2,916
Views
421
CrossRef citations to date
0
Altmetric
Review

The importance of nanoparticle shape in cancer drug delivery

, , &

Bibliography

  • DDLasic, DPapahadjopoulos. Liposomes revisited. Science 1995;267(5202):1275-6
  • TLammers, FKiessling, WEHennink, GStorm. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Controll Release 2012;161(2):175-87
  • LHan, CTang, CHYin. Effect of binding affinity for siRNA on the in vivo antitumor efficacy of polyplexes. Biomaterials 2013;34(21):5317-27
  • SMitragotri. In drug delivery, shape does matter. Pharm Res 2009;26(1):232-4
  • FAlexis, EPridgen, LKMolnar, OCFarokhzad. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008;5(4):505-15
  • RGref, YMinamitake, MTPeracchia, et al. Biodegradable long-circulating polymeric nanospheres. Science 1994;263(5153):1600-3
  • DVllasaliu, RFowler, SStolnik. PEGylated nanomedicines: recent progress and remaining concerns. Expert Opin Drug Deliv 2014;11(1):139-54
  • RPasqualini, ERuoslahti. Organ targeting in vivo using phage display peptide libraries. Nature 1996;380(6572):364-6
  • JAChampion, YKKatare, SMitragotri. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 2007;121:3-9
  • SVenkataraman, JLHedrick, ZYOng, et al. The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev 2011;63:1228-46
  • EASimone, TDDziubla, VRMuzykantov. Polymeric carriers: role of geometry in drug delivery. Expert Opin Drug Deliv 2008;5(12):1283-300
  • NDoshi, SMitragotri. Macrophages recognize size and shape of their targets. PLoS One 2010;5:e10051
  • SSJustice, DAHunstad, LCegelski, SJHultgren. Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 2008;6(2):162-8
  • AABrakhage, SBruns, AThywissen, et al. Interaction of phagocytes with filamentous fungi. Curr Opin Microbiol 2010;13(4):409-15
  • SELee, SFBairstow, JOWerling, et al. Paclitaxel nanosuspensions for targeted chemotherapy - nanosuspension preparation, characterization, and use. Pharm Dev Technol 2014;19(4):438-53
  • VBouzas, THaller, NHobi, et al. Nontoxic impact of PEG-coated gold nanospheres on functional pulmonary surfactant-secreting alveolar type II cells. Nanotoxicology 2014;8(8):813-23
  • DAChristian, SCai, OBGarbuzenko, et al. Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor. Mol Pharm 2009;6(5):1343-52
  • YGeng, PDalhaimer, SCai, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007;2:249-55
  • AGabizon, HShmeeda, YBarenholz. Pharmacokinetics of pegylated liposomal doxorubicin - review of animal and human studies. Clin Pharmacokinet 2003;42(5):419-36
  • PDalhaimer, AJEngler, RParthasarathy, DEDischer. Targeted worm micelles. Biomacromolecules 2004;5:1714-19
  • FGentile, CChiappini, DFine, et al. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J Biomech 2008;41:2312-18
  • SYLee, MFerrari, PDecuzzi. Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 2009;20(49):495101
  • ICMacdonald, EESchmidt, ACGroom. The high splenic hematocrit - a rheological consequence of red-cell flow through the reticular meshwork. Microvasc Res 1991;42(1):60-76
  • BVivo, XHuang, LLi, et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 2011;5(7):5390-9
  • SMuro, TDziubla, WNQiu, et al. Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1. J Pharmacol Exp Ther 2006;317(3):1161-9
  • SMuro, RWiewrodt, AThomas, et al. A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J Cell Sci 2003;116(8):1599-609
  • JCMurciano, SMuro, LKoniaris, et al. ICAM-directed vascular immunotargeting of antithrombotic agents to the endothelial luminal surface. Blood 2003;101(10):3977-84
  • MABruckman, LNRandolph, AVanMeter, et al. Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice. Virology 2014;449:163-73
  • Arnida MMJanat-Amsbury, ARay, et al. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm 2011;77(3):417-23
  • ZXZhou, XPMa, ELJin, et al. Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery. Biomaterials 2013;34(22):5722-35
  • PDalhaimer, FSBates, DEDischer. Single molecule visualization of stable, stiffness-tunable, flow-conforming worm micelles. Macromolecules 2003;36(18):6873-7
  • PDalhaimer, HBermudez, DEDischer. Biopolymer mimicry with polymeric worm-like micelles: MW-scaled flexibility, locked-in curvature, and coexisting microphases. Polym Sci, Part B: Polym Phys 2004;42:168-76
  • RSingh, DPantarotto, LLacerda, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 2006;103:3357-62
  • J-HPark, Gvon Maltzahn, LZhang, et al. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 2008;20:1630-5
  • SMuro, CGarnacho, JAChampion, et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther 2008;16:1450-8
  • XLHu, JMHu, JTian, et al. Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J Am Chem Soc 2013;135(46):17617-29
  • YKim, PDalhaimer, DAChristian, DEDischer. Polymeric worm micelles as nano-carriers for drug delivery. Nanotechnology 2005;16(7):S484-S91
  • KLLee, LCHubbard, SHern, et al. Shape matters: the diffusion rates of TMV rods and CPMV icosahedrons in a spheroid model of extracellular matrix are distinct. Biomater Sci 2013;1(6):581-8
  • SShukla, AMWen, NRAyat, et al. Biodistribution and clearance of a filamentous plant virus in healthy and tumor-bearing mice. Nanomed 2014;9(2):221-36
  • NDaum, CTscheka, ANeumeyer, MSchneider. Novel approaches for drug delivery systems in nanomedicine: effects of particle design and shape. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012;4(1):52-65
  • MCaldorera-Moore, NGuimard, LShi, KRoy. Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv 2010;7(4):479-95
  • MEFox, FCSzoka, JMJFréchet. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc Chem Res 2009;42:1141-51
  • NNasongkla, BChen, NMacaraeg, et al. Dependence of pharmacokinetics and biodistribution on polymer architecture: effect of cyclic versus linear polymers. J Am Chem Soc 2009;131:3842-3
  • CCLee, MYoshida, JMFrechet, et al. In vitro and in vivo evaluation of hydrophilic dendronized linear polymers. Bioconjug Chem 2005;16(3):535-41
  • EEUzgiris, HCline, BMoasser, et al. Conformation and structure of polymeric contrast agents for medical imaging. Biomacromolecules 2004;5:54-61
  • CZavaleta, Ade la Zerda, ZLiu, et al. Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett 2008;8(9):2800-5
  • ZLiu, WCai, LHe, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2007;2:47-52
  • JHPark, GVMaltzahn, LZhang, et al. Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small 2009;92121(6):694-700
  • YAkiyama, TMori, YKatayama, TNiidome. Conversion of rod-shaped gold nanoparticles to spherical forms and their effect on biodistribution in tumor-bearing mice. Nanoscale Res Lett 2012;7(1):565
  • KCLBlack, YCWang, HPLuehmann, et al. Radioactive Au-198-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano 2014;8(5):4385-94
  • VPChauhan, ZPopović, OChen, et al. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew Chem 2011;123:11619-22
  • BGodin, CChiappini, SSrinivasan, et al. Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice. Adv Funct Mater 2012;22(20):4225-35
  • ALvan de Ven, PKim, OHaley, et al. Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J Control Release 2012;158(1):148-55
  • PDecuzzi, BGodin, TTanaka, et al. Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 2010;141:320-7
  • TYu, DHubbard, ARay, HGhandehari. In vivo biodistribution and pharmacokinetics of silica nanoparticles as a function of geometry, porosity and surface characteristics. J Control Release 2012;163(1):46-54
  • ZPXu, MNiebert, KPorazik, et al. Subcellular compartment targeting of layered double hydroxide nanoparticles. J Control Release 2008;130:86-94
  • RRPatil, RVGaikwad, ASamad, PVDevarajan. Role of lipids in enhancing splenic uptake of polymer-lipid (LIPOMER) nanoparticles. J Biomed Nanotechnol 2008;4(3):359-66
  • SMMoghimi. Mechanisms of splenic clearance of blood-cells and particles - towards development of new splenotropic agents. Adv Drug Deliv Rev 1995;17(1):103-15
  • PVDevarajan, ABJindal, RRPatil, et al. Particle shape : a new design parameter for passive targeting in splenotropic drug delivery. J Pharm Sci 2010;99(6):2576-81
  • S-YLee, MFerrari, PDecuzzi. Design of bio-mimetic particles with enhanced vascular interaction. J Biomech 2009;42:1885-90
  • PKolhar, ACAnselmo, VGupta, et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci USA 2013;110:10753-8
  • AMisra, SGanesh, AShahiwala, SPShah. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci 2003;6(2):252-73
  • RToy, PMPeiris, KBGhaghada, EKarathanasis. Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomed 2014;9(1):121-34
  • JAChampion, SMitragotri. Shape induced inhibition of phagocytosis of polymer particles. Pharm Res 2009;26:244-9
  • KZhang, HFang, ZChen, et al. Shape effects of nanoparticles conjugated with cell-penetrating peptides (HIV Tat PTD) on CHO cell uptake. Bioconjug Chem 2008;19:1880-7
  • YZhang, STekobo, YTu, et al. Permission to enter cell by shape: nanodisk vs nanosphere. ACS Appl Mater Interfaces 2012;4(8):4099-105
  • DPaul, SAchouri, YZYoon, et al. Phagocytosis dynamics depends on target shape. Biophys J 2013;105(5):1143-50
  • OShimoni, YYan, YJWang, FCaruso. Shape-dependent cellular processing of polyelectrolyte capsules. ACS Nano 2013;7(1):522-30
  • LFlorez, CHerrmann, JMCramer, et al. How shape influences uptake: interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells. Small 2012;8(14):2222-30
  • JMoller, TLuehmann, HHall, VVogel. The race to the pole: how high-aspect ratio shape and heterogeneous environments limit phagocytosis of filamentous Escherichia coli bacteria by macrophages. Nano Lett 2012;12(6):2901-5
  • GSharma, DTValenta, YAltman, et al. Polymer particle shape independently influences binding and internalization by macrophages. J Control Release 2010;147(3):408-12
  • JAChampion, SMitragotri. Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 2006;103:4930-4
  • J-WYoo, NDoshi, SMitragotri. Endocytosis and intracellular distribution of plga particles in endothelial cells: effect of particle geometry. Macromol Rapid Commun 2010;31:142-8
  • YQiu, YLiu, LWang, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 2010;31(30):7606-19
  • BDChithrani, WCChan. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 2007;7:1542-50
  • BDChithrani, AAGhazani, WCChan. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006;6:662-8
  • EHutter, SBoridy, SLabrecque, et al. Microglial response to gold nanoparticles. ACS Nano 2010;4:2595-606
  • KNiikura, TMatsunaga, TSuzuki, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 2013;7(5):3926-38
  • PKolhar, NDoshi, SMitragotri. Polymer nanoneedle-mediated intracellular drug delivery. Small 2011;7:2094-100
  • AVerma, FStellacci. Effect of Surface Properties on Nanoparticle-Cell Interactions. Small 2010;6(1):12-21
  • JJang, DHLim, IHChoi. The impact of nanomaterials in immune system. Immune netw 2010;10(3):85-91
  • KKostarelos, LLacerda, GPastorin, et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2007;2(2):108-13
  • SBarua, J-WYoo, PKolhar, et al. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci USA 2013;110(9):3270-5
  • ZQChu, SLZhang, BKZhang, et al. Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci Rep 2014;4:4495
  • RAgarwal, VSingh, PJurney, et al. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci USA 2013;110(43):17247-52
  • NJHao, LLLi, QZhang, et al. The shape effect of PEGylated mesoporous silica nanoparticles on cellular uptake pathway in Hela cells. Microporous Mesoporous Mater 2012;162:14-23
  • SEGratton, PARopp, PDPohlhaus, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 2008;105:11613-18
  • SKessel, NPTruong, ZFJia, MJMonteiro. Aqueous reversible addition-fragmentation chain transfer dispersion polymerization of thermoresponsive diblock copolymer assemblies: temperature directed morphology transformations. J Polym Sci Part A 2012;50(23):4879-87
  • ZFJia, NPTruong, MJMonteiro. Reversible polymer nanostructures by regulating SDS/PNIPAM binding. Polym Chem 2013;4(2):233-6
  • KYang, YQMa. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 2010;5(8):579-83
  • RVacha, FJMartinez-Veracoechea, DFrenkel. Receptor-Mediated Endocytosis of Nanoparticles of Various Shapes. Nano Lett 2011;11(12):5391-5
  • PDecuzzi, SLee, BBhushan, M. AFerrari. Theoretical Model for the Margination of Particles within Blood Vessels. Ann Biomed Eng 2005;33:179-90
  • HGao, WShi, LBFreund. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 2005;102:9469-74
  • PDecuzzi, MFerrari. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 2006;27:5307-14
  • PDecuzzi, MFerrari. The receptor-mediated endocytosis of nonspherical particles. Biophys J 2008;94:3790-7
  • SDasgupta, TAuth, GGompper. Shape and Orientation Matter for the Cellular Uptake of Nonspherical Particles. Nano Lett 2014;14(2):687-93
  • NSOltra, JSwift, AMahmud, et al. Filomicelles in nanomedicine - from flexible, fragmentable, and ligand-targetable drug carrier designs to combination therapy for brain tumors. J Mater Chem B 2013;1(39):5177-85
  • TChen, XGuo, XLiu, et al. A Strategy in the design of micellar shape for cancer therapy. Adv Healthc Mater 2012;1(2):214-24
  • BKaragoz, LEsser, HTDuong, et al. Polymerization-Induced Self-Assembly (PISA) - control over the morphology of nanoparticles for drug delivery applications. Polym Chem 2014;5(2):350-5
  • BKaragoz, CBoyer, TPDavis. Simultaneous polymerization-induced self-assembly (PISA) and guest molecule encapsulation. Macromol Rapid Commun 2014;35(4):417-21
  • SBarua, SMitragotri. Synergistic targeting of cell membrane, cytoplasm, and nucleus of cancer cells using rod-shaped nanoparticles. ACS Nano 2013;7:9558-70
  • XHHuang, IHEl-Sayed, WQian, MAEl-Sayed. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006;128(6):2115-20
  • EBDickerson, ECDreaden, XHHuang, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 2008;269(1):57-66
  • BHildebrandt, PWust, OAhlers, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 2002;43(1):33-56
  • TBHuff, LTong, YZhao, et al. Hyperthermic effects of gold nanorods on tumor cells. Nanomed 2007;2(1):125-32
  • CCChen, YPLin, CWWang, et al. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J Am Chem Soc 2006;128(11):3709-15
  • YNiidome, TNiidome, SYamada, et al. Pulsed-laser induced fragmentation and dissociation of DNA immobilized on gold nanoparticles. Mol Cryst Liquid Cryst 2006;445:201-6
  • AWijaya, SBSchaffer, IGPallares, KHamad-Schifferli. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 2009;3(1):80-6
  • TSZimmermann, ACHLee, AAkinc, et al. RNAi-mediated gene silencing in non-human primates. Nature 2006;441(7089):111-14
  • ODiou, NTsapis, EFattal. Targeted nanotheranostics for personalized cancer therapy. Expert Opin Drug Deliv 2012;9(12):1475-87
  • JSoutschek, AAkinc, BBramlage, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004;432(7014):173-8
  • KChaturvedi, KGanguly, ARKulkarni, et al. Cyclodextrin-based siRNA delivery nanocarriers: a state-of-the-art review. Expert Opin Drug Deliv 2011;8(11):1455-68
  • KNishina, HMizusawa, TYokota. Short interfering RNA and the central nervous system: development of nonviral delivery systems. Expert Opin Drug Deliv 2013;10(3):289-92
  • KAWhitehead, RLanger, DGAnderson. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009;8(2):129-38
  • SPatnaik, KCGupta. Novel polyethylenimine-derived nanoparticles for in vivo gene delivery. Expert Opin Drug Deliv 2013;10(2):215-28
  • IObataya, CNakamura, SHan, et al. Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Lett 2005;5(1):27-30
  • JLTan, JTien, DMPirone, et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 2003;100(4):1484-9
  • NPTruong, ZFJia, MBurgess, et al. Self-catalyzed degradable cationic polymer for release of DNA. Biomacromolecules 2011;12(10):3540-8
  • WYGu, ZFJia, NPTruong, et al. Polymer nanocarrier system for endosome escape and timed release of siRNA with complete gene silencing and cell death in cancer cells. Biomacromolecules 2013;14(10):3386-9
  • NPTruong, WYGu, IPrasadam, et al. An influenza virus-inspired polymer system for the timed release of siRNA. Nat Commun 2013;4:1902
  • KSChu, WHasan, SRawal, et al. Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft. Nanomedicine 2013;9(5):686-93
  • W-KOh, SKim, HYoon, JJang. Shape-dependent cytotoxicity and proinflammatory response of poly(3,4-ethylenedioxythiophene) nanomaterials. Small 2010;6:872-9
  • XXZhao, SNg, BCHeng, et al. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch Toxicol 2013;87(6):1037-52
  • CPTsai, YHung, YHChou, et al. High-contrast paramagnetic fluorescent mesoporous silica nanorods as a multifunctional cell-imaging probe. Small 2008;4(2):186-91
  • AMAlkilany, SELohse, CJMurphy. The gold standard: gold nanoparticle libraries to understand the nano-bio interface. Acc Chem Res 2013;46(3):650-61

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.