin. Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Mater Sci Eng C 2006;26:1301-6
  • SOh, KSBrammer, YSJLi, et al. Stem cell fate dictated solely by altered nanotube dimension. PNAS 2009;106:2130-5
  • JPark, SBauer, Kvon der Mark, PSchmuki. Nanosize and vitality: tiO2 nanotube diameter directs cell fate. Nano Lett 2007;7(6):1686-91
  • JPark, SBauer, KASchlegel, et al. TiO2 nanotube surfaces: 15 nm - an optimal length scale of surface topography for cell adhesion and differentiation. Small 2009;5(6):666-71
  • KSBrammer, SOh, CJFrandsen, et al. Nanotube surface triggers increased chondrocyte extracellular matrix production. Mater Sci Eng C 2010;30:518-25
  • KSBrammer, SOh, JOGallagher, SJin. Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Lett 2008;8:786-93
  • BSSmith, SYoriya, TJohnson, KCPopat. Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube arrays. Acta Biomater 2011;7:2686-96
  • EFeschet-Chassot, VRaspal, OKAwitor, et al. Tunable functionality and toxicity studies of titanium dioxide nanotube layers. Thin Solid Films 2011;519(8):2564-8
  • SBauer, JPark, Kvon der Mark, PSchmuki. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. Acta Biomater 2008;4:1576-82
  • KGulati, SRamakrishnan, MSAw, et al. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater 2012;8:449-56
  • Cvon Wilmowsky, SBauer, RLutz, et al. In vivo evaluation of anodic TiO(2) nanotubes: an experimental study in the pig. J Biomed Mater Res B Appl Biomater 2009;89B(1):165-71
  • LMBjursten, LRasmusson, SOh, et al. Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A 2010;92:1218-24
  • Medical device regulations. Global overview and guiding principles. World Health Organization, WHO, Geneva; 2003
  • ISO/TS 13830:2013, Nanotechnologies-Guidance on voluntary labelling for consumer products containing manufactured nano-objects 2013
  • JSTsuji, ADMaynard, PCHoward, et al. Research strategies for safety evaluation of nanomaterials. Toxicol Sci 2006;89:42-50
  • CBHuggins, JPFroehlich. High concentration of injected titanium dioxide in abdominal lymph nodes. J Exp Med 1966;124:1099-106
  • YNuevo-Ordóñez, MMontes-Bayón, EBlanco-González, et al. Titanium release in serum of patients with different bone fixation implants and its interaction with serum biomolecules at physiological levels. Anal Bioanal Chem 2011;10.1007/s00216-011-5232-8
  • XLi, LWang, YFan, et al. Biocompatibility and toxicity of nanoparticles and nanotubes. J Nanomater 2012;2012:Article ID 548389
  • MSAw, MKurian, DLosic. Polymeric micelles for multidrug delivery and combination therapy. Chem Eur J 2013;19:12586-601
  • NKShrestha, JMMacak, FSchmidt-Stein, et al. Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angew Chem Int Ed 2009;48:969-72
  • MSAw, JAddai-Mensah, DLosic. Polymer micelles for delayed release of therapeutics from drug-releasing Surfaces with nanotubular structures. Macromol Biosci 2012;12:1048-52
  • KCai, FJiang, ZLuo, XChen. Temperature-responsive controlled drug delivery system based on titanium nanotubes. Adv Eng Mater 2010;12:B565-70
  • MSAw, JAddai-Mensah, DLosic. A multi-drug delivery system with sequential release using titania nanotube arrays. Chem Commun 2012;48:3348-50
  • MSAw, SSimovic, JAddai-Mensah, DLosic. Polymeric micelles in porous and nanotube materials as a new system for extended delivery of poorly soluble drugs. J Mater Chem 2011;21:7082-9
  • SSimovic, KRDiener, ABachhuka, et al. Controlled release and bioactivity of the monoclonal antibody rituximab from a porous matrix: a potential in situ therapeutic device. Mater Lett 2014;130:210-14
  • NÇalışkan, CBayram, EErdal, et al. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Mater Sci Eng C 2014;35:100-5
  • SSimovic, DLosic, KVasilev. Controlled drug release from porous materials by plasma polymer deposition. Chem Commun 2010;46(8):1317-19
  • SSimovic, DLosic, KVasilev. Controlled release from porous platforms. Pharm Technol 2011;35(8):68-71
  • DLosic, MACole, BDollmann, et al. Surface modification of nanoporous alumina membranes by plasma polymerization. Nanotechnology 2008;19:245704
  • KGulati, GJAtkins, DMFindlay, DLosic. Nano-engineered titanium for enhanced bone therapy. Proc SPIE Biosensing and Nanomedicine VI 2013;10.1117/12.2027151
  • XChen, KCai, JFang, et al. Fabrication of selenium-deposited and chitosan-coated titania nanotubes with anticancer and antibacterial properties. Colloids Surf B Biointerfaces 2013;103:149-57
  • AGao, RHang, XHuang, et al. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials 2014;35(13):4223-35
  • DConway, JACohen. Combination therapy in multiple sclerosis. Lancet Neurol 2010;9:299-308
  • MSAw, KGulati, DLosic. Controlling drug release from titania nanotube arrays using polymer nanocarriers and biopolymer coating. Biomater Nanobiotech 2011;2:477-84
  • MKalbacova, JMMacak, FSchmidt-Stein, et al. TiO2 nanotubes: photocatalyst for cancer cell killing. Phys Status Solidi RRL 2008;2:194-6
  • MSAw, JAddai-Mensah, DLosic. Magnetic-responsive delivery of drug-carriers using titania nanotube arrays. J Mater Chem 2012;22:6561-3
  • MSAw, DLosic. Ultrasound enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays. Int J Pharm 2013;443:154-62
  • MBariana, MSAw, EMoore, et al. Radiofrequency-triggered release for on-demand delivery of therapeutics from titania nanotube drug-eluting implants. Nanomed 2014;9(8):1263-75
  • SSirivisoot, RAPareta, TJWebster. A conductive nanostructured polymer electrodeposited on titanium as a controllable, local drug delivery platform. J Biomed Mater Res A 2011;99A(4):586-97
  • SSirivisoot, RPareta, TJWebster. Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology 2011;22(8):085101
  • SSirivisoot, CYao, XXiao, et al. Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications. Nanotechnology 2007;18(36):365102
  • SSirivisoot, TJWebster. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation. Nanotechnology 2008;19(29):295101
  • JRPorter, TTRuckh, KCPopat. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 2009;25(6):1539-60
  • GARodan, TJMartin. Therapeutic approaches to bone diseases. Science 2000;289:1508-14
  • KMAinslie, SLTao, KCPopat, et al. In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. J Biomed Mater Res A 2009;91A(3):647-55
  • GEAninwene, CYao, TJWebster. Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces. Int.J. Nanomed 2008;3(2):257-64
  • DJHunter, GHLo. The management of osteoarthritis: an overview and call to appropriate conservative treatment. Med Clin North Am 2009;93(1):127-43
  • EMHetrick, MHSchoenfisch. Reducing implant-related infections: active release strategies. Chem Soc Rev 2006;35(9):780-9
  • HZhang, YSun, ATian, et al. Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies. Int J Nanomedicine 2013;8:4379-89
  • CYao, TJWebster. Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method. J Biomed Mater Res B Appl Biomater 2009;91B(2):587-95
  • LZhao, HWang, KHuo, et al. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 2011;32(24):5706-16
  • MMa, MKazemzadeh-Narbat, YHui, et al. Local delivery of antimicrobial peptides using self-organized TiO(2) nanotube arrays for peri-implant infections. J Biomed Mater Res A 2012;100A(2):278-85
  • BErcan, ETaylor, EAlpaslan, TJWebster. Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology 2011;22(29):295102
  • CRungsiyakull, QLi, GSun, et al. Surface morphology optimization for osseointegration of coated implants. Biomaterials 2010;31(27):7196-204
  • NSwami, ZWCui, LSNair. Titania nanotubes: novel nanostructures for improved osseointegration. J Heat Trans 2011;133(3):034002
  • JKunze, LMueller, JMMacak, et al. Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochim Acta 2008;53(23):6995-7003
  • MPNeupane, ISPark, TSBae, et al. Titania nanotubes supported gelatin stabilized gold nanoparticles for medical implants. J Mater Chem 2011;21(32):12078-82
  • YXin, JJiang, KHuo, et al. Bioactive SrTiO3 nanotube arrays: strontium delivery platform on Ti-based osteoporotic bone implants. ACS Nano 2009;3:3228-34
  • LZhao, HWang, KHuo, et al. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials 2013;34(1):19-29
  • MLai, KCai, LZhao, et al. Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules 2011;12(4):1097-105
  • MSAw, KAKhalid, KGulati, et al. Characterization of drug-release kinetics in trabecular bone from titania nanotube implants. Int J Nanomedicine 2012;7:4883-92
  • DBJones, EBroeckmann, TPohl, ELSmith. Development of a mechanical testing and loading system for trabecular bone studies for long term culture. Eur Cell Mater 2003;5:48-60
  • CMDavies, DBJones, MJStoddart, et al. Mechanically loaded ex vivo bone culture system ‘Zetos’: systems and culture preparation. Eur Cell Mater 2006;11:57-75
  • JXiao, HZhou, LZhao, et al. The effect of hierarchical micro/nanosurface titanium implant on osseointegration in ovariectomized sheep. Osteoporos Int 2011;22(6):1907-13
  • J-MPark, J-YKoak, J-HJang, et al. Osseointegration of anodized titanium implants coated with fibroblast growth factor-fibronectin (FGF-FN) fusion protein. Int J Oral Maxillofac Implants 2006;21(6):859-66
  • RAdell, BEriksson, ULekholm, et al. A long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 1990;5:347-59
  • EKMoioli, PAClark, XXin, et al. Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Adv Drug Deliv Rev 2007;59:308-24
  • IKShim, HJChung, MRJung, et al. Biofunctional porous anodized titanium implants for enhanced bone regeneration. J Biomed Mater Res A 2013. [Epub ahead of print]
  • YHu, KYCai, ZLuo, et al. TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells. Acta Biomater 2012;8:439-48
  • YHLee, GBhattarai, ISPark, et al. Bone regeneration around N-acetyl cysteine-loaded nanotube titanium dental implant in rat mandible. Biomaterials 2013;34:10199-208
  • IDemetrescu, CPirvu, VMitran. Effect of nano-topographical features of Ti/TiO2 electrode surface on cell response and electrochemical stability in artificial saliva. Bioelectrochemistry 2010;79:122-9
  • QMa, SMei, KJi, et al. Immobilization of Ag nanoparticles/FGF‐2 on a modified titanium implant surface and improved human gingival fibroblasts behavior. J Biomed Mater Res A 2011;98:274-86
  • QMa, WWang, PKChu, et al. Concentration-and time-dependent response of human gingival fibroblasts to fibroblast growth factor 2 immobilized on titanium dental implants. Int J Nanomed 2011;7:1965-76
  • TShokuhfar, JYChang, CKChoi, CFriedrich. Survivability of TiO2 nanotubes on the surface of bone screws. Surf Innovations 2013;2:60-8
  • TShokuhfar, SSinha-Ray, CSukotjo, et al. Intercalation of anti-inflammatory drug molecules within TiO2 nanotubes. RSC Adv 2013;3:17380-6
  • USigwart, JPuel, VMirkovitch, et al. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 1987;316:701-6
  • EGNabel, EBraunwald. A tale of coronary artery disease and myocardial infarction. N Engl J Med 2012;366:54-63
  • PWSerruys, Pde Jaegere, FKiemeneij, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 1994;331:489-95
  • MCMorice, PWSerruys, JESousa, et al. A randomized comparison of a sirolimus- eluting stent with a standard stent for coronary revascularization. N Engl J Med 2002;346:1773-80
  • GWStone, SGEllis, DACox, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 2004;350:221-31
  • JDaemen, PWenaweser, KTsuchida, et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxeleluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet 2007;369:667-78
  • LMauri, WHHsieh, JMMassaro, et al. Stent thrombosis in randomized clinical trials of drug-eluting stents. N Engl J Med 2007;356:1020-9
  • KSternberg, NGrabow, SPetersen, et al. Advances in coronary stent technology - Active drug-loaded stent surfaces for prevention of restenosis and improvement of biocompatibility. Curr Pharm Biotechnol 2013;14:76-90
  • HWieneke, ODirsch, TSawitowski, et al. Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits. Catheter Cardiovasc Interv 2003;60:399-407
  • MKollum, AFarb, RSchreiber, et al. Particle debris from a nanoporous stent coating obscures potential antiproliferative effects of tacrolimus-eluting stents in a porcine model of restenosis. Catheter Cardiovasc Interv 2005;64:85-90
  • EFine, LZhang, HFenniri, TJWebster. Enhanced endothelial cell functions on rosette nanotube-coated titanium vascular stents. Int J Nanomed 2009;4:91-7
  • LPeng, JAndrea, AJBarczak, et al. Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells. Nano Lett 2010;10:143-8
  • FDiMeco, HBrem, JWeingart, AOlivi. Gliadel™ A new method for the treatment of malignant brain tumors. In: DBrown, editor. Drug delivery systems in cancer therapy. Humana Press, Inc, Totowa, NJ; 2003. p. 215-27
  • KGulati, MAw, DLosic. Nanoengineered drug-releasing Ti wires as an alternative for local delivery of chemotherapeutics in the brain. Int J Nanomed 2012;7:2069-76
  • XXiao, LYang, MGuo, et al. Biocompatibility and in vitro antineoplastic drug-loaded trial of titania nanotubes prepared by anodic oxidation of a pure titanium. Sci China B Chem 2009;52(12):2161-5
  • SSo, KLee, PSchmuki. Ultrafast growth of highly ordered anodic TiO2 Nanotubes in lactic acid electrolytes. J Am Chem Soc 2012;134(28):11316-18
  • JMMacak, HTsuchiya, LTaveira, et al. Self-organized nanotubular oxide layers on Ti-6A1-7Nb and Ti-6A1-4V formed by anodization in NH4F solutions. J Biomed Mater Res A 2005;75A(4):928-33
  • HJha, RHahn, PSchmuki. Ultrafast oxide nanotube formation on TiNb, TiZr and TiTa alloys by rapid breakdown anodization. Electrochim Acta 2010;55(28):8883-7
  • YQLiang, ZDCui, SLZhu, XJYang. Characterization of self-organized TiO2 nanotubes on Ti-4Zr-22Nb-2Sn alloys and the application in drug delivery system. J Mater Sci Mater Med 2011;22(3):461-7
  • JLiao, SLin, LZhang, et al. Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays. ACS Appl Mater Interfaces 2012;4(1):171-7
  • LSun, XWang, MLi, et al. Anodic titania nanotubes grown on titanium tubular electrodes. Langmuir 2014;30(10):2835-41
  • WWei, SBerger, CHauser, et al. Transition of TiO2 nanotubes to nanopores for electrolytes with very low water contents. Electrochem Commun 2010;12(9):1184-6
  • DKowalski, DKim, PSchmuki. TiO2 nanotubes, nanochannels and mesosponge: self-organized formation and applications. Nano Today 2013;8(3):235-64
  • PChennell, EFeschet-Chassot, TDevers, et al. In vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections. Int J Pharm 2013;455(1-2):298-305
  • KHuo, XZhang, HWang, et al. Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Biomaterials 2013;34(13):3467-78
  • SLai, WZhang, FLiu, et al. TiO2 nanotubes as animal drug delivery system and in vitro controlled release. J Nanosci Nanotechnol 2013;13(1):91-7
  • HJia, LKerr. Sustained ibuprofen release using composite poly(lactic-co-glycolic acid)/titanium dioxide nanotubes from Ti implant surface. J Pharm Sci 2013;102(7):2341-8
  • T-HKoo, JBorah, Z-CXing, et al. Immobilization of pamidronic acids on the nanotube surface of titanium discs and their interaction with bone cells. Nanoscale Res Lett 2013;8(1):124
  • AKodama, SBauer, AKomatsu, et al. Bioactivation of titanium surfaces using coatings of TiO(2) nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomater 2009;5(6):2322-30
  • S-HMoon, S-JLee, I-SPark, et al. Bioactivity of Ti-6Al-4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer. J Biomed Mater Res B Appl Biomater 2012;100B(8):2053-9
  • HWei, SWu, ZFeng, et al. Increased fibroblast functionality on CNN2-loaded titania nanotubes. Int J Nanomedicine 2012;7:1091-100

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.