327
Views
40
CrossRef citations to date
0
Altmetric
Reviews

Novel drug delivery systems for inner ear protection and regeneration after hearing loss

, , &
Pages 1059-1076 | Published online: 25 Sep 2008

Bibliography

  • World Health Organization. Primary ear and hearing care training resource. Advanced level. Geneva: World Health Organization; 2006
  • Ylikoski J, Pirvola U, Moshnyakov M, et al. Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hear Res 1993;65(1-2):69-78
  • Stankovic K, Rio C, Xia A, et al. Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear. J Neurosci 2004;24(40):8651-61
  • Terayama Y, Kaneko K, Tanaka K, Kawamoto K. Ultrastructural changes of the nerve elements following disruption of the organ of Corti. II. Nerve elements outside the organ of Corti. Acta Otolaryngol 1979;88(1-2):27-36
  • Spoendlin H. Factors inducing retrograde degeneration of the cochlear nerve. Ann Otol Rhinol Laryngol Suppl 1984;112:76-82
  • Spoendlin H. Retrograde degeneration of the cochlear nerve. Acta Otolaryngol 1975;79(3-4):266-75
  • Ernfors P, Merlio JP, Persson H. Cells Expressing mRNA for Neurotrophins and their Receptors During Embryonic Rat Development. Eur J Neurosci 1992;4(11):1140-58
  • Schecterson LC, Bothwell M. Neurotrophin and neurotrophin receptor mRNA expression in developing inner ear. Hear Res 1994;73(1):92-100
  • Pirvola U, Arumae U, Moshnyakov M, et al. Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation. Hear Res 1994;75(1-2):131-44
  • Farinas I, Jones KR, Tessarollo L, et al. Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J Neurosci 2001;21(16):6170-80
  • Sugawara M, Murtie JC, Stankovic KM, et al. Dynamic patterns of neurotrophin 3 expression in the postnatal mouse inner ear. J Comp Neurol 2007;501(1):30-7
  • Dodson H. Loss and survival of spiral ganglion neurons in the guinea pig after intracochlear perfusion with aminoglycosides. J Neurocytol 1997;26:541-56
  • Hardie NA, Shepherd RK. Sensorineural hearing loss during development: morphological and physiological response of the cochlea and auditory brainstem. Hear Res 1999;128(1-2):147-65
  • Leake PA, Hradek GT. Cochlear pathology of long-term neomycin induced deafness in cats. Hear Res 1988;33(1):11-33
  • Brown JN, Miller JM, Altschuler RA, Nuttall AL. Osmotic pump implant for chronic infusion of drugs into the inner ear. Hear Res 1993;70(2):167-72
  • Staecker H, Kopke R, Malgrange B, et al. NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells. Neuroreport 1996;7(4):889-94
  • Ernfors P, Duan ML, ElShamy WM, Canlon B. Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3. Nat Med 1996;2(4):463-7
  • Miller JM, Chi DH, O'Keefe LJ, et al. Neurotrophins can enhance spiral ganglion cell survival after inner hair cell loss. Int J Dev Neurosci 1997;15:631-43
  • Gillespie LN, Clark GM, Bartlett PF, Marzella PL. BDNF-induced survival of auditory neurons in vivo: Cessation of treatment leads to accelerated loss of survival effects. J Neurosci Res 2003;71(6):785-90
  • Gillespie LN, Clark GM, Marzella PL. Delayed neurotrophin treatment supports auditory neuron survival in deaf guinea pigs. Neuroreport 2004;15(7):1121-5
  • Richardson RT, O'Leary S, Wise A, et al. A single dose of neurotrophin-3 to the cochlea surrounds spiral ganglion neurons and provides trophic support. Hear Res 2005;204(1-2):37-47
  • Wise AK, Richardson R, Hardman J, et al. Resprouting and survival of guinea pig cochlear neurons in response to the administration of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3. J Comp Neurol 2005;487(2):147-65
  • McGuinness SL, Shepherd RK. Exogenous BDNF rescues rat spiral ganglion neurons in vivo. Otol Neurotol 2005;26(5):1064-72
  • Ylikoski J, Pirvola U, Virkkala J, et al. Guinea pig auditory neurons are protected by glial cell line-derived growth factor from degeneration after noise trauma. Hear Res 1998;124(1-2):17-26
  • Glueckert R, Bitsche M, Miller JM, et al. Deafferentation-associated changes in afferent and efferent processes in the guinea pig cochlea and afferent regeneration with chronic intrascalar brain-derived neurotrophic factor and acidic fibroblast growth factor. J Comp Neurol 2008;507(4):1602-21
  • Shinohara T, Bredberg G, Ulfendahl M, et al. Neurotrophic factor intervention restores auditory function in deafened animals. Proc Natl Acad Sci USA 2002;99(3):1657-60
  • Yamagata T, Miller JM, Ulfendahl M, et al. Delayed neurotrophic treatment preserves nerve survival and electrophysiological responsiveness in neomycin-deafened guinea pigs. J Neurosci Res 2004;78(1):75-86
  • Staecker H, Gabaizadeh R, Federoff H, Van De Water TR. Brain-derived neurotrophic factor gene therapy prevents spiral ganglion degeneration after hair cell loss. Otolaryngol Head Neck Surg 1998;119(1):7-13
  • Altschuler RA, Cho Y, Ylikoski J, et al. Rescue and regrowth of sensory nerves following deafferentation by neurotrophic factors. Ann NY Acad Sci 1999;884:305-11
  • Miller JM, Le Prell CG, Prieskorn DM, et al. Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes: effects of brain-derived neurotrophic factor and fibroblast growth factor. J Neurosci Res 2007;85(9):1959-69
  • Kanzaki S, Stover T, Kawamoto K, et al. Glial cell line-derived neurotrophic factor and chronic electrical stimulation prevent VIII cranial nerve degeneration following denervation. J Comp Neurol 2002;454(3):350-60
  • Shepherd RK, Coco A, Epp SB, Crook JM. Chronic depolarization enhances the trophic effects of brain-derived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss. J Comp Neurol 2005;486(2):145-58
  • Shepherd R, Coco A, Epp S. Neurotrophins and electrical stimulation for protection and repair of spiral ganglion neurons following sensorineural hearing loss. Hear Res 2007; In press
  • Kingsbury TJ, Murray PD, Bambrick LL, Krueger BK. Ca(2+)-dependent regulation of TrkB expression in neurons. J Biol Chem 2003;278(42):40744-8
  • Du J, Feng L, Yang F, Lu B. Activity- and Ca(2+)-dependent modulation of surface expression of brain-derived neurotrophic factor receptors in hippocampal neurons. J Cell Biol 2000;150(6):1423-34
  • Coco A, Epp SB, Fallon JB, et al. Does cochlear implantation and electrical stimulation affect residual hair cells and spiral ganglion neurons? Hear Res 2007;225(1-2):60-70
  • Leake PA, Hradek GT, Snyder RL. Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness. J Comp Neurol 1999;412(4):543-62
  • Mitchell A, Miller JM, Finger PA, et al. Effects of chronic high-rate electrical stimulation on the cochlea and eighth nerve in the deafened guinea pig. Hear Res 1997;105(1-2):30-43
  • Parnes LS, Sun AH, Freeman DJ. Corticosteroid pharmacokinetics in the inner ear fluids: an animal study followed by clinical application. Laryngoscope 1999;109(7 Pt 2):1-17
  • Goycoolea MV. Clinical aspects of round window membrane permeability under normal and pathological conditions. Acta Otolaryngol 2001;121(4):437-47
  • Jero J, Tseng CJ, Mhatre AN, Lalwani AK. A surgical approach appropriate for targeted cochlear gene therapy in the mouse. Hear Res 2001;151(1-2):106-14
  • Noushi F, Richardson RT, Hardman J, et al. Delivery of neurotrophin-3 to the cochlea using alginate beads. Otol Neurotol 2005;26(3):528-33
  • Endo T, Nakagawa T, Kita T, et al. Novel strategy for treatment of inner ears using a biodegradable gel. Laryngoscope 2005;115(11):2016-20
  • Suzuki M, Yamasoba T, Suzukawa K, Kaga K. Adenoviral vector gene delivery via the round window membrane in guinea pigs. Neuroreport 2003;14(15):1951-5
  • James DP, Eastwood H, Richardson RT, O'Leary SJ. Effects of round window dexamethasone on residual hearing in a Guinea pig model of cochlear implantation. Audiol Neurootol 2008;13(2):86-96
  • Richardson RT, Noushi F, O'Leary S. Inner ear therapy for neural preservation. Audiol Neurootol 2006;11(6):343-56
  • James CJ, Fraysse B, Deguine O, et al. Combined electroacoustic stimulation in conventional candidates for cochlear implantation. Audiol Neurootol 2006;11(Suppl 1):57-62
  • Gantz BJ, Turner C, Gfeller KE. Acoustic plus electric speech processing: preliminary results of a multicenter clinical trial of the Iowa/Nucleus Hybrid implant. Audiol Neurootol 2006;11(Suppl 1):63-8
  • Gstoettner W, Kiefer J, Baumgartner WD, et al. Hearing preservation in cochlear implantation for electric acoustic stimulation. Acta Otolaryngol 2004;124(4):348-52
  • Kiefer J, Pok M, Adunka O, et al. Combined electric and acoustic stimulation of the auditory system: results of a clinical study. Audiol Neurootol 2005;10(3):134-44
  • Fraysse B, Macias AR, Sterkers O, et al. Residual hearing conservation and electroacoustic stimulation with the nucleus 24 contour advance cochlear implant. Otol Neurotol 2006;27(5):624-33
  • Balkany TJ, Connell SS, Hodges AV, et al. Conservation of residual acoustic hearing after cochlear implantation. Otol Neurotol 2006;27(8):1083-8
  • Lehnhardt E. Intracochlear placement of cochlear implant electrodes in soft surgery technique. Hno 1993;41(7):356-9
  • Ye Q, Tillein J, Hartmann R, et al. Application of a corticosteroid (Triamcinolon) protects inner ear function after surgical intervention. Ear Hear 2007;28(3):361-9
  • Eshraghi AA, Adil E, He J, et al. Local dexamethasone therapy conserves hearing in an animal model of electrode insertion trauma-induced hearing loss. Otol Neurotol 2007;28(6):842-9
  • Paasche G, Bockel F, Tasche C, et al. Changes of postoperative impedances in cochlear implant patients: the short-term effects of modified electrode surfaces and intracochlear corticosteroids. Otol Neurotol 2006;27(5):639-47
  • De Ceulaer G, Johnson S, Yperman M, et al. Long-term evaluation of the effect of intracochlear steroid deposition on electrode impedance in cochlear implant patients. Otol Neurotol 2003;24(5):769-74
  • Kopke RD, Hoffer ME, Wester D, et al. Targeted topical steroid therapy in sudden sensorineural hearing loss. Otol Neurotol 2001;22(4):475-9
  • Plontke S, Lowenheim H, Preyer S, et al. Outcomes research analysis of continuous intratympanic glucocorticoid delivery in patients with acute severe to profound hearing loss: basis for planning randomized controlled trials. Acta Otolaryngol 2005;125(8):830-9
  • Plontke SK, Zimmermann R, Zenner HP, Lowenheim H. Technical note on microcatheter implantation for local inner ear drug delivery: surgical technique and safety aspects. Otol Neurotol 2006;27(7):912-7
  • Silverstein H. Use of a new device, the MicroWick, to deliver medication to the inner ear. Ear Nose Throat J 1999;78(8):595-8, 600
  • Van Wijck F, Staecker H, Lefebvre PP. Topical steroid therapy using the Silverstein Microwick in sudden sensorineural hearing loss after failure of conventional treatment. Acta Otolaryngol 2007;127(10):1012-7
  • Herr BD, Marzo SJ. Intratympanic steroid perfusion for refractory sudden sensorineural hearing loss. Otolaryngol Head Neck Surg 2005;132(4):527-31
  • Plontke SK, Biegner T, Kammerer B, et al. Dexamethasone concentration gradients along scala tympani after application to the round window membrane. Otol Neurotol 2008;29(3):401-6
  • Salt AN, Ma Y. Quantification of solute entry into cochlear perilymph through the round window membrane. Hear Res 2001;154(1-2):88-97
  • Hahn H, Kammerer B, DiMauro A, et al. Cochlear microdialysis for quantification of dexamethasone and fluorescein entry into scala tympani during round window administration. Hear Res 2006;212(1-2):236-44
  • Goycoolea M, Lundman L. Round window membrane. Structure function and permeability: a review. Microsc Res Tech 1997;36:201-11
  • Taylor SJ, McDonald JW, Sakiyama Elbert SE. Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury. J Control Release 2004;98(2):281-94
  • Wallace G, Spinks G, Kane Maguire LAP, Teasdale PR. Conductive electroactive polymers: intelligent materials systems. 2nd edition: CRC Press; 2003
  • Rejali D, Lee VA, Abrashkin KA, et al. Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons. Hear Res 2007;228(1-2):180-7
  • Wallace GG, Innis PC. Inherently conducting polymer nanostructures. J Nanosci Nanotechnol 2002;2(5):441-51
  • Thompson BC, Moulton SE, Ding J, et al. Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole. J Control Release 2006;116(3):285-94
  • Richardson RT, Thompson B, Moulton S, et al. The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth from auditory neurons. Biomaterials 2007;28(3):513-23
  • Wadhwa R, Lagenaur CF, Cui XT. Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release 2006;110(3):531-41
  • MacInnis BL, Campenot RB. Retrograde support of neuronal survival without retrograde transport of nerve growth factor. Science 2002;295(5559):1536-9
  • Gomez N, Schmidt CE. Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension. J Biomed Mater Res A 2007;81(1):135-49
  • Staecker H, Li D, O'Malley BW JR, Van De Water TR. Gene expression in the mammalian cochlea: a study of multiple vector systems. Acta Otolaryngol 2001;121(2):157-63
  • Li Duan M, Bordet T, Mezzina M, et al. Adenoviral and adeno-associated viral vector mediated gene transfer in the guinea pig cochlea. Neuroreport 2002;13(10):1295-9
  • Luebke AE, Foster PK, Muller CD, Peel AL. Cochlear function and transgene expression in the guinea pig cochlea, using adenovirus- and adeno-associated virus-directed gene transfer. Hum Gene Ther 2001;12(7):773-81
  • Raphael Y, Frisancho JC, Roessler BJ. Adenoviral-mediated gene transfer into guinea pig cochlear cells in vivo. Neurosci Lett 1996;207(2):137-41
  • Weiss MA, Frisancho JC, Roessler BJ, Raphael Y. Viral-mediated gene transfer in the cochlea. Int J Dev Neurosci 1997;15(4-5):577-83
  • Lalwani AK, Walsh BJ, Reilly PG, et al. Development of in vivo gene therapy for hearing disorders: introduction of adeno-associated virus into the cochlea of the guinea pig. Gene Ther 1996;3(7):588-92
  • Lalwani AK, Han JJ, Walsh BJ, et al. Green fluorescent protein as a reporter for gene transfer studies in the cochlea. Hear Res 1997;114(1-2):139-47
  • Derby ML, Sena Esteves M, Breakefield XO, Corey DP. Gene transfer into the mammalian inner ear using HSV-1 and vaccinia virus vectors. Hear Res 1999;134(1-2):1-8
  • Bowers WJ, Chen X, Guo H, et al. Neurotrophin-3 transduction attenuates cisplatin spiral ganglion neuron ototoxicity in the cochlea. Mol Ther 2002;6(1):12-8
  • Praetorius M, Knipper M, Schick B, et al. A novel vestibular approach for gene transfer into the inner ear. Audiol Neurootol 2002;7(6):324-34
  • Ishimoto S, Kawamoto K, Kanzaki S, Raphael Y. Gene transfer into supporting cells of the organ of Corti. Hear Res 2002;173(1-2):187-97
  • Ishimoto S, Kawamoto K, Stover T, et al. A glucocorticoid reduces adverse effects of adenovirus vectors in the cochlea. Audiol Neurootol 2003;8(2):70-9
  • Luebke AE, Steiger JD, Hodges BL, Amalfitano A. A modified adenovirus can transfect cochlear hair cells in vivo without compromising cochlear function. Gene Ther 2001;8(10):789-94
  • Wareing M, Mhatre AN, Pettis R, et al. Cationic liposome mediated transgene expression in the guinea pig cochlea. Hear Res 1999;128(1-2):61-9
  • Stover T, Yagi M, Raphael Y. Transduction of the contralateral ear after adenovirus-mediated cochlear gene transfer. Gene Ther 2000;7(5):377-83
  • Lalwani AK, Walsh BJ, Carvalho GJ, et al. Expression of adeno-associated virus integrated transgene within the mammalian vestibular organs. Am J Otol 1998;19(3):390-5
  • Kho ST, Pettis RM, Mhatre AN, Lalwani AK. Safety of adeno-associated virus as cochlear gene transfer vector: analysis of distant spread beyond injected cochleae. Mol Ther 2000;2(4):368-73
  • Shoji F, Yamasoba T, Magal E, et al. Glial cell line-derived neurotrophic factor has a dose dependent influence on noise-induced hearing loss in the guinea pig cochlea. Hear Res 2000;142(1-2):41-55
  • Tateya I, Nakagawa T, Iguchi F, et al. Fate of neural stem cells grafted into injured inner ears of mice. Neuroreport 2003;14(13):1677-81
  • Lalwani A, Walsh B, Reilly P, et al. Long-term in vivo cochlear transgene expression mediated by recombinant adeno-associated virus. Gene Ther 1998;5(2):277-81
  • Stover T, Yagi M, Raphael Y. Cochlear gene transfer: round window versus cochleostomy inoculation. Hear Res 1999;136(1-2):124-30
  • Kawamoto K, Ishimoto S, Minoda R, et al. Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 2003;23(11):4395-400
  • Wenzel GI, Xia A, Funk E, et al. Helper-dependent adenovirus-mediated gene transfer into the adult mouse cochlea. Otol Neurotol 2007;28(8):1100-8
  • Yamasoba T, Yagi M, Roessler BJ, et al. Inner ear transgene expression after adenoviral vector inoculation in the endolymphatic sac. Hum Gene Ther 1999;10(5):769-74
  • Kawamoto K, Oh SH, Kanzaki S, et al. The functional and structural outcome of inner ear gene transfer via the vestibular and cochlear fluids in mice. Mol Ther 2001;4(6):575-85
  • Summerford C, Samulski RJ. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998;72(2):1438-45
  • Summerford C, Bartlett JS, Samulski RJ. AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 1999;5(1):78-82
  • Qing K, Mah C, Hansen J, et al. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 1999;5(1):71-7
  • Liu Y, Okada T, Sheykholeslami K, et al. Specific and efficient transduction of Cochlear inner hair cells with recombinant adeno-associated virus type 3 vector. Mol Ther 2005;12(4):725-33
  • Boeda B, Weil D, Petit C. A specific promoter of the sensory cells of the inner ear defined by transgenesis. Hum Mol Genet 2001;10(15):1581-9
  • Liu Y, Okada T, Nomoto T, et al. Promoter effects of adeno-associated viral vector for transgene expression in the cochlea in vivo. Exp Mol Med 2007;39(2):170-5
  • Stone IM, Lurie DI, Kelley MW, Poulsen DJ. Adeno-associated virus-mediated gene transfer to hair cells and support cells of the murine cochlea. Mol Ther 2005;11(6):843-8
  • Lalwani AK, Han JJ, Castelein CM, et al. In vitro and in vivo assessment of the ability of adeno-associated virus-brain-derived neurotrophic factor to enhance spiral ganglion cell survival following ototoxic insult. Laryngoscope 2002;112(8 Pt 1):1325-34
  • Nakaizumi T, Kawamoto K, Minoda R, Raphael Y. Adenovirus-mediated expression of brain-derived neurotrophic factor protects spiral ganglion neurons from ototoxic damage. Audiol Neurootol 2004;9(3):135-43
  • Suzuki M, Yagi M, Brown JN, et al. Effect of transgenic GDNF expression on gentamicin-induced cochlear and vestibular toxicity. Gene Ther 2000;7(12):1046-54
  • Kawamoto K, Yagi M, Stover T, et al. Hearing and hair cells are protected by adenoviral gene therapy with TGF-beta1 and GDNF. Mol Ther 2003;7(4):484-92
  • Liu Y, Okada T, Shimazaki K, et al. Protection against aminoglycoside-induced ototoxicity by regulated AAV vector-mediated GDNF gene transfer into the cochlea. Mol Ther 2008;16(3):474-80
  • Bermingham N, Hassan B, Price S, et al. Math 1: an essential gene for the generation of inner ear hair cells. Science 1999;284:1837-41
  • Zheng JL, Gao WQ. Overexpression of math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci 2000;3(6):580-6
  • Gubbels SP, Woessner DW, Mitchell JC, et al. Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 2008 [Epub ahead of print]
  • Izumikawa M, Minoda R, Kawamoto K, et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 2005;11(3):271-6
  • Staecker H, Praetorius M, Baker K, Brough DE. Vestibular hair cell regeneration and restoration of balance function induced by math1 gene transfer. Otol Neurotol 2007;28(2):223-31
  • Terayama Y, Kaneko Y, Kawamoto K, Sakai N. Ultrastructural changes of the nerve elements following disruption of the organ of corti. I. Nerve elements in the organ of Corti. Acta Otolaryngol 1977;83:291-302
  • Suzuka Y, Schuknecht HF. Retrograde cochlear neuronal degeneration in human subjects. Acta Otolaryngol Suppl 1988;450:1-20
  • Faddis BT, Hughes RM, Miller JD. Quantitative measures reflect degeneration, but not regeneration, in the deafness mouse organ of Corti. Hear Res 1998;115(1-2):6-12
  • Izumikawa M, Batts SA, Miyazawa T, et al. Response of the flat cochlear epithelium to forced expression of Atoh1. Hear Res 2008;240:52-6
  • Hildebrand MS, Dahl HH, Hardman J, et al. Survival of partially differentiated mouse embryonic stem cells in the scala media of the guinea pig cochlea. J Assoc Res Otolaryngol 2005;6(4):341-54
  • Ito J, Kojima K, Kawaguchi S. Survival of neural stem cells in the cochlea. Acta Otolaryngol 2001;121(2):140-2
  • Naito Y, Nakamura T, Nakagawa T, et al. Transplantation of bone marrow stromal cells into the cochlea of chinchillas. Neuroreport 2004;15(1):1-4
  • Sakamoto T, Nakagawa T, Endo T, et al. Fates of mouse embryonic stem cells transplanted into the inner ears of adult mice and embryonic chickens. Acta Otolaryngol Suppl 2004;551:48-52
  • Hu Z, Wei D, Johansson CB, et al. Survival and neural differentiation of adult neural stem cells transplanted into the mature inner ear. Exp Cell Res 2005;302(1):40-7
  • Hu Z, Ulfendahl M, Olivius NP. Survival of neuronal tissue following xenograft implantation into the adult rat inner ear. Exp Neurol 2004;185(1):7-14
  • Coleman B, De Silva MG, Shepherd RK. Concise review: the potential of stem cells for auditory neuron generation and replacement. Stem Cells 2007;25(11):2685-94
  • Martinez Monedero R, Edge AS. Stem cells for the replacement of inner ear neurons and hair cells. Int J Dev Biol 2007;51(6-7):655-61
  • Hildebrand MS, Newton SS, Gubbels SP, et al. Advances in molecular and cellular therapies for hearing loss. Mol Ther 2008;16(2):224-36
  • Pettingill LN, Minter RL, Shepherd RK. Schwann cells genetically modified to express neurotrophins promote spiral ganglion neuron survival in vitro. Neuroscience 2008;152(3):821-8
  • Mosahebi A, Fuller P, Wiberg M, Terenghi G. Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration. Exp Neurol 2002;173(2):213-23
  • Dove A. Cell-based therapies go live. Nat Biotechnol 2002;20(4):339-43
  • Pedersen EB, Widner H. Xenotransplantation. Prog Brain Res 2000;127:157-88
  • Reynolds ML, Woolf CJ. Reciprocal Schwann cell-axon interactions. Curr Opin Neurobiol 1993;3(5):683-93
  • Frostick SP, Yin Q, Kemp GJ. Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 1998;18(7):397-405
  • Terenghi G. Peripheral nerve regeneration and neurotrophic factors. J Anat 1999;194(Pt 1):1-14
  • Fornaro M, Tos P, Geuna S, et al. Confocal imaging of Schwann-cell migration along muscle-vein combined grafts used to bridge nerve defects in the rat. Microsurgery 2001;21(4):153-5
  • Guenard V, Kleitman N, Morrissey TK, et al. Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J Neurosci 1992;12(9):3310-20
  • Levi AD, Bunge RP. Studies of myelin formation after transplantation of human Schwann cells into the severe combined immunodeficient mouse. Exp Neurol 1994;130(1):41-52
  • Levi AD, Guenard V, Aebischer P, Bunge RP. The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve. J Neurosci 1994;14(3 Pt 1):1309-19
  • Ogden MA, Feng FY, Myckatyn TM, et al. Safe injection of cultured Schwann cells into peripheral nerve allografts. Microsurgery 2000;20(7):314-23
  • Xu XM, Guenard V, Kleitman N, Bunge MB. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J Comp Neurol 1995;351(1):145-60
  • Xu XM, Guenard V, Kleitman N, et al. A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol 1995;134(2):261-72
  • Menei P, Montero Menei C, Whittemore SR, et al. Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. Eur J Neurosci 1998;10(2):607-21
  • Xu XM, Chen A, Guenard V, et al. Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J Neurocytol 1997;26(1):1-16
  • Xu XM, Zhang SX, Li H, et al. Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur J Neurosci 1999;11(5):1723-40
  • Pinzon A, Calancie B, Oudega M, Noga BR. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord. J Neurosci Res 2001;64(5):533-41
  • Imaizumi T, Lankford KL, Kocsis JD, et al. Characteristic improvement of the function following Schwann cell transplantation for demyelinated spinal cord. No Shinkei Geka 2000;28(8):705-11
  • Takami T, Oudega M, Bates ML, et al. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci 2002;22(15):6670-81
  • Whitlon DS, Ketels KV, Coulson MT, et al. Survival and morphology of auditory neurons in dissociated cultures of newborn mouse spiral ganglion. Neuroscience 2006;138(2):653-62
  • Hansen MR, Vijapurkar U, Koland JG, Green SH. Reciprocal signaling between spiral ganglion neurons and Schwann cells involves neuregulin and neurotrophins. Hear Res 2001;161(1-2):87-98
  • Coleman B, Hardman J, Coco A, et al. Fate of embryonic stem cells transplanted into the deafened mammalian cochlea. Cell Transplant 2006;15(5):369-80
  • Sweet IR, Yanay O, Waldron L, et al. Treatment of diabetic rats with encapsulated islets. J Cell Mol Med 2008 Mar 28 [Epub ahead of print]
  • Elliott RB, Escobar L, Tan PL, et al. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 2007;14(2):157-61
  • Li H, Roblin G, Liu H, Heller S. Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc Natl Acad Sci USA 2003;100(23):13495-500
  • Jeon SJ, Oshima K, Heller S, Edge AS. Bone marrow mesenchymal stem cells are progenitors in vitro for inner ear hair cells. Mol Cell Neurosci 2007;34(1):59-68
  • Coleman B, Fallon JB, Pettingill LN, et al. Auditory hair cell explant co-cultures promote the differentiation of stem cells into bipolar neurons. Exp Cell Res 2007;313(2):232-43
  • Shi F, Corrales CE, Liberman MC, Edge AS. BMP4 induction of sensory neurons from human embryonic stem cells and reinnervation of sensory epithelium. Eur J Neurosci 2007;26(11):3016-23
  • Corrales CE, Pan L, Li H, et al. Engraftment and differentiation of embryonic stem cell-derived neural progenitor cells in the cochlear nerve trunk: growth of processes into the organ of Corti. J Neurobiol 2006;66(13):1489-500
  • Parker MA, Corliss DA, Gray B, et al. Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells. Hear Res 2007;232(1-2):29-43
  • Matsumoto M, Nakagawa T, Kojima K, et al. Potential of embryonic stem cell-derived neurons for synapse formation with auditory hair cells. J Neurosci Res 2008; In press
  • Bulic Jakus F, Ulamec M, Vlahovic M, et al. Of mice and men: teratomas and teratocarcinomas. Coll Antropol 2006;30(4):921-4
  • Khan AM, Handzel O, Burgess BJ, et al. Is word recognition correlated with the number of surviving spiral ganglion cells and electrode insertion depth in human subjects with cochlear implants? Laryngoscope 2005;115(4):672-7
  • Fayad JN, Linthicum FH JR. Multichannel cochlear implants: relation of histopathology to performance. Laryngoscope 2006;116(8):1310-20
  • Kaplitt MG, Feigin A, Tang C, et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, Phase I trial. Lancet 2007;369(9579):2097-105

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.