1,095
Views
61
CrossRef citations to date
0
Altmetric
Review

Needle-free delivery of macromolecules through the skin using controllable jet injectors

, PhD (Research Scientist) , , PhD (Associate Professor) , , PhD (Senior Research Scientist) & , PhD (Professor)

Bibliography

  • Baxter J, Mitragotri S. Jet-induced skin puncture and its impact on needle-free jet injections: Experimental studies and a predictive model. J Control Release 2005;106:361-73
  • Jang H-J, Yu H, Lee S, et al. Towards clinical use of a laser-induced microjet system aimed at reliable and safe drug delivery. J Biomed Opt 2014;19:058001
  • Schramm JS, Mitrgotri S. Transdermal drug delivery by jet injectors: energetics of jet formation and penetration. Pharm Res 2002;19(11):1673-9
  • Stachowiak JC, Li TH, Arora A, et al. Dynamic control of needle-free jet injection. J Control Release 2009;135:104-12
  • Giudice EL, Campbell JD. Needle-free vaccine delivery. Adv Drug Deliv Rev 2006;58:68-89
  • Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 2004;3:115-24
  • Kendall M. Engineering of needle-free physical methods to target epidermal cells for DNA vaccination. Vaccine 2006;24:4651-6
  • Baxter J, Mitragotri S. Needle-free liquid jet injections: mechanisms and applications. Expert Rev Med Devices 2006;3(5):565-74
  • Mitragotri S. Immunization without needles. Nat Rev Immunol 2005;5:905-16
  • Burkoth TL, Bellhouse BJ, Hewson G, et al. Transdermal and transmucosal powdered drug delivery. Crit Rev Ther Drug Carrier Syst 1999;16(4):331-84
  • Kendall M, Mitchell T, Wrighton-Smith P. Intradermal ballistic delivery of micro-particles into excised human skin for pharmaceutical applications. J Biomech 2004;37:1733-41
  • Chen D, Maa YF, Haynes JR. Needle-free epidermal powder immunization. Expert Rev Vaccines 2002;1(3):265-76
  • Mumper RJ, Cui Z. Immunization by jet injection of targeted pDNA-coated nanoparticles. Methods 2003;31:255-62
  • Michinaka Y, Mitragotri S. Delivery of polymeric particles into skin using needle-free liquid jet injectors. J Control Release 2011;153:249-54
  • Zhang D, Das DB, Rielly CD. Potential of microneedle-assisted micro-particle delivery by gene guns: a review. Drug Deliv 2014;21:571-87
  • Zhang D, Das DB, Rielly CD. Microneedle assisted micro-particle delivery from gene guns: experiments using skin-mimicking agarose gels. J Pharm Sci 2014;103(2):613-27
  • Jackson LA, Austin G, Chen RT, et al. Safety and immunogenicity of varying dosages of trivalent inactivated influenza vaccine administered by needle-free jet injectors. Vaccine 2001;19:4703-9
  • Hoffman PN, Abuknesha RA, Andrews NJ, et al. A model to assess the infection potential of jet injectors used in mass immunization. Vaccine 2001;19:4020-7
  • Schramm-Baxter J, Mitragotri S. Needle-free jet injections: dependence of jet penetration and dispersion in the skin on jet power. J Control Release 2004;97:527-35
  • Arora A, Hakim I, Baxter J, et al. Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjets. Proc Natl Acad Sci USA 2007;104(11):4255-60
  • Stachowiak JC, von Muhlen MG, Li TH, et al. Piezoelectric control of needle-free transdermal drug delivery. J Control Release 2007;124:88-97
  • Hemond BD, Taberner A, Hogan NC, et al. Development and performance of a controllable autoloading needle-free jet injector. J Med Dev 2011;5:015001
  • Taberner A, Hogan NC, Hunter IW. Needle-free jet injection using real-time controlled linear Lorentz-force actuators. Med Eng Phys 2012;34:1228-35
  • Chang JH. Needle-free interstitial fluid acquisition using a Lorentz-force actuated jet injector. PhD thesis, Dept. Mechanical Engineering, Massachusetts Institute of Technology, 2014
  • White JE, Chang JH, Hogan NC, Hunter IW. Development of a Lorentz-force actuated intravitreal jet injector. Conf Proc IEEE Eng Med Biol Soc 2012;34:984-7
  • Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Disc 2014;13:655-72
  • Weniger BG, Papania MJ. Alternative vaccine delivery methods (Chapter 61). In: Plotkin SA, Orenstein WA, Offit PA, editors. Vaccines. 6th edition. Elsevier/Saunders, China; 2013. p. 1200-31
  • Canter J, Mackey K, Good LS, et al. An outbreak of hepatitis B associated with jet injections in a weight reduction clinic. Arch Int Med 1990;150(9):1923-7
  • Weniger BG. New high-speed jet injection for mass vaccination: pros and cons of disposable-cartridge jet injectors (DCJIs) versus multi-nozzle jet injectors (MUNJIs). In: 5th Global Vaccine Research Forum. WHO Initiative on Vaccine Research & Global Alliance for Vaccines and Immunization; 7-10 June 2004; Montreux, Switzerland
  • Sarno MJ, Blasé E, Galindo N, et al. Clinical immunogenicity of measles, mumps and rubella vaccine delivered by the Injex jet injector: comparison with standard syringe injection. Pediatr Infec Dis J 2000;19(9):839-42
  • Simon JK, Carter M, Pasetti MF, et al. Safety, tolerability, and immunogenicity of inactivated trivalent seasonal influenza vaccine administered with a needle-free disposable-syringe jet injector. Vaccine 2011;29:9544-50
  • McAllister L, Anderson J, Werth K, et al. Needle-free jet injection for administration of influenza vaccine: a randomized non-inferiority trial. Lancet 2014;384:674-81
  • Ren S, Li M, Smith JM, et al. Low-volume jet injection for intradermal immunization in rabbits. BMC Biotech 2002;2(10):1-6
  • Gergen L, Eddy B, Menassa K, et al. Intramuscular and intradermal vaccination of swine for swine influenza virus and Mycoplasma hyopneumoniae using a needle-free device. Device. Retrieved from the University of Minnesota Digital Conservancy 2002;33
  • Apley M, Thacker B. Determination of the pharmacokinetics of procaine penicillin in swine administered by intra-muscular injection and with a needleless injection device. Retrieved from the University of Minnesota Digital Conservancy 2003;1-14
  • Grosenbaugh DA, Leard T, Pardo MC, et al. Comparison of the safety and efficacy of a recombinant feline leukemia virus (FeLV) vaccine delivered transdermally and an activated FeLV vaccine delivered subcutaneously. Vet Ther 2004;5(4):258-62
  • Ploemen IHJ, Hirschberg HJHB, Kraan H, et al. Minipigs as an animal model for dermal vaccine delivery. Comp Med 2014;64(1):50-4
  • Williams J, Fox-Leyva L, Christensen C, et al. Hepatitis A vaccine administration: comparison between jet-injector and needle injection. Vaccine 2000;18:1939-43
  • Gramzinski RA, Brazolot Millan CL, Obaldia N, et al. Immune response to Hepatitis B DNA vaccine in Aotus monkeys: a comparison of vaccine formulation, route, and method of administration. Mol Med 1998;4:109-18
  • Jones GF, Rapp-Gabrielson V, Wilke R, et al. Intradermal vaccination for Mycoplasma hyopneumoniae. J Swine Health Prod 2005;13(1):19-27
  • Mohammed AJ, AlAlwaidy S, Bawikar S, et al. Fractional doses of inactivated poliovirus vaccine in Oman. N Eng J Med 2010;362(25):2351-9
  • Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat Rev Genet 2008;9:776-88
  • Tang D-C, DeVit M, Johston SA. Genetic immunization is a simple method for eliciting an immune response. Nature 1992;356:152-4
  • Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993;19:1745-9
  • Fynan EF, Webster RG, Fuller DH, et al. DNA vaccines: protection immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA 1993;90:11478-82
  • Wang B, Agadjanyan MG, Srikantan V, et al. Molecular cloning, expression, and biological characterization of an HTLV-II envelope glycoprotein: HIV-1 expression is permissive for HTLV-II-induced cell fusion. AIDS Res Hum Retroviruses 1993;9(9):849-60
  • Ferraro B, Morrow MP, Hutnick NA, et al. Clinical applications of DNA vaccines: current progress. Clin Infect Dis 2011;53:296-302
  • Pereira V, Zurita-Turk M, Saraiva TDL, et al. DNA vaccines approach: from concepts to applications. World J Vaccines 2014;4:50-71
  • Walther W, Stein U, Fichtner I, et al. Nonviral in vivo gene delivery into tumors using a novel low volume jet-injection technology. Gene Ther 2001;8:173-80
  • Walther W, Stein U, Fichtner I, et al. Intratumoral low-volume jet-injection for efficient nonviral gene transfer. Mol Biotech 2002;21:105-15
  • Lu S, Wang S, Grimes-Serrano JM. Current progress of DNA vaccine studies in humans. Exp Rev Vac 2008;7(2):175-91
  • Van Drunen Little-van den Hurk S, Babiuk SL, Babiuk LA. Strategies for improved formulation and delivery of DNA vaccines to veterinary target species. Immunol Rev 2004;199:113-25
  • Moingeon P, de Taisne C, Almond J. Delivery technologies for human vaccines. Br Med Bull 2002;62:29-44
  • Nolz JC, Harty JT. Strategies and implications for prime-boost vaccination to generate memory CD8 T cells (Chapter 7). In: Pulendran B, Katsikis PD, Schoenberger SP, editors. Advances in experimental medicine and biology. Volume 780 Springer, New York; 2011. p. 69-83
  • McShane H, Brookes R, Gilbert SC, et al. Enhanced immunogenicity of CD4+ T-cell responses and protective efficacy of a DNA-modified vaccinia virus Ankara prime-boost vaccination regimen for murine tuberculosis. Infect Immun 2001;69(2):681-6
  • Schneider J, Langermanns JAM, Gilbert SC, et al. A prime-boost immunization regimen using DNA followed by recombinant modified vaccinia virus Ankara induces strong cellular immune responses against the Plasmodium falciparum TRAP antigen in chimpanzees. Vaccine 2001;19(32):4595-602
  • Woodland DL. Jump-starting the immune system: prime-boosting comes of age. TRENDS Immunol 2004;25(2):98-104
  • Estcourt MJ, Ramsay AJ, Brooks A, et al. Prime-boost immunization generates a high frequency, high-avidity CD8+ cytotoxic T lymphocyte population. Int Immunol 2002;14(1):31-7
  • Lu S, Wang S, Grimes-Serrano JM. Current progress of DNA vaccine studies in humans. Exp Rev Vaccines 2008;7(2):175-91
  • Pancholi P, Perkus M, Tricoche N, et al. DNA immunization with Hepatitis C virus (HCV) polycistronic genes or immunization by HCV DNA priming-recombinant Canarypox virus boosting induces immune responses and protection from recombinant HCV-vaccinia virus infection in HLA-A2.1 transgenic mice. J Virol 2013;77(1):382-90
  • Meseda CA, Stout RR, Weir JP. Evaluation of a needle-free delivery platform for prime-boost immunization with DNA and modified vaccinia virus Ankara vectors expressing herpes simplex virus 2 glycoprotein D. Viral Immunol 2006;19(2):250-9
  • Chinchilla M, Pasetti MF, Moreno-Medina S, et al. Enhanced immunity to Plasmodium falciparum circumsporozoite protein (PfCSP) by using Salmonella enterica serovar typhi expressing PfCSP and a PfCSP-encoding DNA vaccine in a heterologous prime-boost strategy. Infect Immun 2007;75:3769-79
  • Aguiar JC, Hedstrom RC, Rogers WO, et al. Enhancement of the immune response in rabbits to a malaria DNA vaccine by immunization with a needle-free jet device. Vaccine 2002;20:275-80
  • Graham BS, Enama ME, Nason MC. DNA vaccine delivered by a needle-free injection device improves potency of priming for antibody and CD8+ T-cell responses after rAd5 boost in a randomized clinical trial. PLoS One 2013;8(4):1-11
  • Manam S, Ledwith BJ, Barnum AB, et al. Plasmid DNA vaccines: tissue distribution and effects of DNA sequence, adjuvants and delivery method on integration into host DNA. Intervirology 2000;43:273-81
  • Schrijver RS, Langedijk JP, Keil GM, et al. Immunization of cattle with a BHV1 vector vaccine or a DNA vaccine both coding for the G protein BRSV. Vaccine 1997;15(17-18):1908-16
  • Anwer K, Earle KA, Shi M, et al. Synergistic effect of formulated plasmid and needle-free injection for genetic vaccines. Pharm Res 1999;16(6):889-95
  • Dufour V. DNA vaccines: new applications for veterinary medicine. Vet Sci Tomorrow 2001;2:1-26
  • Liao JCF, Gregor P, Wolchok JD, et al. Vaccination with human tyrosinase DNA induces antibody responses in dogs with advanced melanoma. Cancer Immun 2007;6(8):1-17
  • Boudreau EF, Josleyn M, Ullman D, et al. A phase I clinical trial of Hantaan virus and Puumala virus M-segment DNA vaccines for hemorrhagic fever with renal syndrome. Vaccine 2012;30:1951-8
  • Kwilas S, Kishimori JM, Josleyn M, et al. Hantavirus pulmonary syndrome (HPS) DNA vaccine delivered using a spring-powered jet injector elicits a potent neutralizing antibody response in rabbits and nonhuman primates. Curr Gene Ther 2014;14:200-10
  • Bergman PJ, McKnight J, Novosad A, et al. Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: A phase 1 trial. Clin Can Res 2003;9:1284-90
  • Pehling GB, Gerich JE. Comparison of plasma insulin profiles after subcutaneous administration of insulin by jet spray and conventional needle injection in patients with insulin-dependent diabetes mellitus. Mayo Clin Proc 1984;59(11-12):751-4
  • Engwerda EEC, Abbink EJ, Cees JT, et al. Improved pharmacokinetic and pharmacodynamics profile of rapid-acting insulin using needle-free jet injection technology Diabetes Care. 2011;34:1804-8
  • Kerum G, Profazoic B, Granic M, et al. Blood glucose and free insulin levels after the administration of insulin by conventional syringe or jet injector in insulin treated type 2 diabetics. Horm Metabol Res 1987;19(9):422-5
  • Hogan NC, Brown AA, Hunter IW. Pharmacokinetics and pharmacodynamics of recombinant insulin analogues administered using a linear Lorentz force actuated jet injector. Manuscript in preparation
  • Verhagen A, Ebel JT, Dogerom AA, et al. Pharmocokinetics and pharmacodynamics of a single dose of recombinant human growth hormone after subcutaneous administration by jet-injection: comparison with conventional needle-injection. Eur J Clin Pharmacol 1995;49:69-72
  • Brearley C, Priestly A, Leighton-Scott J, et al. Pharmocokinetics and pharmacodynamics of recombinant growth hormone administered by cool.click™ 2, a new needle-free device, compared with subcutaneous administration using a conventional syringe. BMC Clin Pharmacol 2007;7(10):1-7
  • Agerso H, Moller-Pedersen J, Capppi S, et al. Pharmacokinetics and pharmacodynamics of a new formulation of recombinant human growth hormone administered by ZomaJet 2 Vision, a new needle-free device, compared to subcutaneous administration using a conventional syringe. J Clin Pharmacol 2002;42(11):1262-8
  • Farr SJ, Boyd B, Bridges P, et al. Using needle-free injectors for parenteral delivery of proteins. In: McNally EJ, Hastedt JE, editors. Protein formulation and delivery. 2nd edition. Informa healthcare; NY: 2008. p. 255-84
  • Heintz A, Boyd B. Needle-free injection of viscous biologic formulations. Zogenix Battelle. 2014. Available from: http://www.zogenix.com/content/technology/documents/PepTalk2014-final.pdf
  • Howland C, Petril T, Barden C, et al. Stability evaluation of a therapeutic antibody following delivery by an instantaneous injection device. American Association of Pharmaceutical Scientists (AAPS) National Biotechnology Conference. 2013. Available from: http://www.zogenix.com/content/technology/news-and-publications.htm
  • Smith EF, Farr SJ, Boyd B, et al. Safety and tolerability of the DosePro needle-free drug delivery system. American Association of Pharmaceutical Scientists (AAPS) National Biotechnology Conference. 2011. Available from: http://www.zogenix.com/content/technology/news-and-publications.htm
  • Almond GW, Roberts JD. Assessment of a needleless injection device for iron dextran administration to piglets. Proc IPVS 2004;618
  • Logomasini MA, Stout RR, Marcinkoski R. Jet injection devices for the needle-free administration of compounds, vaccines, and other agents. Int J Pharm Comp 2013;17(4):270-80
  • Callen JP. Intralesional corticosteroids. J Am Acad Dermatol 1981;4(2):149-51
  • Harding LM, Adeniyi A, Everson R, et al. Comparison of a needle-free high-pressure injection system with needle-tipped injection of intracavernosal alprostadil for erectile dysfunction. Inter J Impot Res 2002;14:498-501
  • Zsigmond EK, Darby P, Koenig HM, et al. A new route, jet injection of lidocaine for skin wheal for painless intravenous catheterization. Int J Clin Pharmacol Ther 1999;37:90-9
  • Zsigmond EK, Kovac V, Fekete G. A new route, jet-injection for anesthetic induction in children. 2.Ketamine dose-range finding studies. Int J Clin Pharmacol Ther 1996;34(2):84-8
  • Domino EF, Zsigmond EK, Kovacs V, et al. A new route, jet injection for anesthetic induction in children. IV. Midazolam plasma levels. Int J Clin Pharmocol Ther 1998;36:458-62
  • Ferayorni A, Yniguez R, Bryson M, et al. Needle-free jet injection of lidocaine for local anesthesia during lumbar puncture: a randomized controlled trial. Ped Emerg Care 2012;28(7):687-90
  • Saghi B, Momeni M, Saeedi M, et al. Efficacy of the jet injector in local anaesthesia for small wound sutures: a randomized clinical trial compared with the needle infiltration technique. Emerg Med J 2014;10.1136/emermed-2013-203135
  • Koenig HM, Paisansathan C, Albrecht RF, et al. Jet injection of local anesthetic decreases pain of arterial cannulation in wake neurosurgical patients. J Neurosurg Anesthes 2004;16:156-9
  • Weiss RS, Li PS. No-needle jet anesthetic technique for no-scalpel vasectomy. J Urol 2005;173(5):1677-80
  • de Menezes Martins R, Curran B, de Lourdes Sousa Maia M, et al. Immunogenicity and safety of measles-mumps-rubella vaccine delivered by disposable-syringe jet injector in healthy Brazilian infants: A randomized non-inferiority study. Contemp Clin Trials 2015;41:1-8
  • Verrips GH, Hirasing RA, Fekkes M, et al. Psychological responses to the needle-free Medi-Jector or the mutlidose Disetronic injection pen in human growth hormone therapy. Acta Paediatr 1998;87:154-8
  • Mitragotri S. Current status and future prospects of needle-free liquid jet injectors. Nat Rev Drug Disc 2006;5:543-8
  • Park M-A, Jang H-J, Sirotkin FV, et al. Er:YAG laser pulse for small-dose splashback-free microjet transdermal drug delivery. Opt Lett 2012;37(18):3894-6
  • Gerlach BM, Houser TA, Hollis LC, et al. Incidence and severity of Arcanobacterium pyogenes injection site abscesses with needle or needle-free injection. Meat Sci 2012;92:805-7
  • Houser TA, Sebranek JG, Thacker BJ, et al. Effectiveness of transdermal, needle-free injections for reducing pork carcass defects. Meat Sci 2004;68:329-32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.