337
Views
16
CrossRef citations to date
0
Altmetric
Review

New concepts to fight oxidative stress: nanosized three-dimensional supramolecular antioxidant assemblies

, , , & (Professor)

Bibliography

  • Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 2008;77:755-76
  • Prousek J. Fenton chemistry in biology and medicine. Pure Appl Chem 2007;79(12):2325-38
  • Burton GJ, Jauniaux E. Oxidative stress. Best Pract Res Clin Obstet Gynaecol 2011;25(3):287-99
  • Radi R, Peluffo G, Alvarez MN, et al. Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 2001;30(5):463-88
  • Poljsak B, Suput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev 2013;2013:956792
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82(1):47-95
  • Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 2001;11(4):173-86
  • Oktyabrsky ON, Smirnova GV. Redox regulation of cellular functions. Biochemistry (Mosc) 2007;72(2):132-45
  • Rhee SG. Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 1999;31(2):53-9
  • Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol 2010;38(1):96-109
  • Sinha JK, Ghosh S, Swain U, et al. Increased macromolecular damage due to oxidative stress in the neocortex and hippocampus of WNIN/Ob, a novel rat model of premature aging. Neuroscience 2014;269:256-64
  • Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 2004;23(16):2838-49
  • Cadenas E, Davies KJA. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 2000;29(3-4):222-30
  • Sayre LM, Perry G, Smith MA. Oxidative stress and neurotoxicity. Chem Res Toxicol 2008;21(1):172-88
  • Sugamura K, Keaney JFJr. Reactive oxygen species in cardiovascular disease. Free Radic Biol Med 2011;51(5):978-92
  • Behrend L, Henderson G, Zwacka RM. Reactive oxygen species in oncogenic transformation. Biochem Soc Trans 2003;31(Pt 6):1441-4
  • Trujillo M, Ferrer-Sueta G, Radi R. Peroxynitrite detoxification and its biologic implications. Antioxid Redox Signal 2008;10(9):1607-20
  • Brieger K, Schiavone S, Miller FJJr, et al. Reactive oxygen species: from health to disease. Swiss Med Wkly 2012;142:w13659
  • Newsholme P, Rebelato E, Abdulkader F, et al. Reactive oxygen and nitrogen species generation, antioxidant defenses, and b-cell function: a critical role for amino acids. J Endocrinol 2012;214(1):11-20
  • Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 2000;149(1):43-50
  • Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem 2005;12(10):1161-208
  • Chen XP, Guo CY, Kong JM. Oxidative stress in neurodegenerative diseases. Neural Regen Res 2012;7(5):376-85
  • Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol 2014;10(1):9-17
  • Surai K, Surai P, Speake B, et al. Antioxidant-prooxidant balance in the intestine: food for thought 1. Prooxidants. Nutr Genomics Funct Food 2003;1(1):51-70
  • Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 1993;57(5):715S-24S
  • Wong-Ekkabut J, Xu Z, Triampo W, et al. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J 2007;93(12):4225-36
  • Chirico EN, Pialoux V. Role of oxidative stress in the pathogenesis of sickle cell disease. IUBMB Life 2012;64(1):72-80
  • Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta 2005;1703(2):93-109
  • Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997;272(33):20313-16
  • Cooke MS, Evans MD, Dizdaroglu M, et al. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 2003;17(10):1195-214
  • Halliwell B, Aruoma OI. DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett 1991;281(1-2):9-19
  • Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 2004;68(2):320-44
  • Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 2002;30(6):620-50
  • Sies H. Strategies of antioxidant defense. Eur J Biochem 1993;215(2):213-19
  • Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995;64:97-112
  • Bielski BHJ, Allen AO. Mechanism of the disproportionation of superoxide radicals. J Phys Chem 1977;81(11):1048-50
  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59(3):527-605
  • Fransen M, Nordgren M, Wang B, et al. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta 2012;1822(9):1363-73
  • Smith JJ, Aitchison JD. Peroxisomes take shape. Nat Rev Mol Cell Biol 2013;14(12):803-17
  • Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003;552(Pt 2):335-44
  • Guidot DM, Repine JE, Kitlowski AD, et al. Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymatic mechanism. J Clin Invest 1995;96(2):1131-6
  • Sen S, Chakraborty R. The role of antioxidants in human health. ACS Symposium series American Chemical Society, Washington, DC; 2011. p. 1-37
  • Firuzi O, Miri R, Tavakkoli M, et al. Antioxidant therapy: current status and future prospects. Curr Med Chem 2011;18(25):3871-88
  • Pacher P, Nivorozhkin A, Szabo C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 2006;58(1):87-114
  • Vertuani S, Angusti A, Manfredini S. The antioxidants and pro-antioxidants network: an overview. Curr Pharm Des 2004;10(14):1677-94
  • Liochev SI. Superoxide dismutase mimics, other mimics, antioxidants, prooxidants, and related matters. Chem Res Toxicol 2013;26(9):1312-19
  • Balasubramanian V, Ezhevskaya M, Moons H, et al. Structural characterization of a highly active superoxide-dismutase mimic. Phys Chem Chem Phys 2009;11(31):6778-87
  • Saso L, Firuzi O. Pharmacological applications of antioxidants: lights and shadows. Curr Drug Targets 2014;15(13):1177-99
  • Howard MD, Hood ED, Zern B, et al. Nanocarriers for vascular delivery of anti-inflammatory agents. Annu Rev Pharmacol Toxicol 2014;54(1):205-26
  • Tabrez S, Priyadarshini M, Urooj M, et al. Cancer chemoprevention by polyphenols and their potential application as nanomedicine. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2013;31(1):67-98
  • Khushnud T, Mousa SA. Potential role of naturally derived polyphenols and their nanotechnology delivery in cancer. Mol Biotechnol 2013;55(1):78-86
  • Gonnet M, Lethuaut L, Boury F. New trends in encapsulation of liposoluble vitamins. J Control Release 2010;146(3):276-90
  • Du L, Li J, Chen C, et al. Nanocarrier: a potential tool for future antioxidant therapy. Free Radic Res 2014;48(9):1061-9
  • Kraft JC, Freeling JP, Wang Z, et al. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 2014;103(1):29-52
  • Stone WL, Smith M. Therapeutic uses of antioxidant liposomes. Mol Biotechnol 2004;27(3):217-30
  • Eloy JO, Claro de Souza M, Petrilli R, et al. Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids Surf B Biointerfaces 2014;123C:345-63
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013;65(1):36-48
  • Hood E, Simone E, Wattamwar P, et al. Nanocarriers for vascular delivery of antioxidants. Nanomedicine 2011;6(7):1257-72
  • Cooper DL, Conder CM, Harirforoosh S. Nanoparticles in drug delivery: mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity. Expert Opin Drug Deliv 2014;11(10):1661-80
  • Basnet P, Hussain H, Tho I, et al. Liposomal delivery system enhances anti-inflammatory properties of curcumin. J Pharm Sci 2012;101(2):598-609
  • Castan L, del Toro G, Fernández AA, et al. Biological activity of liposomal vanillin. J Med Food 2013;16(6):551-7
  • Rovoli M, Gortzi O, Lalas S, et al. β-Lactoglobulin improves liposome’s encapsulation properties for vitamin E delivery. J Liposome Res 2013;24(1):74-81
  • Shaji J, Iyer S. Double-loaded liposomes encapsulating Quercetin and Quercetin beta-cyclodextrin complexes: preparation, characterization and evaluation. Asian J Pharm 2012;6(3):218
  • Gang W, Jie WJ, Ping ZL, et al. Liposomal quercetin: evaluating drug delivery in vitro and biodistribution in vivo. Expert Opin Drug Deliv 2012;9(6):599-613
  • Beckman JS, Minor RLJr, Freeman BA. Augmentation of antioxidant enzymes in vascular endothelium. J Free Radic Biol Med 1986;2(5-6):359-65
  • Gaspar MM, Martins MB, Corvo ML, et al. Design and characterization of enzymosomes with surface-exposed superoxide dismutase. Biochim Biophys Acta 2003;1609(2):211-17
  • Gaspar MM, Boerman OC, Laverman P, et al. Enzymosomes with surface-exposed superoxide dismutase: in vivo behaviour and therapeutic activity in a model of adjuvant arthritis. J Control Release 2007;117(2):186-95
  • Corvo ML, Marinho HS, Marcelino P, et al. Superoxide dismutase enzymosomes: carrier capacity optimization, in vivo behaviour and therapeutic activity. Pharm Res 2015;32(1):91-102
  • Howard MD, Greineder CF, Hood ED, et al. Endothelial targeting of liposomes encapsulating SOD/catalase mimetic EUK-134 alleviates acute pulmonary inflammation. J Control Release 2014;177:34-41
  • Kumar S, Randhawa JK. High melting lipid based approach for drug delivery: solid lipid nanoparticles. Mater Sci Eng C Mater Biol Appl 2013;33(4):1842-52
  • Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004;56(9):1257-72
  • Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000;50(1):161-77
  • Parhi R, Suresh P. Preparation and characterization of solid lipid nanoparticles-a review. Curr Drug Discov Technol 2012;9(1):2-16
  • Montenegro L, Campisi A, Sarpietro MG, et al. In vitro evaluation of idebenone-loaded solid lipid nanoparticles for drug delivery to the brain. Drug Dev Ind Pharm 2011;37(6):737-46
  • Iqbal MA, Md S, Sahni JK, et al. Nanostructured lipid carriers system: recent advances in drug delivery. J Drug Target 2012;20(10):813-30
  • Weber S, Zimmer A, Pardeike J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm 2014;86(1):7-22
  • Fang CL, Al-Suwayeh SA, Fang JY. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol 2013;7(1):41-55
  • Gokce E, Korkmaz E, Dellera E, et al. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int J Nanomedicine 2012;7:1841-50
  • Ruktanonchai U, Bejrapha P, Sakulkhu U, et al. Physicochemical characteristics, cytotoxicity, and antioxidant activity of three lipid nanoparticulate formulations of alpha-lipoic acid. AAPS PharmSciTech 2009;10(1):227-34
  • Mignani S, El Kazzouli S, Bousmina M, et al. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv Drug Deliv Rev 2013;65(10):1316-30
  • Zhao C, Wang Y, Su Y, et al. Inclusion complexes of isoflavones with two commercially available dendrimers: solubility, stability, structures, release behaviors, cytotoxicity, and anti-oxidant activities. Int J Pharm 2011;421(2):301-9
  • Kurtoglu YE, Navath RS, Wang B, et al. Poly(amidoamine) dendrimer-drug conjugates with disulfide linkages for intracellular drug delivery. Biomaterials 2009;30(11):2112-21
  • Ahmad Z, Shah A, Siddiq M, et al. Polymeric micelles as drug delivery vehicles. RSC Adv 2014;4(33):17028-38
  • Simone EA, Dziubla TD, Colon-Gonzalez F, et al. Effect of polymer amphiphilicity on loading of a therapeutic enzyme into protective filamentous and spherical polymer nanocarriers. Biomacromolecules 2007;8(12):3914-21
  • Nishiyama N, Kataoka K. Preparation and characterization of size-controlled polymeric micelle containing cis-dichlorodiammineplatinum(II) in the core. J Control Release 2001;74(1-3):83-94
  • Tripodo G, Mandracchia D, Dorati R, et al. Nanostructured polymeric functional micelles for drug delivery applications. Macromol Symp 2013;334(1):17-23
  • Li X, Huang Y, Chen X, et al. Self-assembly and characterization of Pluronic P105 micelles for liver-targeted delivery of silybin. J Drug Target 2009;17(10):739-50
  • Heffernan MJ, Murthy N. Disulfide-crosslinked polyion micelles for delivery of protein therapeutics. Ann Biomed Eng 2009;37(10):1993-2002
  • Hu P, Tirelli N. Scavenging ROS: superoxide dismutase/catalase mimetics by the use of an oxidation-sensitive nanocarrier/enzyme conjugate. Bioconjug Chem 2012;23(3):438-49
  • Antonietti M, Förster S. Vesicles and liposomes: a self-assembly principle beyond lipids. Adv Mater 2003;15(16):1323-33
  • Le Meins JF, Sandre O, Lecommandoux S. Recent trends in the tuning of polymersomes’ membrane properties. Eur Phys J E Soft Matter 2011;34(2):1-17
  • Messager L, Gaitzsch J, Chierico L, et al. Novel aspects of encapsulation and delivery using polymersomes. Curr Opin Pharmacol 2014;18:104-11
  • Itel F, Chami M, Najer A, et al. Molecular organization and dynamics in polymersome membranes: a lateral diffusion study. Macromolecules 2014;47(21):7588-96
  • Bermudez H, Brannan AK, Hammer DA, et al. Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules 2002;35(21):8203-8
  • Lee JS, Feijen J. Polymersomes for drug delivery: design, formation and characterization. J Control Release 2012;161(2):473-83
  • Onaca O, Enea R, Hughes DW, et al. Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery. Macromol Biosci 2009;9(2):129-39
  • Meng F, Zhong Z, Feijen J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 2009;10(2):197-209
  • Balasubramanian V, Onaca O, Enea R, et al. Protein delivery: from conventional drug delivery carriers to polymeric nanoreactors. Expert Opin Drug Deliv 2010;7(1):63-78
  • Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 2011;36(7):887-913
  • Nagpal K, Singh SK, Mishra DN. Nanoparticle mediated brain targeted delivery of gallic acid: in vivo behavioral and biochemical studies for improved antioxidant and antidepressant-like activity. Drug Deliv 2012;19(8):378-91
  • Reddy MK, Labhasetwar V. Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury. FASEB J 2009;23(5):1384-95
  • Wattamwar PP, Mo Y, Wan R, et al. Antioxidant activity of degradable polymer poly(trolox ester) to suppress oxidative stress injury in the cells. Adv Funct Mater 2010;20(1):147-54
  • Kwon J, Kim J, Park S, et al. Inflammation-responsive antioxidant nanoparticles based on a polymeric prodrug of vanillin. Biomacromolecules 2013;14(5):1618-26
  • Yoo D, Guk K, Kim H, et al. Antioxidant polymeric nanoparticles as novel therapeutics for airway inflammatory diseases. Int J Pharm 2013;450(1-2):87-94
  • Yoshitomi T, Hirayama A, Nagasaki Y. The ROS scavenging and renal protective effects of pH-responsive nitroxide radical-containing nanoparticles. Biomaterials 2011;32(31):8021-8
  • Yoshitomi T, Nagasaki Y. Reactive oxygen species-scavenging nanomedicines for the treatment of oxidative stress injuries. Adv Healthc Mater 2014;3(8):1149-61
  • Shimizu M, Yoshitomi T, Nagasaki Y. The behavior of ROS-scavenging nanoparticles in blood. J Clin Biochem Nutr 2014;54(3):166-73
  • Mai WX, Meng H. Mesoporous silica nanoparticles: a multifunctional nano therapeutic system. Integr Biol 2013;5(1):19-28
  • Douroumis D, Onyesom I, Maniruzzaman M, et al. Mesoporous silica nanoparticles in nanotechnology. Crit Rev Biotechnol 2013;33(3):229-45
  • Wang Y, Zhao Q, Han N, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 2014;11(2):313-27
  • Webb JA, Bardhan R. Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 2014;6(5):2502-30
  • Cao-Milan R, Liz-Marzan LM. Gold nanoparticle conjugates: recent advances toward clinical applications. Expert Opin Drug Deliv 2014;11(5):741-52
  • Kumar D, Saini N, Jain N, et al. Gold nanoparticles: an era in bionanotechnology. Expert Opin Drug Deliv 2013;10(3):397-409
  • Nie Z, Liu KJ, Zhong CJ, et al. Enhanced radical scavenging activity by antioxidant-functionalized gold nanoparticles: a novel inspiration for development of new artificial antioxidants. Free Radic Biol Med 2007;43(9):1243-54
  • Hsieh DS, Lu HC, Chen CC, et al. The preparation and characterization of gold-conjugated polyphenol nanoparticles as a novel delivery system. Int J Nanomedicine 2012;7:1623-33
  • Du L, Suo S, Wang G, et al. Mechanism and cellular kinetic studies of the enhancement of antioxidant activity by using surface-functionalized gold nanoparticles. Chemistry 2013;19(4):1281-7
  • Pal R, Panigrahi S, Bhattacharyya D, et al. Characterization of citrate capped gold nanoparticle-quercetin complex: experimental and quantum chemical approach. J Mol Struct 2013;1046:153-63
  • Chirra HD, Sexton T, Biswal D, et al. Catalase-coupled gold nanoparticles: comparison between the carbodiimide and biotin-streptavidin methods. Acta Biomater 2011;7(7):2865-72
  • Hu H, Nie L, Feng S, et al. Preparation, characterization and in vitro release study of gallic acid loaded silica nanoparticles for controlled release. Pharmazie 2013;68(6):401-5
  • Rashidi L, Vasheghani-Farahani E, Soleimani M, et al. A cellular uptake and cytotoxicity properties study of gallic acid-loaded mesoporous silica nanoparticles on Caco-2 cells. J Nanopart Res 2014;16(3):1-14
  • Chen YP, Chen CT, Hung Y, et al. A new strategy for intracellular delivery of enzyme using mesoporous silica nanoparticles: superoxide dismutase. J Am Chem Soc 2013;135(4):1516-23
  • Ambati J, Lopez AM, Cochran D, et al. Engineered silica nanocarriers as a high-payload delivery vehicle for antioxidant enzymes. Acta Biomater 2012;8(6):2096-103
  • Astruc D, Lu F, Aranzaes JR. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed Engl 2005;44(48):7852-72
  • Tsuzuki T. Commercial scale production of inorganic nanoparticles. Int J Nanotechnol 2009;6(5-6):567-78
  • Celardo I, Pedersen JZ, Traversa E, et al. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011;3(4):1411-20
  • Merrifield RC, Wang ZW, Palmer RE, et al. Synthesis and characterization of polyvinylpyrrolidone coated cerium oxide nanoparticles. Environ Sci Technol 2013;47(21):12426-33
  • Dowding JM, Seal S, Self WT. Cerium oxide nanoparticles accelerate the decay of peroxynitrite (ONOO). Drug Deliv Transl Res 2013;3(4):375-9
  • Heckert EG, Karakoti AS, Seal S, et al. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008;29(18):2705-9
  • De Marzi L, Monaco A, De Lapuente J, et al. Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro. Int J Mol Sci 2013;14(2):3065-77
  • Park EJ, Choi J, Park YK, et al. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 2008;245(1-2):90-100
  • Dowding JM, Das S, Kumar A, et al. Cellular interaction and toxicity depend on physicochemical properties and surface modification of redox-active nanomaterials. ACS Nano 2013;7(6):4855-68
  • Lin CS, Khan MR, Lin SD. The preparation of Pt nanoparticles by methanol and citrate. J Colloid Interface Sci 2006;299(2):678-85
  • Duff DG, Edwards PP, Johnson BFG. Formation of a polymer-protected platinum sol - a new understanding of the parameters controlling morphology. J Phys Chem 1995;99(43):15934-44
  • Chen CW, Akashi M. Synthesis, characterization, and catalytic properties of colloidal platinum nanoparticles protected by poly(N-isopropylacrylamide). Langmuir 1997;13(24):6465-72
  • Teranishi T, Kurita R, Miyake M. Shape control of Pt nanoparticles. J Inorg Organomet Polym 2000;10(3):145-56
  • Hamasaki T, Kashiwagi T, Imada T, et al. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir 2008;24(14):7354-64
  • Kajita M, Hikosaka K, Iitsuka M, et al. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res 2007;41(6):615-26
  • Kim J, Takahashi M, Shimizu T, et al. Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech Ageing Dev 2008;129(6):322-31
  • Yamagishi Y, Watari A, Hayata Y, et al. Acute and chronic nephrotoxicity of platinum nanoparticles in mice. Nanoscale Res Lett 2013;8(1):395
  • Konieczny P, Goralczyk AG, Szmyd R, et al. Effects triggered by platinum nanoparticles on primary keratinocytes. Int J Nanomedicine 2013;8:3963-75
  • Pelka J, Gehrke H, Esselen M, et al. Cellular uptake of platinum nanoparticles in human colon carcinoma cells and their impact on cellular redox systems and DNA integrity. Chem Res Toxicol 2009;22(4):649-59
  • Palivan CG, Fischer-Onaca O, Delcea M, et al. Protein-polymer nanoreactors for medical applications. Chem Soc Rev 2012;41(7):2800-23
  • Renggli K, Baumann P, Langowska K, et al. Selective and responsive nanoreactors. Adv Funct Mater 2011;21(7):1241-59
  • Vriezema DM, Comellas Aragones M, Elemans JA, et al. Self-assembled nanoreactors. Chem Rev 2005;105(4):1445-89
  • Onaca O, Hughes DW, Balasubramanian V, et al. SOD antioxidant nanoreactors: influence of block copolymer composition on the nanoreactor efficiency. Macromol Biosci 2010;10(5):531-8
  • Dziubla TD, Shuvaev VV, Hong NK, et al. Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies. Biomaterials 2008;29(2):215-27
  • Kim KT, Cornelissen JJLM, Nolte RJM, et al. A polymersome nanoreactor with controllable permeability induced by stimuli-responsive block copolymers. Adv Mater 2009;21(27):2787-91
  • Meier W. Reconstitutioin of channel proteins in (polymerized) ABA triblock copolymer membranes. Angew Chem Int Ed Engl 2000;39(24):4599-602
  • Nardin C, Thoeni S, Widmer J, et al. Nanoreactors based on (polymerized) ABA-triblock copolymer vesicles. Chem Commun 2000;15:1433-4
  • Ranquin A, Versees W, Meier W, et al. Therapeutic nanoreactors: combining chemistry and biology in a novel triblock copolymer drug delivery system. Nano Lett 2005;5(11):2220-4
  • Axthelm F, Casse O, Koppenol WH, et al. Antioxidant nanoreactor based on superoxide dismutase encapsulated in superoxide-permeable vesicles. J Phys Chem B 2008;112(28):8211-17
  • Dobrunz D, Toma AC, Tanner P, et al. Polymer nanoreactors with dual functionality: simultaneous detoxification of peroxynitrite and oxygen transport. Langmuir 2012;28(45):15889-99
  • Balasubramanian V, Onaca O, Ezhevskaya M, et al. A surprising system: polymeric nanoreactors containing a mimic with dual-enzyme activity. Soft Matter 2011;7(12):5595-603
  • Spulber M, Baumann P, Liu J, et al. Ceria loaded nanoreactors: a nontoxic superantioxidant system with high stability and efficacy. Nanoscale 2015;7(4):1411-23
  • Ben-Haim N, Broz P, Marsch S, et al. Cell-specific integration of artificial organelles based on functionalized polymer vesicles. Nano Lett 2008;8(5):1368-73
  • Städler B, Price AD, Zelikin AN. A critical look at multilayered polymer capsules in biomedicine: drug carriers, artificial organelles, and cell mimics. Adv Funct Mater 2011;21(1):14-28
  • Tanner P, Egli S, Balasubramanian V, et al. Can polymeric vesicles that confine enzymatic reactions act as simplified organelles? FEBS Lett 2011;585(11):1699-706
  • Tanner P, Balasubramanian V, Palivan CG. Aiding nature’s organelles: artificial peroxisomes play their role. Nano Lett 2013;13(6):2875-83
  • Baldo BA, Pham NH. Adverse reactions to targeted and non-targeted chemotherapeutic drugs with emphasis on hypersensitivity responses and the invasive metastatic switch. Cancer Metastasis Rev 2013;32(3-4):723-61
  • Kilarkaje N, Mousa AM, Al-Bader MM, et al. Antioxidants enhance the recovery of three cycles of bleomycin, etoposide, and cisplatin-induced testicular dysfunction, pituitary-testicular axis, and fertility in rats. Fertil Steril 2013;100(4):1151-9
  • Sack M, Alili L, Karaman E, et al. Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles – a novel aspect in cancer therapy. Mol Cancer Ther 2014;13(7):1740-9
  • Seguin J, Brulle L, Boyer R, et al. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int J Pharm 2013;444(1-2):146-54
  • Mandpe L, Kyadarkunte A, Pokharkar V. Assessment of novel iloperidone- and idebenone-loaded nanostructured lipid carriers: brain targeting efficiency and neuroprotective potential. Ther Deliv 2013;4(11):1365-83
  • Armstrong D, Bharali J. Oxidative stress and nanotechnology. Humana Press; New York: 2013
  • Madl AK, Plummer LE, Carosino C, et al. Nanoparticles, lung injury, and the role of oxidant stress. Annu Rev Physiol 2014;76:447-65
  • Ahamed M. Silica nanoparticles-induced cytotoxicity, oxidative stress and apoptosis in cultured A431 and A549 cells. Hum Exp Toxicol 2013;32(2):186-95
  • Doktorovova S, Santos DL, Costa I, et al. Cationic solid lipid nanoparticles interfere with the activity of antioxidant enzymes in hepatocellular carcinoma cells. Int J Pharm 2014;471(1-2):18-27
  • Akhtar S, Chandrasekhar B, Attur S, et al. On the nanotoxicity of PAMAM dendrimers: Superfect(R) stimulates the EGFR-ERK1/2 signal transduction pathway via an oxidative stress-dependent mechanism in HEK 293 cells. Int J Pharm 2013;448(1):239-46
  • Cui L, Zahedi P, Saraceno J, et al. Neoplastic cell response to tiopronin-coated gold nanoparticles. Nanomedicine 2013;9(2):264-73
  • Chairuangkitti P, Lawanprasert S, Roytrakul S, et al. Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol In Vitro 2013;27(1):330-8
  • Cochran DB, Wattamwar PP, Wydra R, et al. Suppressing iron oxide nanoparticle toxicity by vascular targeted antioxidant polymer nanoparticles. Biomaterials 2013;34(37):9615-22
  • Shoae-Hagh P, Rahimifard M, Navaei-Nigjeh M, et al. Zinc oxide nanoparticles reduce apoptosis and oxidative stress values in isolated rat pancreatic islets. Biol Trace Elem Res 2014;162(1-3):262-9
  • Jain S, Hirst DG, O’Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 2012;85(1010):101-13
  • Lee MS, Kim NW, Lee K, et al. Enhanced transfection by antioxidative polymeric gene carrier that reduces polyplex-mediated cellular oxidative stress. Pharm Res 2013;30(6):1642-51
  • Wang S, Zhang J, Chen M, et al. Delivering flavonoids into solid tumors using nanotechnologies. Expert Opin Drug Deliv 2013;10(10):1411-28
  • Sharma S, Ali A, Ali J, et al. Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs 2013;22(8):1063-79
  • Cai X, Fang Z, Dou J, et al. Bioavailability of quercetin: problems and promises. Curr Med Chem 2013;20(20):2572-82
  • Hama S, Kogure K. Nanoparticles consisting of tocopheryl succinate are a novel drug-delivery system with multifaceted antitumor activity. Biol Pharm Bull 2014;37(2):196-200
  • Mohanty C, Das M, Sahoo SK. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin Drug Deliv 2012;9(11):1347-64
  • Lee W-H, Loo C-Y, Young PM, et al. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin Drug Deliv 2014;11(8):1183-201
  • Helson L. Curcumin (diferuloylmethane) delivery methods: a review. BioFactors 2013;39(1):21-6
  • Amri A, Le Clanche S, Thérond P, et al. Resveratrol self-emulsifying system increases the uptake by endothelial cells and improves protection against oxidative stress-mediated death. Eur J Pharm Biopharm 2014;86(3):418-26
  • Chin D, Huebbe P, Pallauf K, et al. Neuroprotective properties of curcumin in Alzheimer’s disease – merits and limitations. Curr Med Chem 2013;20(32):3955-85
  • Fan X, Zhang C, Liu D-B, et al. The clinical applications of curcumin: current state and the future. Curr Pharm Des 2013;19(11):2011-31
  • Heger M, van Golen RF, Broekgaarden M, et al. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2014;66(1):222-307
  • Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 2014;46(1):2-18
  • Flora G, Gupta D, Tiwari A. Nanocurcumin: a promising therapeutic advancement over native curcumin. Crit Rev Ther Drug Carrier Syst 2013;30(4):331-68
  • Dutta AK, Ikiki E. Novel drug delivery systems to improve bioavailability of curcumin. J Bioequiv Availab 2014;6(1):1-9
  • Santos AC, Veiga F, Ribeiro AJ. New delivery systems to improve the bioavailability of resveratrol. Expert Opin Drug Deliv 2011;8(8):973-90
  • Pangeni R, Sahni JK, Ali J, et al. Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin Drug Deliv 2014;11(8):1285-98
  • Trapasso E, Cosco D, Celia C, et al. Retinoids: new use by innovative drug-delivery systems. Expert Opin Drug Deliv 2009;6(5):465-83
  • Carbone C, Pignatello R, Musumeci T, et al. Chemical and technological delivery systems for idebenone: a review of literature production. Expert Opin Drug Deliv 2012;9(11):1377-92

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.