164
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Genetic variation in androgen disposition: implications in clinical medicine including testosterone abuse

, PhD, , MD PhD & , PhD
Pages 731-744 | Published online: 15 May 2009

Bibliography

  • Wilson JD, Griffin JE. The use and misuse of androgens. Metabolism 1980;29(12):1278-95
  • Janne OA, Palvimo JJ, Kallio P, Mehto M. Androgen receptor and mechanism of androgen action. Ann Med 1993;25(1):83-9
  • Zitzmann M, Nieschlag E. Androgen receptor gene CAG repeat length and body mass index modulate the safety of long-term intramuscular testosterone undecanoate therapy in hypogonadal men. J Clin Endocrinol Metab 2007;92(10):3844-53
  • Kelleher S, Conway AJ, Handelsman DJ. Blood testosterone threshold for androgen deficiency symptoms. J Clin Endocrinol Metab 2004;89(8):3813-7
  • Zitzmann M. Effects of testosterone replacement and its pharmacogenetics on physical performance and metabolism. Asian J Androl 2008;10(3):364-72
  • Lunenfeld B, Nieschlag E. Testosterone therapy in the aging male. Aging Male 2007;10(3):139-53
  • Saad F, Kamischke A, Yassin A, et al. More than eight years' hands-on experience with the novel long-acting parenteral testosterone undecanoate. Asian J Androl 2007;9(3):291-7
  • Marks LS, Mazer NA, Mostaghel E, et al. Effect of testosterone replacement therapy on prostate tissue in men with late-onset hypogonadism: a randomized controlled trial. JAMA 2006;296(19):2351-61
  • Coward RM, Simhan J, Carson III. Prostate-specific antigen changes and prostate cancer in hypogonadal men treated with testosterone replacement therapy. BJU Int 2008 [Epub ahead of print]
  • Bhasin S, Cunningham GR, Hayes FJ, et al. Testosterone therapy in adult men with androgen deficiency syndromes: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2006;91(6):1995-2010
  • Nieschlag E. Testosterone treatment comes of age: new options for hypogonadal men. Clin Endocrinol (Oxf) 2006;65(3):275-81
  • Gooren LJ. Advances in testosterone replacement therapy. Front Horm Res 2009;37:32-51
  • Sjoqvist F, Garle M, Rane A. Use of doping agents, particularly anabolic steroids, in sports and society. Lancet 2008;371(9627):1872-82
  • Barroso O, Mazzoni I, Rabin O. Hormone abuse in sports: the antidoping perspective. Asian J Androl 2008;10(3):391-402
  • Handelsman DJ, Heather A. Androgen abuse in sports. Asian J Androl 2008;10(3):403-15
  • Brown-Sequard C. Note on the effects produced on man by subcutaneous injections of a liquid obtained from the testis of animals. Lancet 1889;134(3438):105-7
  • Wade NA. Anabolic steroids: doctors denounce them, but athletes aren't listening. Science 1972;176:1399
  • Saudan C, Baume N, Robinson N, et al. Testosterone and doping control. Br J Sports Med 2006;40(Suppl 1):i21-4
  • Available from: http://www.wada-ama.org/en/
  • Evans NA. Gym and tonic: a profile of 100 male steroid users. Br J Sports Med 1997;31(1):54-8
  • Schulze JJ. Genetics of androgen disposition – implications for doping tests. Stockholm: Karolinska Institutet; 2007
  • Handelsman DJ. Testosterone: use, misuse and abuse. Med J Aust 2006;185(8):436-9
  • Rogerson S, Weatherby RP, Deakin GB, et al. The effect of short-term use of testosterone enanthate on muscular strength and power in healthy young men. J Strength Cond Res 2007;21(2):354-61
  • Eriksson A, Kadi F, Malm C, Thornell LE. Skeletal muscle morphology in power-lifters with and without anabolic steroids. Histochem Cell Biol 2005;124(2):167-75
  • Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med 2004;34(8):513-54
  • Bhasin S, Woodhouse L, Storer TW. Proof of the effect of testosterone on skeletal muscle. J Endocrinol 2001;170(1):27-38
  • Donike M, Adamietz B, Opfermann G, et al. Die normbereiche für testosteron- und epitestosterone urinspiegel sowie des testosteron-/epitestosteron-quotienten. In: Franz IWHM, Noack W, editors, Training und Sport zur Prävention und Rehabilitation in der technisierten Umwelt. Berlin: Springer Verlag 1985. p. 503-7
  • Donike M, Rauth S, Wolansky A. Reference ranges of urinary endogenous steroids determined by gas chromatography/mass spectrometry. In: Donike M, Geyer H, Gotzmann A, Mareck-Engelke U, Rauth S, editors, Proceedings of the 10th Cologne Workshop on Dope Analysis. Cologne: Sport und Buch Strauß 1993. p. 69-86
  • Ayotte C, Goudreault D, Charlebois A. Testing for natural and synthetic anabolic agents in human urine. J Chromatogr B Biomed Appl 1996;687(1):3-25
  • Catlin DH, Hatton CK. Use and abuse of anabolic and other drugs for athletic enhancement. Adv Intern Med 1991;36:399-424
  • Park J, Park S, Lho D, et al. Drug testing at the 10th Asian Games and 24th Seoul Olympic Games. J Anal Toxicol 1990;14(2):66-72
  • Riebe D, Fernhall B, Thompson PD. The blood pressure response to exercise in anabolic steroid users. Med Sci Sports Exerc 1992;24(6):633-7
  • Pope HG Jr, Katz DL. Psychiatric and medical effects of anabolic-androgenic steroid use. A controlled study of 160 athletes. Arch Gen Psychiatry 1994;51(5):375-82
  • Dickerman RD, Schaller F, Zachariah NY, McConathy WJ. Left ventricular size and function in elite bodybuilders using anabolic steroids. Clin J Sport Med 1997;7(2):90-3
  • Hall RC, Hall RC. Abuse of supraphysiologic doses of anabolic steroids. South Med J 2005;98(5):550-5
  • Winkler UH. Effects of androgens on haemostasis. Maturitas 1996;24(3):147-55
  • Coviello AD, Kaplan B, Lakshman KM, et al. Effects of graded doses of testosterone on erythropoiesis in healthy young and older men. J Clin Endocrinol Metab 2008;93(3):914-9
  • Neild D. Gynaecomastia in bodybuilders. Br J Clin Pract 1995;49(4):172
  • Torres-Calleja J, Gonzalez-Unzaga M, DeCelis-Carrillo R, et al. Effect of androgenic anabolic steroids on sperm quality and serum hormone levels in adult male bodybuilders. Life Sci 2001;68(15):1769-74
  • Martikainen H, Alen M, Rahkila P, Vihko R. Testicular responsiveness to human chorionic gonadotrophin during transient hypogonadotrophic hypogonadism induced by androgenic/anabolic steroids in power athletes. J Steroid Biochem 1986;25(1):109-12
  • Conacher GN, Workman DG. Violent crime possibly associated with anabolic steroid use. Am J Psychiatry 1989;146(5):679
  • Pope HG Jr, Katz DL. Homicide and near-homicide by anabolic steroid users. J Clin Psychiatry 1990;51(1):28-31
  • Stanley A, Ward M. Anabolic steroids–the drugs that give and take away manhood. A case with an unusual physical sign. Med Sci Law 1994;34(1):82-3
  • Choi PY, Pope HG Jr. Violence toward women and illicit androgenic-anabolic steroid use. Ann Clin Psychiatry 1994;6(1):21-5
  • Pope HG Jr, Kouri EM, Powell KF, et al. Anabolic-androgenic steroid use among 133 prisoners. Compr Psychiatry 1996;37(5):322-7
  • Tricker R, Casaburi R, Storer TW, et al. The effects of supraphysiological doses of testosterone on angry behavior in healthy eugonadal men–a clinical research center study. J Clin Endocrinol Metab 1996;81(10):3754-8
  • Yates WR, Perry PJ, MacIndoe J, et al. Psychosexual effects of three doses of testosterone cycling in normal men. Biol psychiatry 1999;45(3):254-60
  • Pope HG Jr, Kouri EM, Hudson JI. Effects of supraphysiologic doses of testosterone on mood and aggression in normal men: a randomized controlled trial. Arch Gen Psychiatry 2000;57(2):133-40; discussion 55-6
  • Relling MV, Hoffman JM. Should pharmacogenomic studies be required for new drug approval? Clin Pharmacol Ther 2007;81(3):425-8
  • Wadelius M, Andersson AO, Johansson JE, et al. Prostate cancer associated with CYP17 genotype. Pharmacogenetics 1999;9(5):635-9
  • Fisher MB, Paine MF, Strelevitz TJ, Wrighton SA. The role of hepatic and extrahepatic UDP-glucuronosyltransferases in human drug metabolism. Drug Metab Rev 2001;33(3-4):273-97
  • Meikle AW, Stringham JD, Bishop DT, West DW. Quantitating genetic and nongenetic factors influencing androgen production and clearance rates in men. J Clin Endocrinol Metab 1988;67(1):104-9
  • Claessens F, Verrijdt G, Haelens A, et al. Molecular biology of the androgen responses. Andrologia 2005;37(6):209-10
  • Lindzey J, Kumar MV, Grossman M, et al. Molecular mechanisms of androgen action. Vitam Horm 1994;49:383-432
  • Available from: http://www.mcgill.ca/androgendb/
  • Rajender S, Singh L, Thangaraj K. Phenotypic heterogeneity of mutations in androgen receptor gene. Asian J Androl 2007;9(2):147-79
  • Bamman MM, Shipp JR, Jiang J, et al. Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. Am J Physiol Endocrinol Metab 2001;280(3):E383-90
  • Walsh S, Zmuda JM, Cauley JA, et al. Androgen receptor CAG repeat polymorphism is associated with fat-free mass in men. J Appl Physiol 2005;98(1):132-7
  • Sawaya ME, Shalita AR. Androgen receptor polymorphisms (CAG repeat lengths) in androgenetic alopecia, hirsutism, and acne. J Cutan Med Surg 1998;3(1):9-15
  • Siiteri PK, Murai JT, Hammond GL, et al. The serum transport of steroid hormones. Recent Prog Horm Res 1982;38:457-510
  • Meikle AW, Stephenson RA, Lewis CM, et al. Age, genetic, and nongenetic factors influencing variation in serum sex steroids and zonal volumes of the prostate and benign prostatic hyperplasia in twins. Prostate 1997;33(2):105-11
  • Ring HZ, Lessov CN, Reed T, et al. Heritability of plasma sex hormones and hormone binding globulin in adult male twins. J Clin Endocrinol Metab 2005;90(6):3653-8
  • Ferk P, Teran N, Gersak K. The (TAAAA)n microsatellite polymorphism in the SHBG gene influences serum SHBG levels in women with polycystic ovary syndrome. Hum Reprod 2007;22(4):1031-6
  • Haiman CA, Riley SE, Freedman ML, et al. Common genetic variation in the sex steroid hormone-binding globulin (SHBG) gene and circulating shbg levels among postmenopausal women: the Multiethnic Cohort. J Clin Endocrinol Metab 2005;90(4):2198-204
  • Dunning AM, Dowsett M, Healey CS, et al. Polymorphisms associated with circulating sex hormone levels in postmenopausal women. J Natl Cancer Inst 2004;96(12):936-45
  • Low YL, Taylor JI, Grace PB, et al. Polymorphisms in the CYP19 gene may affect the positive correlations between serum and urine phytoestrogen metabolites and plasma androgen concentrations in men. J Nutr 2005;135(11):2680-6
  • Eriksson AL, Lorentzon M, Mellstrom D, et al. SHBG gene promoter polymorphisms in men are associated with serum sex hormone-binding globulin, androgen and androgen metabolite levels, and hip bone mineral density. J Clin Endocrinol Metab 2006;91(12):5029-37
  • Auchus RJ, Lee TC, Miller WL. Cytochrome b5 augments the 17,20-lyase activity of human P450c17 without direct electron transfer. J Biol Chem 1998;273(6):3158-65
  • Weusten JJ, Legemaat G, van der Wouw MP, et al. The mechanism of the synthesis of 16-androstenes in human testicular homogenates. J Steroid Biochem 1989;32(5):689-94
  • Carey AH, Waterworth D, Patel K, et al. Polycystic ovaries and premature male pattern baldness are associated with one allele of the steroid metabolism gene CYP17. Hum Mol Genet 1994;3(10):1873-6
  • Lin CJ, Martens JW, Miller WL. NF-1C, Sp1, and Sp3 are essential for transcription of the human gene for P450c17 (steroid 17alpha-hydroxylase/17,20 lyase) in human adrenal NCI-H295A cells. Mol Endocrinol 2001;15(8):1277-93
  • Allen NE, Forrest MS, Key TJ. The association between polymorphisms in the CYP17 and 5alpha-reductase (SRD5A2) genes and serum androgen concentrations in men. Cancer Epidemiol Biomarkers Prev 2001;10(3):185-9
  • Haiman CA, Stampfer MJ, Giovannucci E, et al. The relationship between a polymorphism in CYP17 with plasma hormone levels and prostate cancer. Cancer Epidemiol Biomarkers Prev 2001;10(7):743-8
  • Zmuda JM, Cauley JA, Kuller LH, Ferrell RE. A common promotor variant in the cytochrome P450c17alpha (CYP17) gene is associated with bioavailability testosterone levels and bone size in men. J Bone Miner Res 2001;16(5):911-7
  • Schulze JJ, Lorentzon M, Ohlsson C, et al. Genetic aspects of epitestosterone formation and androgen disposition: influence of polymorphisms in CYP17 and UGT2B enzymes. Pharmacogenet Genomics 2008;18(6):477-85
  • Simard J, Ricketts ML, Gingras S, et al. Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocr Rev 2005;26(4):525-82
  • Thomas JL, Mason JI, Brandt S, et al. Structure/function relationships responsible for the kinetic differences between human type 1 and type 2 3beta-hydroxysteroid dehydrogenase and for the catalysis of the type 1 activity. J Biol Chem 2002;277(45):42795-801
  • Labrie F, Simard J, Luu-The V, et al. Structure and tissue-specific expression of 3 beta-hydroxysteroid dehydrogenase/ 5-ene-4-ene isomerase genes in human and rat classical and peripheral steroidogenic tissues. J Steroid Biochem Mol Biol 1992;41(3-8):421-35
  • Olson SH, Bandera EV, Orlow I. Variants in estrogen biosynthesis genes, sex steroid hormone levels, and endometrial cancer: a HuGE review. Am J Epidemiol 2007;165(3):235-45
  • Devgan SA, Henderson BE, Yu MC, et al. Genetic variation of 3 beta-hydroxysteroid dehydrogenase type II in three racial/ethnic groups: implications for prostate cancer risk. Prostate 1997;33(1):9-12
  • Chang BL, Zheng SL, Hawkins GA, et al. Joint effect of HSD3B1 and HSD3B2 genes is associated with hereditary and sporadic prostate cancer susceptibility. Cancer Res 2002;62(6):1784-9
  • Park JY, Tanner JP, Sellers TA, et al. Association between polymorphisms in HSD3B1 and UGT2B17 and prostate cancer risk. Urology 2007;70(2):374-9
  • Luu-The V. Analysis and characteristics of multiple types of human 17beta-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol 2001;76(1-5):143-51
  • Chai Z, Brereton P, Suzuki T, et al. 17 beta-hydroxysteroid dehydrogenase type XI localizes to human steroidogenic cells. Endocrinology 2003;144(5):2084-91
  • Luu-The V, Tremblay P, Labrie F. Characterization of type 12 17beta-hydroxysteroid dehydrogenase, an isoform of type 3 17beta-hydroxysteroid dehydrogenase responsible for estradiol formation in women. Mol Endocrinol 2006;20(2):437-43
  • Mindnich R, Moller G, Adamski J. The role of 17 beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 2004;218(1-2):7-20
  • Geissler WM, Davis DL, Wu L, et al. Male pseudohermaphroditism caused by mutations of testicular 17 beta-hydroxysteroid dehydrogenase 3. Nat Genet 1994;7(1):34-9
  • Moghrabi N, Hughes IA, Dunaif A, Andersson S. Deleterious missense mutations and silent polymorphism in the human 17beta-hydroxysteroid dehydrogenase 3 gene (HSD17B3). J Clin Endocrinol Metab 1998;83(8):2855-60
  • Margiotti K, Kim E, Pearce CL, et al. Association of the G289S single nucleotide polymorphism in the HSD17B3 gene with prostate cancer in Italian men. Prostate 2002;53(1):65-8
  • Penning TM, Burczynski ME, Jez JM, et al. Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem J 2000;351(Pt 1):67-77
  • Jez JM, Flynn TG, Penning TM. A new nomenclature for the aldo-keto reductase superfamily. Biochem Pharmacol 1997;54(6):639-47
  • Dufort I, Rheault P, Huang XF, et al. Characteristics of a highly labile human type 5 17beta-hydroxysteroid dehydrogenase. Endocrinology 1999;140(2):568-74
  • Luu-The V, Dufort I, Pelletier G, Labrie F. Type 5 17beta-hydroxysteroid dehydrogenase: its role in the formation of androgens in women. Mol Cell Endocrinol 2001;171(1-2):77-82
  • Labrie F, Luu-The V, Lin SX, et al. Role of 17 beta-hydroxysteroid dehydrogenases in sex steroid formation in peripheral intracrine tissues. Trends Endocrinol Metab 2000;11(10):421-7
  • Jakobsson J, Palonek E, Lorentzon M, et al. A novel polymorphism in the 17beta-hydroxysteroid dehydrogenase type 5 (aldo-keto reductase 1C3) gene is associated with lower serum testosterone levels in caucasian men. Pharmacogenomics J 2007;7(4):282-9
  • Qin K, Ehrmann DA, Cox N, et al. Identification of a functional polymorphism of the human type 5 17beta-hydroxysteroid dehydrogenase gene associated with polycystic ovary syndrome. J Clin Endocrinol Metab 2006;91(1):270-6
  • Jez JM, Penning TM. The aldo-keto reductase (AKR) superfamily: an update. Chem Biol Interact 2001;130-132(1-3):499-525
  • Penning TM, Drury JE. Human aldo-keto reductases: function, gene regulation, and single nucleotide polymorphisms. Arch Biochem Biophys 2007;464(2):241-50
  • Steckelbroeck S, Jin Y, Gopishetty S, et al. Human cytosolic 3alpha-hydroxysteroid dehydrogenases of the aldo-keto reductase superfamily display significant 3beta-hydroxysteroid dehydrogenase activity: implications for steroid hormone metabolism and action. J Biol Chem 2004;279(11):10784-95
  • Available from: www.med.upenn.edu/akr
  • Jenkins EP, Hsieh CL, Milatovich A, et al. Characterization and chromosomal mapping of a human steroid 5 alpha-reductase gene and pseudogene and mapping of the mouse homologue. Genomics 1991;11(4):1102-12
  • Thigpen AE, Silver RI, Guileyardo JM, et al. Tissue distribution and ontogeny of steroid 5 alpha-reductase isozyme expression. J Clin Invest 1993;92(2):903-10
  • Ellis JA, Panagiotopoulos S, Akdeniz A, et al. Androgenic correlates of genetic variation in the gene encoding 5alpha-reductase type 1. J Hum Genet 2005;50(10):534-7
  • Makridakis NM, Ross RK, Pike MC, et al. Association of mis-sense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA. Lancet 1999;354(9183):975-8
  • Makridakis N, Ross RK, Pike MC, et al. A prevalent missense substitution that modulates activity of prostatic steroid 5alpha-reductase. Cancer Res 1997;57(6):1020-2
  • Hayes VM, Severi G, Padilla EJ, et al. 5alpha-Reductase type 2 gene variant associations with prostate cancer risk, circulating hormone levels and androgenetic alopecia. Int J Cancer 2007;120(4):776-80
  • Allen NE, Reichardt JK, Nguyen H, Key TJ. Association between two polymorphisms in the SRD5A2 gene and serum androgen concentrations in British men. Cancer Epidemiol Biomarkers Prev 2003;12(6):578-81
  • Martin C, Ross M, Chapman KE, et al. CYP7B generates a selective estrogen receptor beta agonist in human prostate. J Clin Endocrinol Metab 2004;89(6):2928-35
  • Tang W, Eggertsen G, Chiang JY, Norlin M. Estrogen-mediated regulation of CYP7B1: a possible role for controlling DHEA levels in human tissues. J Steroid Biochem Mol Biol 2006;100(1-3):42-51
  • Weihua Z, Makela S, Andersson LC, et al. A role for estrogen receptor beta in the regulation of growth of the ventral prostate. Proc Natl Acad Sci USA 2001;98(11):6330-5
  • Jakobsson J, Karypidis H, Johansson JE, et al. A functional C-G polymorphism in the CYP7B1 promoter region and its different distribution in Orientals and Caucasians. Pharmacogenomics J 2004;4(4):245-50
  • Olsson M, Gustafsson O, Skogastierna C, et al. Regulation and expression of human CYP7B1 in prostate: overexpression of CYP7B1 during progression of prostatic adenocarcinoma. Prostate 2007;67(13):1439-46
  • Wilson JD. Androgen abuse by athletes. Endocr Rev 1988;9(2):181-99
  • Simpson ER, Michael MD, Agarwal VR, et al. Cytochromes P450 11: expression of the CYP19 (aromatase) gene: an unusual case of alternative promoter usage. FASEB J 1997;11(1):29-36
  • Haiman CA, Hankinson SE, Spiegelman D, et al. No association between a single nucleotide polymorphism in CYP19 and breast cancer risk. Cancer Epidemiol Biomarkers Prev 2002;11(2):215-6
  • Haiman CA, Stram DO, Pike MC, et al. A comprehensive haplotype analysis of CYP19 and breast cancer risk: the multiethnic cohort. Hum Mol Genet 2003;12(20):2679-92
  • Ma CX, Adjei AA, Salavaggione OE, et al. Human aromatase: gene resequencing and functional genomics. Cancer Res 2005;65(23):11071-82
  • Sowers MR, Wilson AL, Kardia SR, et al. Aromatase gene (CYP 19) polymorphisms and endogenous androgen concentrations in a multiracial/multiethnic, multisite study of women at midlife. Am J Med 2006;119(9 Suppl 1):S23-30
  • Lorentzon M, Swanson C, Eriksson AL, et al. Polymorphisms in the aromatase gene predict areal BMD as a result of affected cortical bone size: the GOOD study. J Bone Miner Res 2006;21(2):332-9
  • Labrie F, Dupont A, Simard J, et al. Intracrinology: the basis for the rational design of endocrine therapy at all stages of prostate cancer. Eur Urol 1993;24(Suppl 2):94-105
  • Berr C, Lafont S, Debuire B, et al. Relationships of dehydroepiandrosterone sulfate in the elderly with functional, psychological, and mental status, and short-term mortality: a French community-based study. Proc Natl Acad Sci USA 1996;93(23):13410-5
  • He D, Falany CN. Inhibition of SULT2B1b expression alters effects of 3beta-hydroxysteroids on cell proliferation and steroid hormone receptor expression in human LNCaP prostate cancer cells. Prostate 2007;67(12):1318-29
  • Falany CN. Enzymology of human cytosolic sulfotransferases. FASEB J 1997;11(4):206-16
  • Strahm E, Kohler I, Rudaz S, et al. Isolation and quantification by high-performance liquid chromatography-ion-trap mass spectrometry of androgen sulfoconjugates in human urine. J Chromatogr 2008;1196-1197:153-60
  • Sten T, Bichlmaier I, Kuuranne T, et al. UGT2B7 and UGT2B17 display converse specificity in testosterone and epitestosterone glucuronidation, whereas UGT2A1 conjugates both androgens similarly. Drug Metab Dispos 2009;37(2):417-23
  • Thomae BA, Eckloff BW, Freimuth RR, et al. Human sulfotransferase SULT2A1 pharmacogenetics: genotype-to-phenotype studies. Pharmacogenomics J 2002;2(1):48-56
  • Belanger A, Pelletier G, Labrie F, et al. Inactivation of androgens by UDP-glucuronosyltransferase enzymes in humans. Trends Endocrinol Metab 2003;14(10):473-9
  • Labrie F, Belanger A, Cusan L, Candas B. Physiological changes in dehydroepiandrosterone are not reflected by serum levels of active androgens and estrogens but of their metabolites: intracrinology. J Clin Endocrinol Metab 1997;82(8):2403-9
  • Mackenzie PI, Owens IS, Burchell B, et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 1997;7(4):255-69
  • Levesque E, Turgeon D, Carrier JS, et al. Isolation and characterization of the UGT2B28 cDNA encoding a novel human steroid conjugating UDP-glucuronosyltransferase. Biochemistry 2001;40(13):3869-81
  • Coffman BL, King CD, Rios GR, Tephly TR. The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268). Drug Metab Dispos 1998;26(1):73-7
  • Lepine J, Bernard O, Plante M, et al. Specificity and regioselectivity of the conjugation of estradiol, estrone, and their catecholestrogen and methoxyestrogen metabolites by human uridine diphospho-glucuronosyltransferases expressed in endometrium. J Clin Endocrinol Metab 2004;89(10):5222-32
  • Bhasker CR, McKinnon W, Stone A, et al. Genetic polymorphism of UDP-glucuronosyltransferase 2B7 (UGT2B7) at amino acid 268: ethnic diversity of alleles and potential clinical significance. Pharmacogenetics 2000;10(8):679-85
  • Swanson C, Lorentzon M, Vandenput L, et al. Sex steroid levels and cortical bone size in young men is associated with a glucuronidation enzyme UGT2B7 polymorphism (H268Y). J Clin Endocrinol Metab 2007;92(9):3697-704
  • Turgeon D, Carrier JS, Levesque E, et al. Relative enzymatic activity, protein stability, and tissue distribution of human steroid-metabolizing UGT2B subfamily members. Endocrinology 2001;142(2):778-87
  • Levesque E, Beaulieu M, Green MD, et al. Isolation and characterization of UGT2B15(Y85): a UDP-glucuronosyltransferase encoded by a polymorphic gene. Pharmacogenetics 1997;7(4):317-25
  • Court MH, Duan SX, Guillemette C, et al. Stereoselective conjugation of oxazepam by human UDP-glucuronosyltransferases (UGTs): S-oxazepam is glucuronidated by UGT2B15, while R-oxazepam is glucuronidated by UGT2B7 and UGT1A9. Drug Metab Dispos 2002;30(11):1257-65
  • Park J, Chen L, Shade K, et al. Asp85tyr polymorphism in the udp-glucuronosyltransferase (UGT) 2B15 gene and the risk of prostate cancer. J Urol 2004;171(6 Pt 1):2484-8
  • MacLeod SL, Nowell S, Plaxco J, Lang NP. An allele-specific polymerase chain reaction method for the determination of the D85Y polymorphism in the human UDP-glucuronosyltransferase 2B15 gene in a case-control study of prostate cancer. Ann Surg Oncol 2000;7(10):777-82
  • Gsur A, Preyer M, Haidinger G, et al. A polymorphism in the UDP-Glucuronosyltransferase 2B15 gene (D85Y) is not associated with prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2002;11(5):497-8
  • Hajdinjak T, Zagradisnik B. Prostate cancer and polymorphism D85Y in gene for dihydrotestosterone degrading enzyme UGT2B15: Frequency of DD homozygotes increases with Gleason Score. Prostate 2004;59(4):436-9
  • Swanson C, Mellstrom D, Lorentzon M, et al. The UDP glucuronosyltransferase 2B15 D85Y and 2B17 deletion polymorphisms predict the glucuronidation pattern of androgens and fat mass in men. J Clin Endocrinol Metab 2007;92(12):4878-82
  • Beaulieu M, Levesque E, Hum DW, Belanger A. Isolation and characterization of a human orphan UDP-glucuronosyltransferase, UGT2B11. Biochem Biophys Res Commun 1998;248(1):44-50
  • Barbier O, Lapointe H, El Alfy M, et al. Cellular localization of uridine diphosphoglucuronosyltransferase 2B enzymes in the human prostate by in situ hybridization and immunohistochemistry. J Clin Endocrinol Metab 2000;85(12):4819-26
  • Wilson W 3rd, Pardo-Manuel de Villena F, Lyn-Cook BD, et al. Characterization of a common deletion polymorphism of the UGT2B17 gene linked to UGT2B15. Genomics 2004;84(4):707-14
  • Murata M, Warren EH, Riddell SR. A human minor histocompatibility antigen resulting from differential expression due to a gene deletion. J Exp Med 2003;197(10):1279-89
  • Jakobsson J, Ekstrom L, Inotsume N, et al. Large differences in testosterone excretion in Korean and Swedish men are strongly associated with a UDP-glucuronosyl transferase 2B17 polymorphism. J Clin Endocrinol Metab 2006;91(2):687-93
  • Karypidis AH, Olsson M, Andersson SO, et al. Deletion polymorphism of the UGT2B17 gene is associated with increased risk for prostate cancer and correlated to gene expression in the prostate. Pharmacogenomics J 2008;8(2):147-51
  • Park J, Chen L, Ratnashinge L, et al. Deletion polymorphism of UDP-glucuronosyltransferase 2B17 and risk of prostate cancer in African American and Caucasian men. Cancer Epidemiol Biomarkers Prev 2006;15(8):1473-8
  • Olsson M, Lindstrom S, Haggkvist B, et al. The UGT2B17 gene deletion is not associated with prostate cancer risk. Prostate 2008;68(5):571-5
  • Gallagher CJ, Muscat JE, Hicks AN, et al. The UDP-glucuronosyltransferase 2B17 gene deletion polymorphism: sex-specific association with urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol glucuronidation phenotype and risk for lung cancer. Cancer Epidemiol Biomarkers Prev 2007;16(4):823-8
  • Schulze JJ, Lundmark J, Garle M, et al. Doping test results dependent on genotype of uridine diphospho-glucuronosyl transferase 2B17, the major enzyme for testosterone glucuronidation. J Clin Endocrinol Metab 2008;93(7):2500-6
  • Sottas PE, Baume N, Saudan C, et al. Bayesian detection of abnormal values in longitudinal biomarkers with an application to T/E ratio. Biostatistics 2007;8(2):285-96
  • Schulze JJ, Lundmark J, Garle M, et al. Substantial advantage of a combined Bayesian and genotyping approach in testosterone doping tests. Steroids 2009;74(3):365-8
  • Lindstrom S, Wiklund F, Adami HO, et al. Germ-line genetic variation in the key androgen-regulating genes androgen receptor, cytochrome P450, and steroid-5-alpha-reductase type 2 is important for prostate cancer development. Cancer Res 2006;66(22):11077-83
  • Zitzmann M. Mechanisms of disease: pharmacogenetics of testosterone therapy in hypogonadal men. Nat Clin Pract 2007;4(3):161-6
  • Shastry BS. Genetic diversity and new therapeutic concepts. J Hum Genet 2005;50(7):321-8
  • Lippi G, Solero GP, Guidi G. Athletes genotyping: ethical and legal issues. Int J Sports Med 2004;25(2):159

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.