430
Views
32
CrossRef citations to date
0
Altmetric
Reviews

‘Smart’ nanoparticles as drug delivery systems for applications in tumor therapy

, , , &

Bibliography

  • Ng SF, Jumaat N. Carboxymethyl cellulose wafers containing antimicrobials: a modern drug delivery system for wound infections. Eur J Pharm Sci 2014;51:173–9
  • Singh K, Nair AB, Kumar A, et al. Novel approaches in formulation and drug delivery using contact lenses. J Basic Clin Pharm 2011;2(2):87–101
  • Fernandez-Montesinos R, Castillo PM, Klippstein R, et al. Chemical synthesis and characterization of silver-protected vasoactive intestinal peptide nanoparticles. Nanomedicine (Lond) 2009;4(8):919–30
  • Fierro IM, de Menezes Alencar MS, Lins Mendes FM, et al. Nanoparticles applied to antineoplastic agents: a patent landscape. Pharm Pat Anal 2014;3(6):613–23
  • Huang J, Heise A. Stimuli responsive synthetic polypeptides derived from N-carboxyanhydride (NCA) polymerisation. Chem Soc Rev 2013;42(17):7373–90
  • Xin H, Jiang X, Gu J, et al. Angiopep-conjugated poly(ethylene glycol)-co-poly(epsilon-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials 2011;32(18):4293–305
  • Meshik X, Xu K, Dutta M, et al. Optical detection of lead and potassium ions using a quantum-dot-based aptamer nanosensor. IEEE Trans Nanobioscience 2014;13(2):161–4
  • Jing L, Liang X, Li X, et al. Covalent attachment of Mn-porphyrin onto doxorubicin-loaded poly(lactic acid) nanoparticles for potential magnetic resonance imaging and pH-sensitive drug delivery. Acta Biomater 2013;9(12):9434–41
  • Li L, Nurunnabi Nafiujjaman et al. GSH-mediated photoactivity of pheophorbide a-conjugated heparin/gold nanoparticle for photodynamic therapy. J Control Release 2013;171(2):241–50
  • Chakraborty C, Pal S, Doss GP, et al. Nanoparticles as ‘smart’ pharmaceutical delivery. Front Biosci (Landmark Ed) 2013;18:1030–50
  • Ju XJ, Xie R, Yang L, et al. Biodegradable ‘intelligent’ materials in response to chemical stimuli for biomedical applications. Expert Opin Ther Pat 2009;19(5):683–96
  • Ju XJ, Xie R, Yang L, et al. Biodegradable ‘intelligent’ materials in response to physical stimuli for biomedical applications. Expert Opin Ther Pat 2009;19(4):493–507
  • Liu J, Huang Y, Kumar A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 2014;32(4):693–710
  • Xu Q, Huang W, Jiang L, et al. KGM and PMAA based pH-sensitive interpenetrating polymer network hydrogel for controlled drug release. Carbohydr Polym 2013;97(2):565–70
  • Palamoor M, Jablonski MM. Poly(ortho ester) nanoparticle-based targeted intraocular therapy for controlled release of hydrophilic molecules. Mol Pharm 2013;10(2):701–8
  • Liu Z, Liu L, Ju X.J, et al. K(+)-recognition capsules with squirting release mechanisms. Chem Commun (Camb) 2011;47(45):12283–5
  • Jiang MY, Ju XJ, Fang L, et al. A novel, smart microsphere with K+-induced shrinking and aggregating properties based on a responsive host-guest system. ACS Appl Mater Interfaces 2014;6(21):19405–15
  • Wang YM, Ju XJ, Liu Z, et al. Competitive molecular-/ion-recognition responsive characteristics of poly(N-isopropylacrylamide-co-benzo-12-crown-4-acrylamide) copolymers with benzo-12-crown-4 as both guest and host units. Macromol Rapid Commun 2014;35(14):1280–6
  • Cheng R, Feng F, Meng F, et al. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 2011;152(1):2–12
  • Doss CG, Debottam S, Debajyoti C. Glutathione-responsive nano-transporter-mediated siRNA delivery: silencing the mRNA expression of Ras. Protoplasma 2013;250(3):787–92
  • Orel VE, Dzyatkovskaya NN, Romanov AV, et al. The effect of electromagnetic field and local inductive hyperthermia on nonlinear dynamics of the growth of transplanted animal tumors. Exp Oncol 2007;29(2):156–8
  • Moghadam MN, Kolesov V, Vogel A, et al. Controlled release from a mechanically-stimulated thermosensitive self-heating composite hydrogel. Biomaterials 2014;35(1):450–5
  • Park JS Yang HN, Woo DG, et al. Poly(N-isopropylacrylamide-co-acrylic acid) nanogels for tracing and delivering genes to human mesenchymal stem cells. Biomaterials 2013;34(34):8819–34
  • Zeinali Sehrig F, Majidi S, Nikzamir N, et al. Magnetic nanoparticles as potential candidates for biomedical and biological applications. Artif Cells Nanomed Biotechnol 2015;1–10
  • Wu J, Liu G, Qin YX, et al. Effect of low-intensity pulsed ultrasound on biocompatibility and cellular uptake of chitosan-tripolyphosphate nanoparticles. Biointerphases 2014;9(3):031016
  • Kaur IP, Bhandari R, Bhandari S, et al. Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008;127(2):97–109
  • Jung E, Kim J, Choi SH, et al. Artificial neural network study on organ-targeting peptides. J Comput Aided Mol Des 2010;24(1):49–56
  • Zahid M, Phillips BE, Albers SM, et al. Identification of a cardiac specific protein transduction domain by in vivo biopanning using a M13 phage peptide display library in mice. PLoS ONE 2010;5(8):e12252
  • Meng F, Zhong Y, Cheng R, et al. pH-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: concept and recent advances. Nanomedicine (Lond) 2014;9(3):487–99
  • Yu HR, Ju XJ, Xie R, et al. Portable diagnosis method of hyperkalemia using potassium-recognizable poly(N-isopropylacrylamide-co-benzo-15-crown-5-acrylamide) copolymers. Anal Chem 2013;85(13):6477–84
  • Owen SC, Patel N, Logie J, et al. Targeting HER2+ breast cancer cells: lysosomal accumulation of anti-HER2 antibodies is influenced by antibody binding site and conjugation to polymeric nanoparticles. J Control Release 2013;172(2):395–404
  • Kanwar JR, Roy K, Kanwar RK. Chimeric aptamers in cancer cell-targeted drug delivery. Crit Rev Biochem Mol Biol 2011;46(6):459–77
  • Kanwar JR, Mohan RR, Kanwar RK, et al. Applications of aptamers in nanodelivery systems in cancer, eye and inflammatory diseases. Nanomedicine (Lond) 2010;5(9):1435–45
  • Esposito CL, Catuogno S, de Franciscis V. Aptamer-mediated selective delivery of short RNA therapeutics in cancer cells. J RNAi Gene Silencing 2014;10:500–6
  • Bruno JG, Carrillo MP, Richarte AM, et al. Development, screening, and analysis of DNA aptamer libraries potentially useful for diagnosis and passive immunity of arboviruses. BMC Res Notes 2012;5:633
  • Frohlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 2012;7:5577–91
  • Rehman Z, Zuhorn IS, Hoekstra D. How cationic lipids transfer nucleic acids into cells and across cellular membranes: recent advances. J Control Release 2013;166(1):46–56
  • Yue T, Zhang X. Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles. ACS Nano 2012;6(4):3196–205
  • Arote RB, Jere D, Jiang HL, et al. Biodegradable poly(ester amine)s for gene delivery applications. Biomed Mater 2009;4(4):044102
  • Perez-Martinez FC, Guerra J, Posadas I, et al. Barriers to non-viral vector-mediated gene delivery in the nervous system. Pharm Res 2011;28(8):1843–58
  • Li H, Nelson CE, Evans BC, Duvall CL. Delivery of intracellular-acting biologics in pro-apoptotic therapies. Curr Pharm Des 2011;17(3):293–319
  • Wadhwani P, Reichert J, Bürck J, Ulrich AS. Antimicrobial and cell-penetrating peptides induce lipid vesicle fusion by folding and aggregation. Eur Biophys J 2012;41(2):177–87
  • Gruenberg J, van der Goot FG. Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol 2006;7(7):495–504
  • Grijalvo S, Avino A, Eritja R. Oligonucleotide delivery: a patent review (2010 - 2013). Expert Opin Ther Pat 2014;24(7):801–19
  • Varkouhi AK, Scholte M, Storm G, et al. Endosomal escape pathways for delivery of biologicals. J Control Release 2011;151(3):220–8
  • ur Rehman Z, Hoekstra D, Zuhorn IS. Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis. ACS Nano 2013;7(5):3767–77
  • Shete HK, Prabhu RH, Patravale VB. Endosomal escape: a bottleneck in intracellular delivery. J Nanosci Nanotechnol 2014;14(1):460–74
  • El-Sayed A, Masuda T, Akita H, et al. Stearylated INF7 peptide enhances endosomal escape and gene expression of PEGylated nanoparticles both in vitro and in vivo. J Pharm Sci 2012;101(2):879–82
  • Hatakeyama H, Ito E, Akita H, et al. A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J Control Release 2009;139(2):127–32
  • Jones SP, Gabrielson NP, Wong CH, et al. Hydrophobically modified dendrons: developing structure-activity relationships for DNA binding and gene transfection. Mol Pharm 2011;8(2):416–29
  • Sultana S, Khan MR, Kumar M, et al. Nanoparticles-mediated drug delivery approaches for cancer targeting: a review. J Drug Target 2013;21(2):107–25
  • Kato Y, Ozawa S, Miyamoto C, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int 2013;13(1):89
  • Bailey KM, Wojtkowiak JW, Hashim AI, et al. Targeting the metabolic microenvironment of tumors. Adv Pharmacol 2012;65:63–107
  • You JO, Auguste DT. Feedback-regulated paclitaxel delivery based on poly(N,N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) nanoparticles. Biomaterials 2008;29(12):1950–7
  • Shen M, Huang Y, Han L, et al. Multifunctional drug delivery system for targeting tumor and its acidic microenvironment. J Control Release 2012;161(3):884–92
  • Chen D, Lian S, Sun J, et al. Design of novel multifunctional targeting nano-carrier drug delivery system based on CD44 receptor and tumor microenvironment pH condition. Drug Deliv 2014;1–6
  • Ling D, Park W, Park SJ, et al. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J Am Chem Soc 2014;136(15):5647–55
  • Mok H, Park JW, Park TG. Enhanced intracellular delivery of quantum dot and adenovirus nanoparticles triggered by acidic pH via surface charge reversal. Bioconjug Chem 2008;19(4):797–801
  • Antoniou A, Hebrant A, Dom G, et al. Cancer stem cells, a fuzzy evolving concept: a cell population or a cell property? Cell Cycle 2013;12(24):3743–8
  • Prokopi M, Kousparou CA, Epenetos AA. The secret role of microRNAs in cancer stem cell development and potential therapy: A Notch-pathway approach. Front Oncol 2015;4:389
  • Sun S, Liu S, Duan SZ, et al. Targeting the c-Met/FZD8 signaling axis eliminates patient-derived cancer stem-like cells in head and neck squamous carcinomas. Cancer Res 2014;74(24):7546–59
  • Oishi N, Yamashita T, Kaneko S. Molecular biology of liver cancer stem cells. Liver Cancer 2014;3(2):71–84
  • Qin S, Deng Y, Li J, et al. A bioengineered murine model using CD24(+)CD44(+) pancreatic cancer stem cells for chemotherapy study. Biomed Mater 2014;10(1):015004
  • Nosrati A, Naghshvar F, Khanari S. Cancer stem cell markers CD44, CD133 in primary gastric adenocarcinoma. Int J Mol Cell Med 2014;3(4):279–86
  • Chen J, Wang J, Chen D, et al. Evaluation of characteristics of CD44+CD117+ ovarian cancer stem cells in three dimensional basement membrane extract scaffold versus two dimensional monocultures. BMC Cell Biol 2013;14:7
  • Barth BM, I Altinoglu E, Shanmugavelandy SS, et al. Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia. ACS Nano 2011;5(7):5325–37
  • Wang L, Su W, Liu Z, et al. CD44 antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma. Biomaterials 2012;33(20):5107–14
  • Patskovsky S, Bergeron E, Meunier M. Hyperspectral darkfield microscopy of PEGylated gold nanoparticles targeting CD44-expressing cancer cells. J Biophotonics 2015;8(1-2):162–7
  • Pesarrodona M, Ferrer-Miralles N, Unzueta U, et al. Intracellular targeting of CD44+ cells with self-assembling, protein only nanoparticles. Int J Pharm 2014;473(1-2):286–95
  • Dreaden EC, Morton SW, Shopsowitz KE, et al. Bimodal tumor-targeting from microenvironment responsive hyaluronan layer-by-layer (LbL) nanoparticles. ACS Nano 2014;8(8):8374–82
  • Jafari Malek S, Khoshchehreh R, Goodarzi N, et al. cis-Dichlorodiamminoplatinum (II) glyconanoparticles by drug-induced ionic gelation technique targeted to prostate cancer: preparation, optimization and in vitro characterization. Colloids Surf B Biointerfaces 2014;122:350–8
  • Alibolandi M, Ramezani M, Sadeghi F, et al. Epithelial cell adhesion molecule aptamer conjugated PEG-PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro. Int J Pham 2015;479(1):241–51
  • Pohlmann ES, Patel K, Guo S, et al. Real-time Visualization of Nanoparticles Interacting with Glioblastoma Stem Cells. Nano Lett 2015;15(4):2329–35
  • Yang N, Jiang Y, Zhang H, et al. Active targeting docetaxel-PLA nanoparticles eradicate circulating lung cancer stem-like cells and inhibit liver metastasis. Mol Pharm 2015;12(1):232–9
  • Li M, Wang B, Wu Z, et al. A novel recombinant protein of ephrinA1-PE38/GM-CSF activate dendritic cells vaccine in rats with glioma. Tumour Biol 2015
  • Conniot J, Silva JM, Fernandes JG, et al. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 2014;2:105
  • Elamanchili P, Diwan M, Cao M, et al. Characterization of poly(D,L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 2004;22(19):2406–12
  • Saluja SS, Hanlon DJ, Sharp FA, et al. Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen. Int J Nanomedicine 2014;9:5231–46
  • Cho NH, Cheong TC, Min JH, et al. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol 2011;6(10):675–82
  • Hamdy S, Haddadi A, Hung RW, et al. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 2011;63(10-11):943–55
  • Han JA, Kang YJ, Shin C, et al. Ferritin protein cage nanoparticles as versatile antigen delivery nanoplatforms for dendritic cell (DC)-based vaccine development. Nanomedicine 2014;10(3):561–9
  • Tacken PJ, Zeelenberg IS, Cruz LJ, et al. Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood 2011;118(26):6836–44

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.