328
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Inhalable nanocomposite microparticles: preparation, characterization and factors affecting formulation

&

Bibliography

  • Papers of special note have been highlighted as either of interest (*) or of considerable interest (**) to readers.
  • Beck-Broichsitter M, Merkel OM, Kissel T. Controlled pulmonary drug and gene delivery using polymeric nano-carriers. J Control Release. 2012;161(2):214–224.
  • Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67–74.
  • Rave K, Bott S, Heinemann L, et al. Time-action profile of inhaled insulin in comparison with subcutaneously injected insulin lispro and regular human insulin. Diabetes Care. 2005;28(5):1077–1082.
  • Roa WH, Azarmi S, Al-Hallak MH, et al. Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J Control Release 2011;150(1):49–55
  • Conti DS, Bharatwaj B, Brewer D, et al. Propellant-based inhalers for the non-invasive delivery of genes via oral inhalation. J Control Release 2012;157(3):406–417
  • Depreter F, Pilcer G, Amighi K. Inhaled proteins: challenges and perspectives. Int J Pharm. 2013;447(1–2):251–280.
  • Carvalho TC, Peters JI, Williams RO 3rd. Influence of particle size on regional lung deposition – what evidence is there? Int J Pharm. 2011;406(1–2):1–10.
  • Ruge CA, Kirch J, Lehr CM. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers-therapeutic possibilities and technological challenges. Lancet Respir Med. 2013 Jul;1(5):402–413.
  • Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev. 2014;75:81–91.
  • Balasubramanian SK, Poh KW, Ong CN, et al. The effect of primary particle size on biodistribution of inhaled gold nano-agglomerates. Biomaterials. 2013;34(22):5439–5452.
  • Hatch TF, Gross P, Clayton GD. Pulmonary deposition and retention of inhaled aerosols. Amsterdam: Elsevier Science; 2013.
  • Kozawa KH, Winer AM, Fruin SA. Ultrafine particle size distributions near freeways: Effects of differing wind directions on exposure. Atmos Environ (1994). 2012;63:250–260.
  • Darquenne C. Aerosol deposition in health and disease. J Aerosol Med Pulm Drug Deliv. 2012;25(3):140–147.
  • Olsson B, Borgstrom L, Lundback H, et al. Validation of a general in vitro approach for prediction of total lung deposition in healthy adults for pharmaceutical inhalation products. J Aerosol Med Pulm Drug Deliv. 2013;26(6):355–369.
  • O’Callaghan C, Lynch J, Cant M, et al. Improvement in sodium cromoglycate delivery from a spacer device by use of an antistatic lining, immediate inhalation, and avoiding multiple actuations of drug. Thorax. 1993;48(6):603–606.
  • Heyder J. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc. 2004;1(4):315–320.
  • Taylor G, Kellaway I. Pulmonary drug deivery. In: Hillery AM, Lloyd AW, Swarbrick J, editors. Drug delivery and targeting: for pharmacists and pharmaceutical scientists. London (UK): Taylor & Francis ; 2002. p. 270–300.
  • Lambert AR, O’Shaughnessy P, Tawhai MH, et al. Regional deposition of particles in an image-based airway model: large-eddy simulation and left-right lung ventilation asymmetry. Aerosol Sci Technol. 2011;45(1):11–25.
  • Oakes JM, Marsden AL, Grandmont C, et al. Airflow and particle deposition simulations in health and emphysema: from in vivo to in silico animal experiments. Ann Biomed Eng. 2014;42(4):899–914.
  • Florence AT. “Targeting” nanoparticles: the constraints of physical laws and physical barriers. J Control Release. 2012;164(2):115–124.
  • Paranjpe M, Muller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci. 2014;15(4):5852–5873.
  • Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res. 2008;25(8):1815–1821.
  • Pacheco P, White D, Sulchek T. Effects of microparticle size and Fc density on macrophage phagocytosis. PLoS One. 2013;8(4):e60989.
  • Zaveri TD, Lewis JS, Dolgova NV, et al. Integrin-directed modulation of macrophage responses to biomaterials. Biomaterials. 2014;35(11):3504–3515.
  • Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.
  • Moghimi SM, Hunter AC, Andresen TL. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol. 2012;52:481–503.
  • Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev. 2012;41(7):2545–2561.
  • Beija M, Salvayre R, Lauth-de Viguerie N, et al. Colloidal systems for drug delivery: from design to therapy. Trends Biotechnol. 2012;30(9):485–496.
  • Dolovich MB, Dhand R. Aerosol drug delivery: developments in device design and clinical use. The Lancet. 2011;377(9770):1032–1045.
  • Ungaro F, d’Angelo I, Coletta C, et al. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. J Control Release 2012;157(1):149–159
  • Smola M, Vandamme T, Sokolowski A. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int J Nanomed. 2008;3(1):1–19.
  • Yang W, Peters JI, Williams RO 3rd. Inhaled nanoparticles – a current review. Int J Pharm. 2008 May 22;;356(1–2):239–247.
  • Mobus K, Siepmann J, Bodmeier R. Zinc-alginate microparticles for controlled pulmonary delivery of proteins prepared by spray-drying. Eur J Pharm Biopharm. 2012;81(1):121–130.
  • Patel B, Gupta V, Ahsan F. PEG-PLGA based large porous particles for pulmonary delivery of a highly soluble drug, low molecular weight heparin. J Control Release. 2012;162(2):310–320.
  • Al-Qadi S, Grenha A, Carrion-Recio D, et al. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Control Release. 2012;157(3):383–390.

* Studies the effect of chitosan incorporation on the characteristics of the formed nanocomposite microparticles

  • Al-Hallak MH, Sarfraz MK, Azarmi S, et al. Pulmonary delivery of inhalable nanoparticles: dry powder inhalers. Ther Deliv. 2011;2(10):1313–1324.
  • Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev. 2011;63(3):170–183.
  • Khalil NM, TCFd N, Casa DM, et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloids Surf B Biointerfaces. 2013;101(0):353–360.
  • Chang J, Paillard A, Passirani C, et al. Transferrin adsorption onto PLGA nanoparticles governs their interaction with biological systems from blood circulation to brain cancer cells. Pharm Res. 2012 2012/06/01;29(6):1495–1505.
  • Tomoda K, Ohkoshi T, Hirota K, et al. Preparation and properties of inhalable nanocomposite particles for treatment of lung cancer. Colloids Surf B Biointerfaces. 2009;71(2):177–182.
  • Guo X, Zhang X, Ye L, et al. Inhalable microspheres embedding chitosan-coated PLGA nanoparticles for 2-methoxyestradiol. J Drug Target. 2014;22(5):421–427.

* Studies the effect of leucine and Poloxamer 188 on the formed nanocomposite microparticles

** Studies the incorporation of polymeric and lipidic nanoparticles and utilization of different techniques (spray drying and spray freeze drying) for the preparation of nanocomposite microparticles

  • Lebhardt T, Roesler S, Uusitalo HP, et al. Surfactant-free redispersible nanoparticles in fast-dissolving composite microcarriers for dry-powder inhalation. Eur J Pharm Biopharm. 2011;78(1):90–96.

** Studies the effect of incorporation of different polysaccharides in the nanocomposite microparticles

  • Schenker MB, Jacobs JA. Respiratory effects of organic solvent exposure. Tuber Lung Dis. 1996 Feb;77(1):4–18.
  • Tahara K, Sakai T, Yamamoto H, et al. Improvements in transfection efficiency with chitosan modified poly(DL-lactide-co-glycolide) nanospheres prepared by the emulsion solvent diffusion method, for gene delivery. Chem Pharm Bull (Tokyo). 2011;59(3):298–301.
  • Staff RH, Schaeffel D, Turshatov A, et al. Particle formation in the emulsion-solvent evaporation process. Small 2013;9(20):3514–3522
  • Quintanar-Guerrero D, Allemann E, Fessi H, et al. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm. 1998;24(12):1113–1128.
  • Jensen DM, Cun D, Maltesen MJ, et al. Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation. J Control Release 2010;142(1):138–145
  • Jensen DK, Jensen LB, Koocheki S, et al. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA. J Control Release 2012;157(1):141–148
  • Iqbal M, Valour J-P, Fessi H, et al. Preparation of biodegradable PCL particles via double emulsion evaporation method using ultrasound technique. Colloid Polym Sci. 2015;293(3):861–873.
  • Miesch C, Kosif I, Lee E, et al. Nanoparticle-stabilized double emulsions and compressed droplets. Angew Chem Int Ed. 2012;51(1):145–149.
  • Sah E, Sah H. Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent. J Nanomater. 2015;2015:1–22.
  • Noriega-Pelaez EK, Mendoza-Munoz N, Ganem-Quintanar A, et al. Optimization of the emulsification and solvent displacement method for the preparation of solid lipid nanoparticles. Drug Dev Ind Pharm. 2011;37(2):160–166.
  • Garcia-Ivars J, M-I A-M, M-I I-C, et al. Enhancement in hydrophilicity of different polymer phase-inversion ultrafiltration membranes by introducing PEG/Al2O3 nanoparticles. Separation Purif Technol. 2014;128(0):45–57.
  • Zhu Y, Lu LH, Gao J, et al. Effect of trace impurities in triglyceride oils on phase inversion of pickering emulsions stabilized by CaCO3 nanoparticles. Colloids Surf B Physicochem Eng Asp. 2013;417(0):126–132.
  • Heurtault B, Saulnier P, Pech B, et al. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res. 2002 2002/06/01;19(6):875–880.
  • Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv. 2012;9(5):497–508.
  • Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–177.
  • Yehia SA, Elshafeey AH, Elsayed I. Biodegradable donepezil lipospheres for depot injection: optimization and in-vivo evaluation. J Pharm Pharmacol. 2012;64(10):1425–1437.
  • Singla S, Harjai K, Katare OP, et al. Bacteriophage-loaded nanostructured lipid carrier: improved pharmacokinetics mediates effective resolution of Klebsiella pneumoniae-induced lobar pneumonia. J Infect Dis 2015;212(2):325–334
  • Peng Q, Zhang ZR, Gong T, et al. A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles. Biomaterials. 2012;33(5):1583–1588.
  • Yang L, Luo J, Shi S, et al. Development of a pulmonary peptide delivery system using porous nanoparticle-aggregate particles for systemic application. Int J Pharm. 2013;451(1–2):104–111.
  • Dodane V, Amin Khan M, Merwin JR. Effect of chitosan on epithelial permeability and structure. Int J Pharm. 1999;182(1):21–32.
  • Grenha A, Seijo B, Remunan-Lopez C. Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci. 2005;25(4–5):427–437.

* Studies the effect of chitosan incorporation on the characteristics of the formed nanocomposite microparticles

  • Sinsuebpol C, Chatchawalsaisin J, Kulvanich P. Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery. Drug Des Devel Ther. 2013;7:861–873.

* Studies the effect of chitosan incorporation on the characteristics of the formed nanocomposite microparticles

  • Grenha A, Remunan-Lopez C, Carvalho EL, et al. Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins. Eur J Pharm Biopharm. 2008;69(1):83–93.
  • Jafarinejad S, Gilani K, Moazeni E, et al. Development of chitosan-based nanoparticles for pulmonary delivery of itraconazole as dry powder formulation. Powder Technol. 2012;222:65–70.
  • Stocke NA, Meenach SA, Arnold SM, et al. Formulation and characterization of inhalable magnetic nanocomposite microparticles (MnMs) for targeted pulmonary delivery via spray drying. Int J Pharm 2015;479(2):320–328

* Prepares magnetic nanocomposite microparticles

  • Jaganathan KS, Rao YU, Singh P, et al. Development of a single dose tetanus toxoid formulation based on polymeric microspheres: a comparative study of poly(D,L-lactic-co-glycolic acid) versus chitosan microspheres. Int J Pharm 2005Apr27;294(1–2):23–32
  • Dong WY, Korber M, Lopez Esguerra V, et al. Stability of poly(D,L-lactide-co-glycolide) and leuprolide acetate in in-situ forming drug delivery systems. J Control Release. 2006;115(2):158–167.
  • Tomoda K, Ohkoshi T, Kawai Y, et al. Preparation and properties of inhalable nanocomposite particles: effects of the temperature at a spray-dryer inlet upon the properties of particles. Colloids Surf B Biointerfaces 2008;61(2):138–144
  • Baldrick P, Bamford DG. A toxicological review of lactose to support clinical administration by inhalation. Food Chem Toxicol. 1997;35(7):719–733.
  • El-Dahmy RM, Elsayed I, Elshafeey AH, et al. Optimization of long circulating mixed polymeric micelles containing vinpocetine using simple lattice mixture design, in vitro and in vivo characterization. Int J Pharm. 2014;477(1–2):39–46
  • Mujumdar AS. Handbook of industrial drying. 4th ed. London: Taylor & Francis;2014.
  • Shazly G, Badran M, Zoheir K, et al. Utilization of spray drying technique for improvement of dissolution and anti-inflammatory effect of meloxicam. Pak J Pharm Sci. 2015;28(1):103–111.
  • Schafroth N, Arpagaus C, Jadhav UY, et al. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process. Colloids Surf B Biointerfaces. 2012;90(0):8–15.
  • Rahmati MR, Vatanara A, Parsian AR, et al. Effect of formulation ingredients on the physical characteristics of salmeterol xinafoate microparticles tailored by spray freeze drying. Adv Powder Technol. 2013;24(1):36–42.
  • Gao Y, Zhu CL, Zhang XX, et al. Lipid-polymer composite microspheres for colon-specific drug delivery prepared using an ultrasonic spray freeze-drying technique. J Microencapsul. 2011;28(6):549–556.
  • Karthik P, Anandharamakrishnan C. Microencapsulation of docosahexaenoic acid by spray-freeze-drying method and comparison of its stability with spray-drying and freeze-drying methods. Food Bioprocess Tech. 2013;6(10):2780–2790.
  • Maa YF, Nguyen PA, Sweeney T, et al. Protein inhalation powders: spray drying vs spray freeze drying. Pharm Res. 1999;16(2):249–254.
  • Yamamoto H, Hoshina W, Kurashima H, et al. Engineering of poly(DL-lactic-co-glycolic acid) nanocomposite particles for dry powder inhalation dosage forms of insulin with the spray-fluidized bed granulating system. Adv Powder Technol. 2007;18(2):215–228.
  • Kondo K, Niwa T, Ozeki Y, et al. Preparation and evaluation of orally rapidly disintegrating tablets containing taste-masked particles using one-step dry-coated tablets technology. Chem Pharm Bull. 2011;59(10):1214–1220.
  • Yokoyama T, Huang CC. Nanoparticle technology for the production of functional materials. KONA Powder Part J. 2005;23:7–17.
  • Christoph Link K, Schlünder E-U. Fluidized bed spray granulation: investigation of the coating process on a single sphere. Chem Eng Process Intensif. 1997;36(6):443–457.
  • Yang M, Yamamoto H, Kurashima H, et al. Design and evaluation of inhalable chitosan-modified poly (DL-lactic-co-glycolic acid) nanocomposite particles. Eur J Pharm Sci. 2012;47(1):235–243

* Studies the effect of chitosan incorporation on the characteristics of the formed nanocomposite microparticles

  • Zhou QT, Qu L, Gengenbach T, et al. Investigation of the extent of surface coating via mechanofusion with varying additive levels and the influences on bulk powder flow properties. Int J Pharm. 2011Jul15;413(1–2):36–43
  • Alonso M, Satoh M, Miyanami K. Mechanism of the combined coating-mechanofusion processing of powders. Powder Technol. 1989;59(1):45–52.
  • Pfeffer R, Dave RN, Wei D, et al. Synthesis of engineered particulates with tailored properties using dry particle coating. Powder Technol. 2001;117(1–2):40–67.
  • Poly YH. (lactic-co-glycolic acid) nanosphere composite prepared with mechanofusion dry powder composition system for improving pulmonary insulin delivery with dry powder inhalation. Yakuzaigaku. 2004;64:245–253.
  • Wanakule P, Liu GW, Fleury AT, et al. Nano-inside-micro: disease-responsive microgels with encapsulated nanoparticles for intracellular drug delivery to the deep lung. J Control Release 2012Sep10;162(2):429–437

* Prepares nanocomposite microgels

  • Podaralla SK, Perumal OP, Kawshik RS. Design and formulation of protein-based NPDDS. In: Pathak Y, Thassu D, editors. Drug delivery nanoparticles formulation and characterization. New York (NY): Informa Healthcare; 2009. p. 69–91.
  • Wang N, Hsu C, Zhu L, et al. Influence of metal oxide nanoparticles concentration on their zeta potential. J Colloid Interface Sci. 2013;407(0):22–28.
  • Bisgaard H, O’Callaghan C, Smaldone GC. Drug delivery to the lung. New York (NY): Marcel Dekker; 2001.
  • de Boer AH, Gjaltema D, Hagedoorn P, et al. Characterization of inhalation aerosols: a critical evaluation of cascade impactor analysis and laser diffraction technique. Int J Pharm 2002;249(1–2):219–231
  • Maltesen MJ, Bjerregaard S, Hovgaard L, et al. Quality by design – spray drying of insulin intended for inhalation. Eur J Pharm Biopharm. 2008;70(3):828–838.
  • Tomoda K, Ohkoshi T, Nakajima T, et al. Preparation and properties of inhalable nanocomposite particles: effects of the size, weight ratio of the primary nanoparticles in nanocomposite particles and temperature at a spray-dryer inlet upon properties of nanocomposite particles. Colloids Surf B Biointerfaces 2008;64(1):70–76
  • Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59(7):645–666.
  • Yang M, Yamamoto H, Kurashima H, et al. Design and evaluation of poly(DL-lactic-co-glycolic acid) nanocomposite particles containing salmon calcitonin for inhalation. Eur J Pharm Sci 2012;46(5):374–380

** Compares two preparation techniques of nanocomposite microparticles (dry coating and spray drying fluidized bed granulation)

  • Barichello JM, Morishita M, Takayama K, et al. Absorption of insulin from pluronic F-127 gels following subcutaneous administration in rats. Int J Pharm 1999;184(2):189–198
  • Heng D, Cutler DJ, Chan HK, et al. What is a suitable dissolution method for drug nanoparticles? Pharm Res. 2008;25(7):1696–1701.
  • Xu X, Khan MA, Burgess DJ. A two-stage reverse dialysis in vitro dissolution testing method for passive targeted liposomes. Int J Pharm. 2012;426(1–2):211–218.
  • Zhuang CY, Li N, Wang M, et al. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm 2010;394(1–2):179–185
  • Liu P, De Wulf O, Laru J, et al. Dissolution studies of poorly soluble drug nanosuspensions in non-sink conditions. AAPS PharmSciTech. 2013;14(2):748–756.
  • Nie S, Wu J, Liu H, et al. Influence of admixed citric acid and physiological variables on the vinpocetine release from sodium alginate compressed matrix tablets. Drug Dev Ind Pharm. 2011;37(8):954–962.
  • Lehto P, Kortejärvi H, Liimatainen A, et al. Use of conventional surfactant media as surrogates for FaSSIF in simulating in vivo dissolution of BCS class II drugs. Eur J Pharm Biopharm. 2011;78(3):531–538.
  • Phillips DJ, Pygall SR, Cooper VB, et al. Overcoming sink limitations in dissolution testing: a review of traditional methods and the potential utility of biphasic systems. J Pharm Pharmacol. 2012;64(11):1549–1559.
  • Bot AI, Tarara TE, Smith DJ, et al. Novel lipid-based hollow-porous microparticles as a platform for immunoglobulin delivery to the respiratory tract. Pharm Res. 2000;17(3):275–283.
  • Parsian AR, Vatanara A, Rahmati MR, et al. Inhalable budesonide porous microparticles tailored by spray freeze drying technique. Powder Technol. 2014;260:36–41.
  • Pilcer G, Rosiere R, Traina K, et al. New co-spray-dried tobramycin nanoparticles-clarithromycin inhaled powder systems for lung infection therapy in cystic fibrosis patients. J Pharm Sci. 2013;102(6):1836–1846.
  • Son Y, Horng M, Copley M, et al. Optimization of an in vitro dissolution test method for inhalation formulations. Dissolut Technol. 2010;17(2):6–13.
  • Salama RO, Traini D, Chan HK, et al. Preparation and characterisation of controlled release co-spray dried drug-polymer microparticles for inhalation 2: evaluation of in vitro release profiling methodologies for controlled release respiratory aerosols. Eur J Pharm Biopharm. 2008;70(1):145–152.
  • Son YJ, McConville JT. Development of a standardized dissolution test method for inhaled pharmaceutical formulations. Int J Pharm. 2009;382(1–2):15–22.
  • Davies NM, Feddah MR. A novel method for assessing dissolution of aerosol inhaler products. Int J Pharm. 2003;255(1–2):175–187.
  • May S, Jensen B, Wolkenhauer M, et al. Dissolution techniques for in vitro testing of dry powders for inhalation. Pharm Res. 2012;29(8):2157–2166.
  • Cun D, Jensen DK, Maltesen MJ, et al. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization. Eur J Pharm Biopharm. 2011;77(1):26–35.
  • Md S, Ali M, Baboota S, et al. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev Ind Pharm. 2014;40(2):278–287.
  • Semete B, Booysen L, Lemmer Y, et al. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine. 2010;6(5):662–671.
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21(23):2475–2490.
  • Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 1990;82(13):1107–1112
  • Plumb JA, Milroy R, Kaye SB. Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res. 1989;49(16):4435–4440.
  • Huang M, Ma Z, Khor E, et al. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res. 2002;19(10):1488–1494.
  • Sakagami M. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev. 2006;58(9–10):1030–1060.
  • Makino K, Yamamoto N, Higuchi K, et al. Phagocytic uptake of polystyrene microspheres by alveolar macrophages: effects of the size and surface properties of the microspheres. Colloids Surf B Biointerfaces. 2003;27(1):33–39.
  • Yamamoto H, Kuno Y, Sugimoto S, et al. Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J Control Release. 2005;102(2):373–381.
  • Center for Drug Evaluation and Research, Inactive ingredients search for approved drug products [Internet]. Washington (DC): FDA; 2009. [cited 2015 Aug 12]. http://www.accessdata.fda.gov/scripts/cder/iig/index.Cfm

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.