612
Views
44
CrossRef citations to date
0
Altmetric
Review

Transport mechanisms at the pulmonary mucosa: implications for drug delivery

, , &
Pages 667-690 | Received 30 Sep 2015, Accepted 06 Jan 2016, Published online: 24 Feb 2016

References

  • Fromm MF, Kim RB, editors. Drug Transporters. Berlin: Springer; 2011.
  • Bosquillon C. Drug transporters in the lung–do they play a role in the biopharmaceutics of inhaled drugs? J Pharm Sci. 2010;99(5):2240–2255. doi:10.1002/jps.21995.
  • Gumbleton M, Al-Jayyoussi G, Crandon-Lewis A, et al. Spatial expression and functionality of drug transporters in the intact lung: objectives for further research. Adv Drug Deliv Rev. 2011;63(1–2):110–118. doi:10.1016/j.addr.2010.09.008.
  • Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Hum Genomics. 2009;3(3):281–290.
  • Bleasby K, Castle JC, Roberts CJ, et al. Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: a resource for investigations into drug disposition. Xenobiotica. 2006;36(10–11):963–988. doi:10.1080/00498250600861751.
  • Langmann T, Mauerer R, Zahn A, et al. Real-time reverse transcription-PCR expression profiling of the complete human ATP-binding cassette transporter superfamily in various tissues. Clin Chem. 2003;49(2):230–238.
  • Leclerc J, Courcot-Ngoubo Ngangue E, Cauffiez C, et al. Xenobiotic metabolism and disposition in human lung: transcript profiling in non-tumoral and tumoral tissues. Biochimie. 2011;93(6):1012–1027. doi:10.1016/j.biochi.2011.02.012.
  • Scheffer GL, Pijnenborg AC, Smit EF, et al. Multidrug resistance related molecules in human and murine lung. J Clin Pathol. 2002;55(5):332–339.
  • Lechapt-Zalcman E, Hurbain I, Lacave R, et al. MDR1-Pgp 170 expression in human bronchus. Eur Respir J. 1997;10(8):1837–1843.
  • van der Valk P, van Kalken CK, Ketelaars H, et al. Distribution of multi-drug resistance-associated P-glycoprotein in normal and neoplastic human tissues. Analysis with 3 monoclonal antibodies recognizing different epitopes of the P-glycoprotein molecule. Ann Oncol Off J Eur Soc Med Oncol/ESMO. 1990;1(1):56–64.
  • Cordon-Cardo C, O’Brien JP, Boccia J, et al. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem Off J Histochem Soc. 1990;38(9):1277–1287.
  • Campbell L, Abulrob AN, Kandalaft LE, et al. Constitutive expression of p-glycoprotein in normal lung alveolar epithelium and functionality in primary alveolar epithelial cultures. J Pharmacol Exp Ther. 2003;304(1):441–452. doi:10.1124/jpet.102.042994.
  • Sakamoto A, Matsumaru T, Yamamura N, et al. Quantitative expression of human drug transporter proteins in lung tissues: analysis of regional, gender, and interindividual differences by liquid chromatography-tandem mass spectrometry. J Pharm Sci. 2013;102(9):3395–3406. doi:10.1002/jps.23606.
  • Baas F, Borst P. The tissue dependent expression of hamster P-glycoprotein genes. FEBS Lett. 1988;229(2):329–332.
  • Brady JM, Cherrington NJ, Hartley DP, et al. Tissue distribution and chemical induction of multiple drug resistance genes in rats. Drug Metab Dispos. 2002;30(7):838–844.
  • Croop JM, Raymond M, Haber D, et al. The three mouse multidrug resistance (MDR) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol Cell Biol. 1989;9(3):1346–1350.
  • Hasegawa H, Inui N, Suda T, et al. Expressions of multidrug resistance protein 1 and multidrug resistance-associated protein 1 in lung dendritic cells. Life Sci. 2011;89(7–8):282–287. doi:10.1016/j.lfs.2011.06.023.
  • Inui N, Hasegawa H, Suda T, et al. Expression and Function of Multidrug Resistance Protein 1 and Multidrug Resistance–Associated Protein 1 in Lung Dendritic Cells From Aging Mice. J Gerontol Ser A Biol Sci Med Sci. 2012;67(10):1049–1055. doi:10.1093/gerona/gls069.
  • Lehmann T, Köhler C, Weidauer E, et al. Expression of MRP1 and related transporters in human lung cells in culture. Toxicology. 2001;167(1):59–72.
  • Endter S, Francombe D, Ehrhardt C, et al. RT-PCR analysis of ABC, SLC and SLCO drug transporters in human lung epithelial cell models. J Pharm Pharmacol. 2009;61(5):583–591. doi:10.1211/jpp/61.05.0006.
  • Kuzuya Y, Adachi T, Hara H, et al. Induction of drug-metabolizing enzymes and transporters in human bronchial epithelial cells by beclomethasone dipropionate. IUBMB Life. 2004;56(6):355–359. doi:10.1080/10258140412331286946.
  • Lin H, Li H, Cho H-J, et al. Air-liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies. J Pharm Sci. 2007;96(2):341–350. doi:10.1002/jps.20803.
  • Hutter V, Chau DY, Hilgendorf C, et al. Digoxin net secretory transport in bronchial epithelial cell layers is not exclusively mediated by P-glycoprotein/MDR1. Eur J Pharm Biopharm. 2014;86(1):74–82. doi:10.1016/j.ejpb.2013.06.010.
  • Courcot E, Leclerc J, Lafitte JJ, et al. Xenobiotic metabolism and disposition in human lung cell models: comparison with in vivo expression profiles. Drug Metab Dispos. 2012;40(10):1953–1965. doi:10.1124/dmd.112.046896.
  • Florea BI, van der Sandt IC, Schrier SM, et al. Evidence of P-glycoprotein mediated apical to basolateral transport of flunisolide in human broncho-tracheal epithelial cells (Calu-3). Br J Pharmacol. 2001;134(7):1555–1563. doi:10.1038/sj.bjp.0704390.
  • Hamilton KO, Backstrom G, Yazdanian MA, et al. P-glycoprotein efflux pump expression and activity in Calu-3 cells. J Pharm Sci. 2001;90(5):647–658.
  • Sakamoto A, Matsumaru T, Yamamura N, et al. Drug Transporter Protein Quantification of Immortalized Human Lung Cell Lines Derived from Tracheobronchial Epithelial Cells (Calu-3 and BEAS2-B), Bronchiolar-Alveolar Cells (NCI-H292 and NCI-H441), and Alveolar Type II-like Cells (A549) by Liquid Chromatography-Tandem Mass Spectrometry. J Pharm Sci. 2015;104(9):3029–3038. doi:10.1002/jps.24381.
  • Zerin T, Kim Y-S, Hong S-Y, et al. Protective effect of methylprednisolone on paraquat-induced A549 cell cytotoxicity via induction of efflux transporter, P-glycoprotein expression. Toxicol Lett. 2012;208(2):101–107. doi:10.1016/j.toxlet.2011.10.019.
  • Ehrhardt C, Kneuer C, Laue M, et al. 16HBE14o- human bronchial epithelial cell layers express P-glycoprotein, lung resistance-related protein, and caveolin-1. Pharm Res. 2003;20(4):545–551.
  • Salomon JJ, Muchitsch VE, Gausterer JC, et al. The cell line NCl-H441 is a useful in vitro model for transport studies of human distal lung epithelial barrier. Mol Pharm. 2014;11(3):995–1006. doi:10.1021/mp4006535.
  • Flens MJ, Zaman GJ, van der Valk P, et al. Tissue distribution of the multidrug resistance protein. Am J Pathol. 1996;148(4):1237–1247.
  • Scheffer GL, Kool M, Heijn M, et al. Specific detection of multidrug resistance proteins MRP1, MRP2, MRP3, MRP5, and MDR3 P-glycoprotein with a panel of monoclonal antibodies. Cancer Res. 2000;60(18):5269–5277.
  • Bréchot JM, Hurbain I, Fajac A, et al. Different pattern of MRP localization in ciliated and basal cells from human bronchial epithelium. J Histochem Cytochem Off J Histochem Soc. 1998;46(4):513–517.
  • Patel LN, Uchiyama T, Kim K-J, et al. Molecular and functional expression of multidrug resistance-associated protein-1 in primary cultured rat alveolar epithelial cells. J Pharm Sci. 2008;97(6):2340–2349. doi:10.1002/jps.21134.
  • Muchitsch V, Gausterer J, Salomon J, et al. Human bronchiolar epithelial cells functionally express P-glycoprotein and multidrug resistance-related protein-1 (1064.11). Faseb J. 2014;28(1 Supplement).
  • van der Deen M, de Vries EG, Timens W, et al. ATP-binding cassette (ABC) transporters in normal and pathological lung. Respir Res. 2005;6:59. doi:10.1186/1465-9921-6-59.
  • Torky A-RW, Stehfest E, Viehweger K, et al. Immuno-histochemical detection of MRPs in human lung cells in culture. Toxicology. 2005;207(3):437–450. doi:10.1016/j.tox.2004.10.014.
  • Kool M, de Haas M, Scheffer GL, et al. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res. 1997;57(16):3537–3547.
  • Fetsch PA, Abati A, Litman T, et al. Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues. Cancer Lett. 2006;235(1):84–92. doi:10.1016/j.canlet.2005.04.024.
  • Ohbayashi M, Yamamoto C, Shiozawa A, et al. Differential mRNA expression and the uptake of methotrexate in primary MAEC and MLF cells: involvement of the ABC and SLCO/OATP transporters in alveolar epithelial cell toxicity. J Toxicol Sci. 2013;38(1):103–114.
  • Haritova AM, Schrickx J, Lashev LD, et al. Expression of MDR1, MRP2 and BCRP mRNA in tissues of turkeys. J Vet Pharmacol Ther. 2008;31(4):378–385. doi:10.1111/j.1365-2885.2008.00968.x.
  • Liang S-C, Yang C-Y, Tseng J-Y, et al. ABCG2 Localizes to the Nucleus and Modulates CDH1 Expression in Lung Cancer Cells. Neoplasia. 2015;17(3):265–278. doi:10.1016/j.neo.2015.01.004.
  • Paturi DK, Kwatra D, Ananthula HK, et al. Identification and functional characterization of breast cancer resistance protein in human bronchial epithelial cells (Calu-3). Int J Pharm. 2010;384(1–2):32–38. doi:10.1016/j.ijpharm.2009.09.037.
  • Kawabata S, Oka M, Soda H, et al. Expression and functional analyses of breast cancer resistance protein in lung cancer. Clin Cancer Res. 2003;9(8):3052–3057.
  • Mathia NR, Timoszyk J, Stetsko PI, et al. Permeability characteristics of calu-3 human bronchial epithelial cells: in vitro-in vivo correlation to predict lung absorption in rats. J Drug Target. 2002;10(1):31–40. doi:10.1080/10611860290007504.
  • Haghi M, Young PM, Traini D, et al. Time- and passage-dependent characteristics of a Calu-3 respiratory epithelial cell model. Drug Dev Ind Pharm. 2010;36(10):1207–1214. doi:10.3109/03639041003695113.
  • Madlova M, Bosquillon C, Asker D, et al. In-vitro respiratory drug absorption models possess nominal functional P-glycoprotein activity. J Pharm Pharmacol. 2009;61(3):293–301. doi:10.1211/jpp/61.03.0003.
  • Patel J, Pal D, Vangal V, et al. Transport of HIV-protease inhibitors across 1 alpha,25di-hydroxy vitamin D3-treated Calu-3 cell monolayers: modulation of P-glycoprotein activity. Pharm Res. 2002;19(11):1696–1703.
  • Twentyman PR, Rhodes T, Rayner S. A comparison of rhodamine 123 accumulation and efflux in cells with P-glycoprotein-mediated and MRP-associated multidrug resistance phenotypes. Eur J Cancer. 1994;30A(9):1360–1369.
  • Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med. 2013;34(2–3):413–435. doi:10.1016/j.mam.2012.10.010.
  • Salomon JJ, Ehrhardt C, Hosoya K. The verapamil transporter expressed in human alveolar epithelial cells (A549) does not interact with β2-receptor agonists. Drug Metab Pharmacokinet. 2014;29(1):101–104.
  • Roerig DL, Audi SH, Ahlf SB. Kinetic characterization of p-glycoprotein-mediated efflux of rhodamine 6g in the intact rabbit lung. Drug Metab Dispos. 2004;32(9):953–958. doi:10.1124/dmd.104.000042.
  • Kuhlmann O, Hofmann H-S, Müller SP, et al. Pharmacokinetics of idarubicin in the isolated perfused rat lung: effect of cinchonine and rutin. Anticancer Drugs. 2003;14(6):411–416. doi:10.1097/01.cad.0000078737.65608.2d.
  • Schinkel AH, Wagenaar E, van Deemter L, et al. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest. 1995;96(4):1698–1705. doi:10.1172/JCI118214.
  • Schinkel AH, Smit JJ, van Tellingen O, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell. 1994;77(4):491–502.
  • Al-Jayyoussi G, Price DF, Francombe D, et al. Selectivity in the impact of P-glycoprotein upon pulmonary absorption of airway-dosed substrates: a study in ex vivo lung models using chemical inhibition and genetic knockout. J Pharm Sci. 2013;102(9):3382–3394. doi:10.1002/jps.23587.
  • Manford F, Riffo-Vasquez Y, Spina D, et al. Lack of difference in pulmonary absorption of digoxin, a P-glycoprotein substrate, in mdr1a-deficient and mdr1a-competent mice. J Pharm Pharmacol. 2008;60(10):1305–1310. doi:10.1211/jpp/60.10.0006.
  • Togami K, Chono S, Morimoto K. Distribution characteristics of clarithromycin and azithromycin, macrolide antimicrobial agents used for treatment of respiratory infections, in lung epithelial lining fluid and alveolar macrophages. Biopharm Drug Dispos. 2011;32(7):389–397. doi:10.1002/bdd.v32.7.
  • Togami K, Chono S, Morimoto K. Transport characteristics of clarithromycin, azithromycin and telithromycin, antibiotics applied for treatment of respiratory infections, in Calu-3 cell monolayers as model lung epithelial cells. Die Pharmazie. 2012;67(5):389–393.
  • Gaohua L, Wedagedera J, Small BG, et al. Development of a Multicompartment Permeability-Limited Lung PBPK Model and Its Application in Predicting Pulmonary Pharmacokinetics of Antituberculosis Drugs. CPT Pharmacomet Syst Pharmacol. 2015;4(10):605–613.
  • Ruparelia P, Cheow HK, Evans JW, et al. Pulmonary elimination rate of inhaled 99mTc-sestamibi radioaerosol is delayed in healthy cigarette smokers. Br J Clin Pharmacol. 2008;65(4):611–614. doi:10.1111/j.1365-2125.2008.03099.x.
  • Berg T, Hegelund Myrback T, Olsson M, et al. Gene expression analysis of membrane transporters and drug-metabolizing enzymes in the lung of healthy and COPD subjects. Pharmacol Res Perspect. 2014;2(4):e00054. doi:10.1002/prp2.75.
  • Cada DJ, Ingram K, Leonard J, et al. Umeclidinium bromide and vilanterol trifenatate inhalation powder. Hosp Pharm. 2014;49(6):554–562. doi:10.1310/hpj4906-554.
  • Mehta R, Kelleher D, Preece A, et al. Effect of verapamil on systemic exposure and safety of umeclidinium and vilanterol: a randomized and open-label study. Int J Chron Obstruct Pulmon Dis. 2013;8:159–167. doi:10.2147/COPD.S40859.
  • Pavek P, Cerveny L, Svecova L, et al. Examination of Glucocorticoid receptor alpha-mediated transcriptional regulation of P-glycoprotein, CYP3A4, and CYP2C9 genes in placental trophoblast cell lines. Placenta. 2007;28(10):1004–1011. doi:10.1016/j.placenta.2007.05.001.
  • Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases. Lancet. 2009;373(9678):1905–1917. doi:10.1016/S0140-6736(09)60326-3.
  • Crowe A, Tan AM. Oral and inhaled corticosteroids: Differences in P-glycoprotein (ABCB1) mediated efflux. Toxicol Appl Pharmacol. 2012;260(3):294–302. doi:10.1016/j.taap.2012.03.008.
  • Hamilton KO, Yazdanian MA, Audus KL. Modulation of P-glycoprotein activity in Calu-3 cells using steroids and beta-ligands. Int J Pharm. 2001;228(1–2):171–179.
  • Chen T. Overcoming drug resistance by regulating nuclear receptors. Adv Drug Deliv Rev. 2010;62(13):1257–1264. doi:10.1016/j.addr.2010.07.008.
  • Staudinger JL, Madan A, Carol KM, et al. Regulation of drug transporter gene expression by nuclear receptors. Drug Metab Dispos. 2003;31(5):523–527.
  • CDER. Aclidinium bromide inhalation powder [Internet]. [cited 2016 Feb 4]. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202450Orig1s000ClinPharmR.pdf.
  • Valenzuela B, Nácher A, Ruiz-Carretero P, et al. Profile of P-glycoprotein distribution in the rat and its possible influence on the salbutamol intestinal absorption process. J Pharm Sci. 2004;93(6):1641–1648. doi:10.1002/jps.20071.
  • Salomon JJ, Ehrhardt C. Organic cation transporters in the blood-air barrier: expression and implications for pulmonary drug delivery. Ther Deliv. 2012;3(6):735–747.
  • Ehrhardt C, Kneuer C, Bies C, et al. Salbutamol is actively absorbed across human bronchial epithelial cell layers. Pulm Pharmacol Ther. 2005;18(3):165–170. doi:10.1016/j.pupt.2004.11.007.
  • Horvath G, Schmid N, Fragoso MA, et al. Epithelial organic cation transporters ensure pH-dependent drug absorption in the airway. Am J Respir Cell Mol Biol. 2007;36(1):53–60. doi:10.1165/rcmb.2006-0230OC.
  • Mukherjee M, Pritchard DI, Bosquillon C. Evaluation of air-interfaced Calu-3 cell layers for investigation of inhaled drug interactions with organic cation transporters in vitro. Int J Pharm. 2012;426(1–2):7–14. doi:10.1016/j.ijpharm.2011.12.036.
  • Salomon JJ, Endter S, Tachon G, et al. Transport of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) in human respiratory epithelial cells. Eur J Pharm Biopharm. 2012;81(2):351–359. doi:10.1016/j.ejpb.2012.03.001.
  • Salomon JJ, Hagos Y, Petzke S, et al. Beta-2 Adrenergic Agonists Are Substrates and Inhibitors of Human Organic Cation Transporter 1. Mol Pharm. 2015;12:2633–2641. doi:10.1021/mp500854e.
  • Cooray HC, Shahi S, Cahn AP, et al. Modulation of p-glycoprotein and breast cancer resistance protein by some prescribed corticosteroids. Eur J Pharmacol. 2006;531(1–3):25–33. doi:10.1016/j.ejphar.2005.12.010.
  • Lips KS, Volk C, Schmitt BM, et al. Polyspecific cation transporters mediate luminal release of acetylcholine from bronchial epithelium. Am J Respir Cell Mol Biol. 2005;33(1):79–88. doi:10.1165/rcmb.2004-0363OC.
  • van der Deen M, Homan S, Timmer-Bosscha H, et al. Effect of COPD treatments on MRP1-mediated transport in bronchial epithelial cells. Int J Chron Obstruct Pulmon Dis. 2008;3(3):469–475.
  • Horvath G, Mendes ES, Schmid N, et al. The effect of corticosteroids on the disposal of long-acting beta2-agonists by airway smooth muscle cells. J Allergy Clin Immunol. 2007;120(5):1103–1109. doi:10.1016/j.jaci.2007.08.034.
  • Ando T, Kusuhara H, Merino G, et al. Involvement of breast cancer resistance protein (ABCG2) in the biliary excretion mechanism of fluoroquinolones. Drug Metab Dispos. 2007;35(10):1873–1879. doi:10.1124/dmd.107.014969.
  • Marquez B, Caceres NE, Mingeot-Leclercq M-P, et al. Identification of the efflux transporter of the fluoroquinolone antibiotic ciprofloxacin in murine macrophages: studies with ciprofloxacin-resistant cells. Antimicrob Agents Chemother. 2009;53(6):2410–2416. doi:10.1128/AAC.01428-08.
  • Hirano T, Yasuda S, Osaka Y, et al. The inhibitory effects of fluoroquinolones on l-carnitine transport in placental cell line BeWo. Int J Pharm. 2008;351(1–2):113–118. doi:10.1016/j.ijpharm.2007.09.022.
  • Ong HX, Traini D, Bebawy M, et al. Ciprofloxacin is actively transported across bronchial lung epithelial cells using a Calu-3 air interface cell model. Antimicrob Agents Chemother. 2013;57(6):2535–2540. doi:10.1128/AAC.00306-13.
  • Allen A, Bal J, Cheesbrough A, et al. Pharmacokinetics and pharmacodynamics of intravenous and inhaled fluticasone furoate in healthy Caucasian and East Asian subjects. Br J Clin Pharmacol. 2014;77(5):808–820. doi:10.1111/bcp.12263.
  • Cazzola M, Calzetta L, Page CP, et al. Use of indacaterol for the treatment of COPD: a pharmacokinetic evaluation. Expert Opin Drug Metab Toxicol. 2014;10(1):129–137. doi:10.1517/17425255.2014.865723.
  • Agarwal S, Chinn L, Zhang L. An overview of transporter information in package inserts of recently approved new molecular entities. Pharm Res. 2013;30(3):899–910. doi:10.1007/s11095-012-0924-0.
  • Novartis. Indacaterol (QAB149) in Chronic Obstructive Pulmonary Disease (NDA 22-383). Briefing Document prepared by Novartis Pharmaceuticals for the Pulmonary-Allergy Drugs Advisory Committee meeting; 2011; Washington (DC).
  • Glube N, Closs E, Langguth P. OCTN2-mediated carnitine uptake in a newly discovered human proximal tubule cell line (Caki-1). Mol Pharm. 2007;4(1):160–168. doi:10.1021/mp060073a.
  • Dresser MJ, Leabman MK, Giacomini KM. Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J Pharm Sci. 2001;90(4):397–421.
  • Okuda M, Urakami Y, Saito H, et al. Molecular mechanisms of organic cation transport in OCT2-expressing Xenopus oocytes. Biochim Biophys Acta. 1999;1417(2):224–231.
  • Masuda S, Ibaramoto K, Takeuchi A, et al. Cloning and functional characterization of a new multispecific organic anion transporter, OAT-K2, in rat kidney. Mol Pharmacol. 1999;55(4):743–752.
  • Maeda T, Takahashi K, Ohtsu N, et al. Identification of influx transporter for the quinolone antibacterial agent levofloxacin. Mol Pharm. 2007;4(1):85–94. doi:10.1021/mp060082j.
  • Akan I, Akan S, Akca H, et al. N-acetylcysteine enhances multidrug resistance-associated protein 1 mediated doxorubicin resistance. Eur J Clin Invest. 2004;34(10):683–689. doi:10.1111/j.1365-2362.2004.01411.x.
  • Department of Health TGAotAG. Australian Public Assessment Report for olodaterol (as hydrochloride) [Internet]. 2014 [cited 2014 March]. Available from: https://www.tga.gov.au/australian-public-assessment-reports-prescription-medicines-auspars. 2014.
  • Ming X, Ju W, Wu H, et al. Transport of dicationic drugs pentamidine and furamidine by human organic cation transporters. Drug Metab Dispos. 2009;37(2):424–430. doi:10.1124/dmd.108.024083.
  • Ito N, Ito K, Ikebuchi Y, et al. Organic cation transporter/solute carrier family 22a is involved in drug transfer into milk in mice. J Pharm Sci. 2014;103(10):3342–3348. doi:10.1002/jps.24138.
  • Bäckström E, Lundqvist A, Boger E, et al. Development of a Novel Lung Slice Methodology for Profiling of Inhaled Compounds. J Pharm Sci 2015;n/a–n/a. doi:10.1002/jps.24575.
  • Banerjee SK, Jagannath C, Hunter RL, et al. Bioavailability of tobramycin after oral delivery in FVB mice using CRL-1605 copolymer, an inhibitor of P-glycoprotein. Life Sci. 2000;67(16):2011–2016.
  • Arya V, Issar M, Wang Y, et al. Brain permeability of inhaled corticosteroids. J Pharm Pharmacol. 2005;57(9):1159–1167. doi:10.1211/jpp.57.9.0010.
  • Research Triangle Park, NC. ANORO ELLIPTA (umeclidinium and vilanterol inhalation powder) for oral inhalation use. Research Triangle Park (NC): Glaxo Smith Kline; 2013.
  • Keppler D, Leier I, Jedlitschky G, et al. ATP-dependent transport of glutathione S-conjugates by the multidrug resistance protein MRP1 and its apical isoform MRP2. Chem Biol Interact. 1998;111–112:153–161.
  • Hagos Y, Stein D, Ugele B, et al. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol. 2007;18(2):430–439. doi:10.1681/ASN.2006040415.
  • Okamura T, Kikuchi T, Okada M, et al. Imaging of activity of multidrug resistance-associated protein 1 in the lungs. Am J Respir Cell Mol Biol. 2013;49(3):335–340. doi:10.1165/rcmb.2012-0275MA.
  • van der Deen M, Marks H, Willemse BW, et al. Diminished expression of multidrug resistance-associated protein 1 (MRP1) in bronchial epithelium of COPD patients. Virchows Archiv Int J Pathol. 2006;449(6):682–688. doi:10.1007/s00428-006-0240-3.
  • van der Deen M, de Vries EG, Visserman H, et al. Cigarette smoke extract affects functional activity of MRP1 in bronchial epithelial cells. J Biochem Mol Toxicol. 2007;21(5):243–251. doi:10.1002/jbt.20187.
  • van der Deen M, Timens W, Timmer-Bosscha H, et al. Reduced inflammatory response in cigarette smoke exposed Mrp1/Mdr1a/1b deficient mice. Respir Res. 2007;8:49. doi:10.1186/1465-9921-8-91.
  • Siedlinski M, Boezen HM, Boer JM, et al. ABCC1 polymorphisms contribute to level and decline of lung function in two population-based cohorts. Pharmacogenet Genomics. 2009;19(9):675–684. doi:10.1097/FPC.0b013e32832f5eff.
  • Budulac SE, Postma DS, Hiemstra PS, et al. Multidrug resistance-associated protein-1 (MRP1) genetic variants, MRP1 protein levels and severity of COPD. Respir Res. 2010;11(1):60. Epub 2010 May 20. doi:10.1186/1465-9921-11-60.
  • Budulac SE, Postma DS, Hiemstra PS, et al. Multidrug resistance-associated protein 1 and lung function decline with or without long-term corticosteroids treatment in COPD. Eur J Pharmacol. 2012;696(1–3):136–142. doi:10.1016/j.ejphar.2012.08.015.
  • Wang DL, Wang CY, Cao Y, et al. Allyl isothiocyanate increases MRP1 function and expression in a human bronchial epithelial cell line. Oxid Med Cell Longev. 2014;547379(10):14.
  • Wang S, Wang S, Wang C, et al. Upregulation of multidrug resistance-associated protein 1 by allyl isothiocyanate in human bronchial epithelial cell: involvement of c-Jun N-terminal kinase signaling pathway. Oxid Med Cell Longev. 2015;2015:8. doi:10.1155/2015/659750.
  • Hediger MA, Clémençon B, Burrier RE, et al. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Aspects Med. 2013;34(2–3):95–107. doi:10.1016/j.mam.2012.12.009.
  • Nigam SK. What do drug transporters really do? Nat Rev Drug Discov. 2015;14(1):29–44. doi:10.1038/nrd4461.
  • Macdonald C, Shao D, Oli A, et al. Characterization of Calu-3 cell monolayers as a model of bronchial epithelial transport: organic cation interaction studies. J Drug Target. 2013;21(1):97–106. doi:10.3109/1061186X.2012.731068.
  • Ingoglia F, Visigalli R, Rotoli BM, et al. Functional activity of L-carnitine transporters in human airway epithelial cells. Biochim Biophys Acta. 2016;1858:210–219.
  • Mamlouk M, Young PM, Bebawy M, et al. Salbutamol sulfate absorption across Calu-3 bronchial epithelia cell monolayer is inhibited in the presence of common anionic NSAIDs. J Asthma. 2013;50(4):334–341. doi:10.3109/02770903.2013.773518.
  • Mukherjee M, Latif ML, Pritchard DI, et al. In-cell Western™ detection of organic cation transporters in bronchial epithelial cell layers cultured at an air–liquid interface on Transwell(®) inserts. J Pharmacol Toxicol Methods. 2013;68(2):184–189. doi:10.1016/j.vascn.2013.05.007.
  • Nakamura T, Nakanishi T, Haruta T, et al. Transport of ipratropium, an anti-chronic obstructive pulmonary disease drug, is mediated by organic cation/carnitine transporters in human bronchial epithelial cells: implications for carrier-mediated pulmonary absorption. Mol Pharm. 2010;7(1):187–195. doi:10.1021/mp900206j.
  • Kummer W, Wiegand S, Akinci S, et al. Role of acetylcholine and muscarinic receptors in serotonin-induced bronchoconstriction in the mouse. J Mol Neurosci. 2006;30(1–2):67–68. doi:10.1385/JMN:30:1:67.
  • Lips KS, Lührmann A, Tschernig T, et al. Down-regulation of the non-neuronal acetylcholine synthesis and release machinery in acute allergic airway inflammation of rat and mouse. Life Sci. 2007;80(24–25):2263–2269. doi:10.1016/j.lfs.2007.01.026.
  • Berg T, Hegelund Myrback T, Olsson M, et al. Gene expression analysis of membrane transporters and drug-metabolizing enzymes in the lung of healthy and COPD subjects. Pharmacol Res Perspect. 2014;2(4):12. doi:10.1002/prp2.75.
  • Tamai I. How should we handle decreased efficacy caused by DDI on transporters for drug absorption and target-tissue distribution, but not associated with toxicity? Drug Metab Pharmacokinet. 2013;28(6):451–452.
  • Nakanishi T, Hasegawa Y, Haruta T, et al. In vivo evidence of organic cation transporter-mediated tracheal accumulation of the anticholinergic agent ipratropium in mice. J Pharm Sci. 2013;102(9):3373–3381. doi:10.1002/jps.23603.
  • Wu X, George RL, Huang W, et al. Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim Biophys Acta. 2000;1466(1–2):315–327.
  • Haghi M, Traini D, Bebawy M, et al. Deposition, diffusion and transport mechanism of dry powder microparticulate salbutamol, at the respiratory epithelia. Mol Pharm. 2012;9(6):1717–1726. doi:10.1021/mp200620m.
  • Søndergaard HB, Brodin B, Nielsen CU. hPEPT1 is responsible for uptake and transport of Gly-Sar in the human bronchial airway epithelial cell-line Calu-3. Pflugers Arch. 2008;456(3):611–622. doi:10.1007/s00424-007-0421-1.
  • Saito H, Okuda M, Terada T, et al. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of beta-lactam antibiotics in the intestine and kidney. J Pharmacol Exp Ther. 1995;275(3):1631–1637.
  • Lu H, Klaassen C. Tissue distribution and thyroid hormone regulation of Pept1 and Pept2 mRNA in rodents. Peptides. 2006;27(4):850–857. doi:10.1016/j.peptides.2005.08.012.
  • Döring F, Walter J, Will J, et al. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J Clin Invest. 1998;101(12):2761–2767. doi:10.1172/JCI1909.
  • Yang XD, Ma JY, Barger MW, et al. Transport and utilization of arginine and arginine-containing peptides by rat alveolar macrophages. Pharm Res. 2002;19(6):825–831.
  • Takano M, Sugimoto N, Ehrhardt C, et al. Functional Expression of PEPT2 in the Human Distal Lung Epithelial Cell Line NCl-H441. Pharm Res. 2015;32:3916–3926. doi:10.1007/s11095-015-1751-x.
  • Groneberg DA, Eynott PR, Döring F, et al. Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung. Thorax. 2002;57(1):55–60.
  • Groneberg DA, Nickolaus M, Springer J, et al. Localization of the Peptide Transporter PEPT2 in the Lung: implications for Pulmonary Oligopeptide Uptake. Am J Pathol. 2001;158(2):707–714. doi:10.1016/S0002-9440(10)64013-8.
  • Takano M, Horiuchi T, Sasaki Y, et al. Expression and function of PEPT2 during transdifferentiation of alveolar epithelial cells. Life Sci. 2013;93(17):630–636. doi:10.1016/j.lfs.2013.08.008.
  • Brahmajothi MV, Sun NZ, Auten RL. S-nitrosothiol transport via PEPT2 mediates biological effects of nitric oxide gas exposure in macrophages. Am J Respir Cell Mol Biol. 2013;48(2):230–239. doi:10.1165/rcmb.2012-0305OC.
  • Kummer W, Lips KS, Pfeil U. The epithelial cholinergic system of the airways. Histochem Cell Biol. 2008;130(2):219–234. doi:10.1007/s00418-008-0455-2.
  • Kummer W, Wiegand S, Akinci S, et al. Role of acetylcholine and polyspecific cation transporters in serotonin-induced bronchoconstriction in the mouse. Respir Res. 2006;7:65. doi:10.1186/1465-9921-7-65.
  • Pochini L, Scalise M, Galluccio M, et al. Regulation by physiological cations of acetylcholine transport mediated by human OCTN1 (SLC22A4). Implications in the non-neuronal cholinergic system. Life Sci. 2012;91(21–22):1013–1016. doi:10.1016/j.lfs.2012.04.027.
  • Aljayyoussi G, Price DF, Kreitmeyr K, et al. Absorption of ipratropium and l-carnitine into the pulmonary circulation of the ex-vivo rat lung is driven by passive processes rather than active uptake by OCT/OCTN transporters. Int J Pharm. 2015;496(2):834–841. doi:10.1016/j.ijpharm.2015.10.036.
  • Horvath G, Mendes ES, Schmid N, et al. Rapid nongenomic actions of inhaled corticosteroids on long-acting β2-agonist transport in the airway. Pulm Pharmacol Ther. 2011;24(6):654–659. doi:10.1016/j.pupt.2011.08.002.
  • Ong HX, Traini D, Salama R, et al. The effects of mannitol on the transport of ciprofloxacin across respiratory epithelia. Mol Pharm. 2013;10(8):2915–2924. doi:10.1021/mp400030n.
  • Meyerhoff A, Albrecht R, Meyer JM, et al. US Food and Drug Administration approval of ciprofloxacin hydrochloride for management of postexposure inhalational anthrax. Clin Infect Dis. 2004;39(3):303–308. doi:10.1086/421491.
  • Gnadt M, Trammer B, Freiwald M, et al. Methacholine delays pulmonary absorption of inhaled β2-agonists due to competition for organic cation/carnitine transporters. Pulm Pharmacol Ther. 2012;25(1):124–134. doi:10.1016/j.pupt.2011.12.009.
  • Grigat S, Fork C, Bach M, et al. The carnitine transporter SLC22A5 is not a general drug transporter, but it efficiently translocates mildronate. Drug Metab Dispos. 2009;37(2):330–337. doi:10.1124/dmd.108.023929.
  • Ingoglia F, Visigalli R, Rotoli BM, et al. Functional characterization of the organic cation transporters (OCTs) in human airway pulmonary epithelial cells. Biochim Biophys Acta. 2015;1848(7):1563–1572.
  • Unwalla HJ, Horvath G, Roth FD, et al. Albuterol modulates its own transepithelial flux via changes in paracellular permeability. Am J Respir Cell Mol Biol. 2012;46(4):551–558. doi:10.1165/rcmb.2011-0220OC.
  • Qingxiang Zeng QG, Haghi M, Rimmer J, et al.. Allergen exposed primary human bronchial epithelial cells have inhibited transport of salbutamol sulphate only when functional organic cation tranporters are present. Eur Respir Soc. 2014;44(58).
  • Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):588–599.
  • Daniel H, Kottra G. The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch. 2004;447(5):610–618. doi:10.1007/s00424-003-1101-4.
  • Smith DE, Clémençon B, Hediger MA. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med. 2013;34(2–3):323–336. doi:10.1016/j.mam.2012.11.003.
  • Fei YJ, Kanai Y, Nussberger S, et al. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature. 1994;368(6471):563–566. doi:10.1038/368563a0.
  • Groneberg DA, Fischer A, Chung KF, et al. Molecular mechanisms of pulmonary peptidomimetic drug and peptide transport. Am J Respir Cell Mol Biol. 2004;30(3):251–260. doi:10.1165/rcmb.2003-0315TR.
  • Swaan PW, Bensman T, Bahadduri PM, et al. Bacterial peptide recognition and immune activation facilitated by human peptide transporter PEPT2. Am J Respir Cell Mol Biol. 2008;39(5):536–542. doi:10.1165/rcmb.2008-0059OC.
  • Valcke Y, Pauwels R, Van der Straeten M. Pharmacokinetics of antibiotics in the lungs. Eur Respir J. 1990;3(6):715–722.
  • Hurley MN, Camara M, Smyth AR. Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Eur Respir J. 2012;40(4):1014–1023. doi:10.1183/09031936.00042012.
  • Pinsonneault J, Nielsen CU, Sadee W. Genetic variants of the human H+/dipeptide transporter PEPT2: analysis of haplotype functions. J Pharmacol Exp Ther. 2004;311(3):1088–1096. doi:10.1124/jpet.104.073098.
  • Bahadduri PM, D’Souza VM, Pinsonneault JK, et al. Functional characterization of the peptide transporter PEPT2 in primary cultures of human upper airway epithelium. Am J Respir Cell Mol Biol. 2005;32(4):319–325. doi:10.1165/rcmb.2004-0322OC.
  • Kottra G, Spanier B, Verri T, et al. Peptide transporter isoforms are discriminated by the fluorophore‐conjugated dipeptides β‐Ala‐ and d‐Ala‐Lys‐N‐7‐amino‐4‐methylcoumarin‐3‐acetic acid. Physiol Rep. 2013;1:e00165. doi:10.1002/phy2.165.
  • Granillo OM, Brahmajothi MV, Li S, et al. Pulmonary alveolar epithelial uptake of S-nitrosothiols is regulated by L-type amino acid transporter. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):L38–43. doi:10.1152/ajplung.00280.2007.
  • Tamai I, Nakanishi T. OATP transporter-mediated drug absorption and interaction. Curr Opin Pharmacol. 2013;13(6):859–863. doi:10.1016/j.coph.2013.09.001.
  • Youngblood GL, Sweet DH. Identification and functional assessment of the novel murine organic anion transporter OAT5 (Slc22a19) expressed in kidney. AJP Ren Physiol. 2004;287(2):F236–F244. doi:10.1152/ajprenal.00012.2004.
  • Seki S, Kobayashi M, Itagaki S, et al. Contribution of organic anion transporting polypeptide OATP2B1 to amiodarone accumulation in lung epithelial cells. Biochim et Biophys Acta (BBA) Biomembr. 2009;1788:911–917. doi:10.1016/j.bbamem.2009.03.003.
  • Fernandes CA, Vanbever R. Preclinical models for pulmonary drug delivery. Expert Opin Drug Deliv. 2009;6(11):1231–1245. doi:10.1517/17425240903241788.
  • Forbes B, Bäckman P, Christopher D, et al. In Vitro Testing for Orally Inhaled Products: Developments in Science-Based Regulatory Approaches. Aaps J. 2015;17(4):837–852. doi:10.1208/s12248-015-9763-3.
  • Nichols JE, Niles JA, Vega SP, et al. Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use. Exp Biol Med. 2014;239(9):1135–1169. doi:10.1177/1535370214536679.
  • Sporty JL, Horálková L, Ehrhardt C. In vitro cell culture models for the assessment of pulmonary drug disposition. Expert Opin Drug Metab Toxicol. 2008;4(4):333–345. doi:10.1517/17425255.4.4.333.
  • Sakagami M. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev. 2006;58(9–10):1030–1060. doi:10.1016/j.addr.2006.07.012.
  • Cryan S-A, Sivadas N, Garcia-Contreras L. In vivo animal models for drug delivery across the lung mucosal barrier. Adv Drug Deliv Rev. 2007;59(11):1133–1151. doi:10.1016/j.addr.2007.08.023.
  • Haghi M, Ong HX, Traini D, et al. Across the pulmonary epithelial barrier: integration of physicochemical properties and human cell models to study pulmonary drug formulations. Pharmacol Ther. 2014;144(3):235–252. doi:10.1016/j.pharmthera.2014.05.003.
  • Alcorn JL, Smith ME, Smith JF, et al. Primary Cell Culture of Human Type II Pneumonocytes: Maintenance of a Differentiated Phenotype and Transfection with Recombinant Adenoviruses. Am J Respir Cell Mol Biol. 1997;17(6):672–682. doi:10.1165/ajrcmb.17.6.2858.
  • de Jong PM, van Sterkenburg MA, Kempenaar JA, et al. Serial culturing of human bronchial epithelial cells derived from biopsies. In Vitro Cell Dev Biol Anim. 1993;29(5):379–387. doi:10.1007/BF02633985.
  • Gruenert DC, Finkbeiner WE, Widdicombe JH. Culture and transformation of human airway epithelial cells. Am J Physiol. 1995;268(3 Pt 1):L347–60.
  • Grainger C, Greenwell L, Lockley D, et al. Culture of Calu-3 Cells at the Air Interface Provides a Representative Model of the Airway Epithelial Barrier. Pharm Res. 2006;23(7):1482–1490. doi:10.1007/s11095-006-0255-0.
  • Tan CD, Selvanathar IA, Baines DL. Cleavage of endogenous gammaENaC and elevated abundance of alphaENaC are associated with increased Na(+) transport in response to apical fluid volume expansion in human H441 airway epithelial cells. Pflugers Arch. 2011;462(3):431–441. doi:10.1007/s00424-011-0982-x.
  • Hochhaus G, Gonzalez-Rothi RJ, Lukyanov A, et al. Assessment of glucocorticoid lung targeting by ex-vivo receptor binding studies in rats. Pharm Res. 1995;12(1):134–137.
  • Boger E, Ewing P, Eriksson UG, et al. A novel in vivo receptor occupancy methodology for the glucocorticoid receptor: toward an improved understanding of lung pharmacokinetic/pharmacodynamic relationships. J Pharmacol Exp Ther. 2015;353(2):279–287. doi:10.1124/jpet.114.221226.
  • Patton JS, Brain JD, Davies LA, et al. The particle has landed–characterizing the fate of inhaled pharmaceuticals. J Aerosol Med Pulm Drug Deliv. 2010;23(Suppl 2):S71–87. doi:10.1089/jamp.2010.0836.
  • Schwagerus E, Sladek S, Buckley ST, et al. Expression and function of the epithelial sodium channel delta-subunit in human respiratory epithelial cells in vitro. Pflugers Arch. 2015;467:2257–2273. doi:10.1007/s00424-015-1693-5.
  • Feurstein T, Zeitlinger M. Microdialysis in lung tissue: monitoring of exogenous and endogenous compounds. Applications of microdialysis in pharmaceutical science. Hoboken (NJ): Wiley; 2011. p. 255–274.
  • Babbey CM, Ryan JC, Gill EM, et al. Quantitative intravital microscopy of hepatic transport. IntraVital. 2012;1(1):44–53. doi:10.4161/intv.21296.
  • Toutain PL, Ferran A, Bousquet-Melou A. Species differences in pharmacokinetics and pharmacodynamics. Handb Exp Pharmacol. 2010;199:19–48.
  • Lee JW, Aminkeng F, Bhavsar AP, et al. The emerging era of pharmacogenomics: current successes, future potential, and challenges. Clin Genet. 2014;86(1):21–28. doi:10.1111/cge.12392.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.