11,192
Views
60
CrossRef citations to date
0
Altmetric
Review

Dry powder inhalers in COPD, lung inflammation and pulmonary infections

, & , PhD

Bibliography

  • World Health Organization. Available from: www.who.int/mediacentre/factsheets/fs307/en/ [Cited 14 July 2014]
  • World Health Organization. Available from: http://who.int/mediacentre/factsheets/fs310/en/ [Cited 18 July 2014]
  • Cunningham TJ, Ford ES, Rolle IV, et al. Associations of self-reported cigarette smoking with chronic obstructive pulmonary disease and co-morbid chronic conditions in the United States. COPD 2014: 10.3109/15412555.2014.949001
  • Tai A, Tran H, Roberts M, et al. The association between childhood asthma and adult chronic obstructive pulmonary disease. Thorax 2014;69:805-10
  • Ault A. Report blames global warming for rising asthma. Lancet 2004;363(9420):1532
  • Bernstein AS, Rice MB. Lungs in a warming world: climate change and respiratory health. Chest 2013;143(5):1455-9
  • Dadvand P, Nieuwenhuijsen MJ, Agusti A, et al. Air pollution and biomarkers of systemic inflammation and tissue repair in COPD patients. Eur Respir J 2014;44(3):603-13
  • Graber JM, Stayner LT, Cohen RA, et al. Respiratory disease mortality among US coal miners; results after 37 years of follow-up. Occup Environ Med 2014;71(1):30-9
  • Rodriguez E, Ferrer J, Zock JP, et al. Lifetime occupational exposure to dusts, gases and fumes is associated with bronchitis symptoms and higher diffusion capacity in COPD patients. PLoS One 2014;9:2
  • Sanders M. Inhalation therapy: an historical review. Prim Care Respir J 2007;16(2):71-81
  • Wark PA, Tooze M, Powell H, Parsons K. Viral and bacterial infection in acute asthma and chronic obstructive pulmonary disease increases the risk of readmission. Respirology 2013;18(6):996-1002
  • Gordon SB, Bruce NG, Grigg J, et al. Respiratory risks from household air pollution in low and middle income countries. Lancet Resp Med 2014;2(10):823-60
  • Hickey AJ. Back to the future: inhaled drug products. J Pharm Sci 2013;102(4):1165-72
  • Mansour HM, Hickey AJ. Chapter 5: delivery of drugs by the pulmonary route. In: Florence AT, Siepmann J, editors. Modern pharmaceutics volume 2: applications and advances. Taylor & Francis, Inc; New York: 2009. p. 191-219
  • Mansour HM, Rhee YS, Wu X. Nanomedicine in pulmonary delivery. Int J Nanomedicine 2009;4:299-319
  • Sanchis J, Corrigan C, Levy ML, Viejo JL. Inhaler devices - from theory to practice. Respir Med 2013;107(4):495-502
  • Newman SP. Inhaler treatment options in COPD. Eur Respir Rev 2005;14(96):102-8
  • Dekhuijzen PN, Vincken W, Virchow JC, et al. Prescription of inhalers in asthma and COPD: towards a rational, rapid and effective approach. Respir Med 2013;107(12):1817-21
  • Holmes MS, Seheult JN, Geraghty C, et al. A method of estimating inspiratory flow rate and volume from an inhaler using acoustic measurements. Physiol Meas 2013;34(8):903-14
  • Rootmensen GN, van Keimpema ARJ, Jansen HM, de Haan RJ. Predictors of incorrect inhalation technique in patients with asthma or COPD: a study using a validated videotaped scoring method. J Aerosol Med Pulm Drug Deliv 2010;23(5):323-8
  • Wilson DS, Gillion MS, Rees PJ. Use of dry powder inhalers in COPD. Int J Clin Pract 2007;61(12):2005-8
  • Lurslurchachai L, Krauskopf K, Roy A, et al. Metered dose inhaler technique among inner-city asthmatics and its association with asthma medication adherence. Clin Respir J 2014;8(4):397-403
  • Svedsater H, Dale P, Garrill K, et al. Qualitative assessment of attributes and ease of use of the ELLIPTA dry powder inhaler for delivery of maintenance therapy for asthma and COPD. BMC Pulm Med 2013;13:72
  • BCC market research report PDDSTaGM. 2012. Available from: www.bccresearch.com/market-research/healthcare/pulmonary-drug-delivery-systems-hlc094a.html [Cited 1 July 2014]
  • BCC market research report PDDSTaGM. 2014. Available from: www.marketwatch.com/story/pulmonary-drug-delivery-systems-technologies-and-global-markets-2014-06-10 [Cited 1 July 2014]
  • Bailey MM, Berkland CJ. Nanoparticle formulations in pulmonary drug delivery. Med Res Rev 2009;29(1):196-212
  • Al-Hallak MH, Sarfraz MK, Azarmi S, et al. Pulmonary delivery of inhalable nanoparticles: dry powder inhalers. Therapeutic delivery 2011;2(10):1313-24
  • Anna M. Asthma in Focus. Pharmaceutical Press/RPS publishing; London, UK: 2007
  • Pascual RM, Peters SP. Chapter 63: management of chronic asthma : in adults. In: Barnes PJ, Drazen JM, Rennard SI, Thomson NC, editors. Asthma and COPD: basic mechanisms and clinical management. Academic Press/Elsevier; San Diego, CA, USA: 2009. p. 763-74
  • Rennard SI. Chapter 66: treatment of stable COPD. In: Barnes PJ, Drazen JM, Rennard SI, Thomson NC, editors. Asthma and COPD: basic mechanism and clinical management. 2nd edition. Academic Press/Elsevier; San Diego, CA, USA: 2009. 823-36
  • Buist AS. Similarities and differences between asthma and chronic obstructive pulmonary disease: treatment and early outcomes. Eur Respi J Suppl 2003;39:30s-5s
  • Undem BJ, Lichtenstein LM. Chapter 28: drugs USED in the treatment of asthma. In: Hardman JG, Limbird LE, editors. Goldman & Gilmans’s: the pharmacological basis of therapeutics. 10th edition. McGraw-Hill; NewYork: p. 733-54
  • Gershon AS, Campitelli MA, Croxford R, et al. Combination long-acting beta-agonists and inhaled corticosteroids compared with long-acting beta-agonists alone in older adults with chronic obstructive pulmonary disease. JAMA 2014;312(11):1114-21
  • Denny J. Floyd W Denny, Jr Chapter 1: the impact of respiratory virus infections on the world’s children. In: Skoner DP, editor. Asthma and respiratory infections. Marcel Dekker, Inc; New York,NY: 2001. p. 1-22
  • Pilcer G, De Bueger V, Traina K, et al. Carrier-free combination for dry powder inhalation of antibiotics in the treatment of lung infections in cystic fibrosis. Int J Pharm 2013;451(1-2):112-20
  • Wedzicha JA. Chapter 67: acute exacerbations of COPD. In: Barnes PJ, Drazen JM, Rennard SI, Thomson NC, editors. Asthma and COPD : basic mechanisms and clinical management. 2nd edition. Academic Press/Elsevier; San Diego, CA,USA: 2009. p. 837-46
  • Zhang X, Ma Y, Zhang L, et al. The development of a novel dry powder inhaler. Int J Pharm 2012;431(1-2):45-52
  • Hickey AJ, Mansour HM. Chapter 43: formulation challenges of powders for the delivery of small molecular weight molecules as aerosols. In: Rathbone MJ, Hadgraft J, Roberts MS, Lane ME, editors. Modified-release drug delivery technologies. 2nd edition. Informa Healthcare; New York: 2008. p. 573-601
  • Hickey AJ, Crowder TM. Chapter 16: next generation dry powder inhalation delivery systems. In: Hickey AJ, editors. Inhalation aerosols : physical and biological basis for therapy. 2nd edition. Informa Healthcare USA, Inc; New York,NY: 2007. p. 445-60
  • Adams WP, Lee SL, Plourde R, et al. Effects of device and formulation on in vitro performance of dry powder inhalers. AAPS J 2012;14(3):400-9
  • Islam N, Cleary MJ. Developing an efficient and reliable dry powder inhaler for pulmonary drug delivery–a review for multidisciplinary researchers. Med Eng Phys 2012;34(4):409-27
  • Wu X, Adedoyin OO, Mansour HM. Pulmonary and nasal anti-inflammatory and anti-allergy inhalation aerosol delivery systems. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry 2011;10:215-29
  • Zellnitz S, Redlinger-Pohn JD, Kappl M, et al. Preparation and characterization of physically modified glass beads used as model carriers in dry powder inhalers. Int J Pharm 2013;447(1-2):132-8
  • Nielsen KG, Skov M, Klug B, et al. Flow-dependent effect of formoterol dry-powder inhaled from the Aerolizer. Eur Respir J 1997;10(9):2105-9
  • Xu Z, Mansour HM, Hickey AJ. Particle interactions in dry powder inhaler unit processes: a review. J Adhes Sci Technol 2011;25(4-5):451-82
  • Shur J, Lee S, Adams W, et al. Effect of device design on the in vitro performance and comparability for capsule-based dry powder inhalers. AAPS J 2012;14(4):667-76
  • Tsapis N, Bennett D, Jackson B, et al. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Nat Acad Sci USA 2002;99(19):12001-5
  • Edwards DA, Hanes J, Caponetti G, et al. Large porous particles for pulmonary drug delivery. Science 1997;276(5320):1868-71
  • Hadinoto K, Phanapavudhikul P, Kewu Z, Tan RB. Dry powder aerosol delivery of large hollow nanoparticulate aggregates as prospective carriers of nanoparticulate drugs: effects of phospholipids. Int J Pharm 2007;333(1-2):187-98
  • Suarez S, Hickey AJ. Drug properties affecting aerosol behavior. Respir Care 2000;45(6):652-66
  • Watts AB, Williams RO. Chapter 15: nanoparticles for pulmonary delivery. In: Smyth HD, Hickey AJ, editors. Controlled pulmonary drug delivery. Springer; NewYork: 2011. p. 335-66
  • Demoly P, Hagedoorn P, de Boer AH, Frijlink HW. The clinical relevance of dry powder inhaler performance for drug delivery. Respir Med 2014;108(8):1195-203
  • Louey MD, Stewart PJ. Particle interactions involved in aerosol dispersion of ternary interactive mixtures. Pharm Res 2002;19(10):1524-31
  • de Boer AH, Hagedoorn P, Gjaltema D, et al. Air classifier technology (ACT) in dry powder inhalation Part 4. Performance of air classifier technology in the Novolizer multi-dose dry powder inhaler. Int J Pharm 2006;310(1-2):81-9
  • Friebel C, Steckel H, Muller BW. Rational design of a dry powder inhaler: device design and optimisation. J Pharm Pharmacol 2012;64(9):1303-15
  • Donovan MJ, Kim SH, Raman V, Smyth HD. Dry powder inhaler device influence on carrier particle performance. J Pharm Sci 2012;101(3):1097-107
  • Wang ZL, Grgic B, Finlay WH. A dry powder inhaler with reduced mouth-throat deposition. J Aerosol Med 2006; Summer 19(2):168-74
  • Crowder TM, Donovan MJ. Chapter 9: science and technology of dry powder inhaler In: Smyth HD, Hickey AJ, editors. Controlled pulmonary drug delivery. Springer; NewYork: 2011. p. 203-22
  • Louey MD, Van Oort M, Hickey AJ. Standardized entrainment tubes for the evaluation of pharmaceutical dry powder dispersion. J Aerosol Sci 2006;37(11):1520-31
  • Azouz W, Chetcuti P, Hosker HS, et al. The inhalation characteristics of patients when they use different dry powder inhalers. J Aerosol Medicine Pulm Drug Deliv 2014: 10.1089/jamp.2013.1119
  • Clark AR, Hollingworth AM. The Relationship between Powder Inhaler Resistance and Peak Inspiratory Conditions in Healthy-Volunteers - Implications for in-Vitro Testing. J Aerosol Med 1993;6(2):99-110
  • Kanabuchi K, Kondo T, Tanigaki T, et al. Minimal inspiratory flow from dry powder inhalers according to a biphasic model of pressure vs. flow relationship. Tokai J Exp Clin Med 2011;36(1):1-4
  • Hira D, Okuda T, Ichihashi M, et al. Influence of peak inspiratory flow rates and pressure drops on inhalation performance of dry powder inhalers. Chem Pharm Bull 2012;60(3):341-7
  • Hoppentocht M, Hagedoorn P, Frijlink HW, de Boer AH. Technological and practical challenges of dry powder inhalers and formulations. Adv Drug Deliv Rev 2014;73C:18-31
  • Malmberg LP, Rytila P, Happonen P, Haahtela T. Inspiratory flows through dry powder inhaler in chronic obstructive pulmonary disease: age and gender rather than severity matters. Int J Chron Obstruct Pulmon Dis 2010;5:257-62
  • Zeng XM, Martin GP, Marriott C. Chapter 5: particulate interactions in dry powder aerosols. Particulate interactions in dry powder formulations for inhalation. Taylor & Francis Inc; New York, NY: 2001. p. 133-73
  • Li X, Vogt FG, Hayes DJr, Mansour HM. Design, characterization, and aerosol dispersion performance modeling of advanced co-spray dried antibiotics with mannitol as respirable microparticles/nanoparticles for targeted pulmonary delivery as dry powder inhalers. J Pharm Sci 2014;103(9):2937-49
  • Park CW, Li X, Vogt FG, et al. Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols. Int J Pharm 2013;455(1-2):374-92
  • Mansour HM, Park CW, Hayes DJr. Chapter 3: nanoparticle lung delivery and inhalation aerosols for targeted pulmonary nanomedicine. Nanomedicine in drug delivery. CRC Press Taylor & Francis group; Boca Raton, FL, USA: 2013. p. 43-74
  • Milenkovic J, Alexopoulos AH, Kiparissides C. flow and particle deposition in the Turbuhaler: a CFD simulation. Int J Pharm 2013;448(1):205-13
  • Behara SR, Longest PW, Farkas DR, Hindle M. Development and comparison of new high-efficiency dry powder inhalers for carrier-free formulations. J Pharm Sci 2014;103(2):465-77
  • Warren S, Taylor G, Smith J, et al. Gamma scintigraphic evaluation of a novel budesonide dry powder inhaler using a validated radiolabeling technique. J Aerosol Med 2002;15(1):15-25
  • Glover W, Chan HK, Eberl S, et al. Effect of particle size of dry powder mannitol on the lung deposition in healthy volunteers. Int J Pharm 2008;349(1-2):314-22
  • Steckel H, Muller BW. In vitro evaluation of dry powder inhalers. 1. Drug deposition of commonly used devices. Int J Pharm 1997;154(1):19-29
  • Heng D, Lee SH, Ng WK, et al. Novel alternatives to reduce powder retention in the dry powder inhaler during aerosolization. Int J Pharm 2013;452(1-2):194-200
  • Zhou QT, Tong Z, Tang P, et al. Effect of device design on the aerosolization of a carrier-based dry powder inhaler–a case study on Aerolizer((R)) Foradile ((R)). AAPS J 2013;15(2):511-22
  • Behara SR, Farkas DR, Hindle M, Longest PW. Development of a high efficiency dry powder inhaler: effects of capsule chamber design and inhaler surface modifications. Pharm Res 2014;31(2):360-72
  • Coates MS, Chan HK, Fletcher DF, Raper JA. Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 2: air inlet size. J Pharm Sci 2006;95(6):1382-92
  • Chrystyn H, Niederlaender C. The Genuair(R) inhaler: a novel, multidose dry powder inhaler. Int J Clin Pract 2012;66(3):309-17
  • Chow AH, Tong HH, Chattopadhyay P, Shekunov BY. Particle engineering for pulmonary drug delivery. Pharm Res 2007;24(3):411-37
  • Buxton DB. Nanomedicine for the management of lung and blood diseases. Nanomedicine 2009;4(3):331-9
  • Xu LM, Zhang QX, Zhou Y, et al. Engineering drug ultrafine particles of beclomethasone dipropionate for dry powder inhalation. Int J Pharm 2012;436(1-2):1-9
  • Momin MN, Hedayati A, Nokhodchi A. Investigation into alternative sugars as potential carriers for dry powder formulation of budesonide. BI 2011;1(2):105-11
  • Rahimpour Y, Kouhsoltani M, Hamishehkar H. Alternative carriers in dry powder inhaler formulations. Drug Discov Today 2014;19(5):618-26
  • Willis L, Hayes DJr, Mansour HM. Therapeutic liposomal dry powder inhalation aerosols for targeted lung delivery. Lung 2012;190(3):251-62
  • Vandevanter DR, Geller DE. Tobramycin administered by the TOBI((R)) Podhaler((R)) for persons with cystic fibrosis: a review. Med Devices 2011;4:179-88
  • McKeage K. Tobramycin inhalation powder: a review of its use in the treatment of chronic Pseudomonas aeruginosa infection in patients with cystic fibrosis. Drugs 2013;73(16):1815-27
  • Menon JU, Ravikumar P, Pise A, et al. Polymeric nanoparticles for pulmonary protein and DNA delivery. Acta biomaterialia 2014
  • Cheow WS, Chang MW, Hadinoto K. Antibacterial efficacy of inhalable levofloxacin-loaded polymeric nanoparticles against E. coli biofilm cells: the effect of antibiotic release profile. Pharm Res 2010;27(8):1597-609
  • Meenach SA, Anderson KW, Zach Hilt J, et al. Characterization and aerosol dispersion performance of advanced spray-dried chemotherapeutic PEGylated phospholipid particles for dry powder inhalation delivery in lung cancer. Eur J Pharm Sci 2013;49(4):699-711
  • Meenach SA, Vogt FG, Anderson KW, et al. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols. Int J Nanomedicine 2013;8:275-93
  • Bhavane R, Karathanasis E, Annapragada AV. Agglomerated vesicle technology: a new class of particles for controlled and modulated pulmonary drug delivery. J Control Release 2003;93(1):15-28
  • Duan J, Vogt FG, Li X, et al. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery. Int J Nanomedicine 2013;8:3489-505
  • Yang M, Yamamoto H, Kurashima H, et al. Design and evaluation of poly(DL-lactic-co-glycolic acid) nanocomposite particles containing salmon calcitonin for inhalation. Eur J Pharm Sci 2012;46(5):374-80
  • Ragab DM, Rohani S. Cubic magnetically guided nanoaggregates for inhalable drug delivery: in vitro magnetic aerosol deposition study. AAPS PharmSciTech 2013;14(3):977-93
  • Al-Hallak MH, Sarfraz MK, Azarmi S, et al. Distribution of effervescent inhalable nanoparticles after pulmonary delivery: an in vivo study. Ther deli 2012;3(6):725-34
  • Longest PW, Hindle M. Condensational growth of combination drug-excipient submicrometer particles for targeted high efficiency pulmonary delivery: comparison of CFD predictions with experimental results. Pharm Res 2012;29(3):707-21
  • Hindle M, Longest PW. Condensational growth of combination drug-excipient submicrometer particles for targeted high-efficiency pulmonary delivery: evaluation of formulation and delivery device. J Pharm Pharmacol 2012;64(9):1254-63
  • Longest PW, Son YJ, Holbrook L, Hindle M. Aerodynamic factors responsible for the deaggregation of carrier-free drug powders to form micrometer and submicrometer aerosols. Pharm Res 2013;30(6):1608-27
  • Torrisi BM, Birchall JC, Jones BE, et al. The development of a sensitive methodology to characterise hard shell capsule puncture by dry powder inhaler pins. Int J Pharm 2013;456(2):545-52
  • Administration USFaD. Available from: www.fda.gov/drugs/drugsafety/informationbydrugclass/ucm082370.htm [Cited 13 June 2014]
  • European Medicines Agency. Available from: www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/landing/epar_search.jsp&mid=WC0b01ac058001d124 [Cited 14 July 2014]
  • Duddu SP, Sisk SA, Walter YH, et al. Improved lung delivery from a passive dry powder inhaler using an Engineered PulmoSphere powder. Pharm Res 2002;19(5):689-95
  • Meakin BJ, Ganderton D, Panza I, Ventura P. The effect of flow rate on drug delivery from the Pulvinal, a high-resistance dry powder inhaler. J Aerosol Med 1998; Fall 11(3):143-52
  • Janssens W, VandenBrande P, Hardeman E, et al. Inspiratory flow rates at different levels of resistance in elderly COPD patients. Eur Respir J 2008;31(1):78-83
  • Vogelberg C, Kremer HJ, Ellers-Lenz B, et al. Clinical evaluation of the peak inspiratory flow generated by asthmatic children through the Novolizer. Respir Med 2004;98(10):924-31
  • Lobo JM, Schiavone H, Palakodaty S, et al. SCF-engineered powders for delivery of budesonide from passive DPI devices. J Pharm Sci 2005;94(10):2276-88
  • Nelson H, Kemp JP, Bieler S, et al. Comparative efficacy and safety of albuterol sulfate Spiros inhaler and albuterol metered-dose inhaler in asthma. Chest 1999;115(2):329-35
  • Vehring R. Webinar: introduction to the formulation science and technology of respiratssory drug delivery. 2014. Available from: https://live.blueskybroadcast.com/bsb/client/CL_DEFAULT.asp?Client=825785&CAT=8739&PCAT=3932 [Cited 18 July 2014]