81
Views
5
CrossRef citations to date
0
Altmetric
Review

The role of drug-metabolising enzymes in clinical responses to chemotherapy

, &
Pages 17-25 | Published online: 01 Feb 2006

Bibliography

  • SCRIPTURE CD, SPARREBOOM A, FIGG WD: Modulation of cytochrome P450 activity: implications for cancer therapy. Lancet Oncol. (2005) 6(10):780-789.
  • EVANS WE, MCLEOD HL: Pharmacogenomics drug disposition, drug targets, and side effects. N. Engl. J. Med. (2003) 348(6):538-549.
  • EVANS WE, RELLING MV: Pharmacogenomics: translating functional genomics into rational therapeutics. Science (1999) 286(5439):487-491.
  • MCLEOD HL, EVANS WE: Pharmacogenomics: unlocking the human genome for better drug therapy. Ann. Rev. Pharmacol. Toxicol. (2001) 41:101-121.
  • ANDO Y: Cytochrome P450 and Anticancer Drugs. In: Handbook of Anti-Cancer Pharmacokinetics and Pharmacodynamics. WD Figg, HL McLeod (Eds), Humana Press, Totowa, NJ, USA (2004).
  • COULTHARD SA, BODDY AV: Metabolism (Non-CYP Enzymes). In: Handbook of Anti-Cancer Pharmacokinetics and Pharmacodynamics. WD Figg, HLMcLeod (Eds), Humana Press, Totowa, NJ, USA (2004).
  • MEYER UA: Overview of enzymes of drug metabolism. J. Pharmacokinet. Biopharm. (1996) 24(5):449-459.
  • WRIGHTON SA, STEVENS JC: The human hepatic cytochromes P450 involved in drug metabolism. Crit. Rev. Toxicol. (1992) 22(1):1-21.
  • CHANG TK, WEBER GF, CRESPI CL, WAXMAN DJ: Differential activation of cyclophosphamide and ifosphamide by cytochromes P450 2B and 3A in human liver microsomes. Cancer Res. (1993) 53(23):5629-5637.
  • BODDY AV, YULE SM: Metabolism and pharmacokinetics of oxazaphosphorines. Clin. Pharmacokinet. (2000) 38(4):291-304.
  • ROY P, YU LJ, CRESPI CL, WAXMANDJ: Development of a substrate-activity based approach to identify the major human liver P450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P450 profiles. Drug Metab. Dispos. (1999) 27(6):655-666.
  • HUANG Z, ROY P, WAXMAN DJ: Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem. Pharmacol. (2000) 59(8):961-972.
  • RAHMAN A, KORZEKWA KR, GROGAN J, GONZALEZ FJ, HARRISJW: Selective biotransformation of taxol to 6--hydroxytaxol by human cytochrome P450 2C8. Cancer Res. (1994) 54(21):5543-5546.
  • HICHIYA H, TANAKA-KAGAWA T, SOYAMA A etal.: Functional characterization of five novel CYP2C8 variants, G171S, R186X, R186G, K247R and K383N, found in a Japanese population. Drug Metab. Dispos. (2005) 33(5):630-636.
  • BAHADUR N, LEATHART JB, MUTCHE etal.: CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6--hydroxylase activity in human liver microsomes. Biochem. Pharmacol. (2002) 64(11):1579-1589.
  • SOYAMA A, SAITO Y, HANIOKA N etal.: Non-synonymous single nucleotide alterations found in the CYP2C8 gene result in reduced invitro paclitaxel metabolism. Biol. Pharm. Bull. (2001) 24(12):30.
  • SOYAMA A, SAITO Y, KOMAMURA K etal.: Five novel single nucleotide polymorphisms in the CYP2C8 gene, one of which induces a frame-shift. Drug Metab. Pharmacokinet. (2002) 17(4):374-377.
  • DAI D, ZELDIN DC, BLAISDELL JA etal.: Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics (2001) 11(7):597-607.
  • NAKAJIMA M, FUJIKI Y, KYO S etal.: Pharmacokinetics of paclitaxel in ovarian cancer patients and genetic polymorphisms of CYP2C8, CYP3A4, and MDR1. J. Clin. Pharmacol. (2005) 45(6):674-682.
  • HENNINGSSON A, MARSH S, LOOSWJ, SPARREBOOM A: Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel. Clin. Cancer Res. (2005) 11(22):8097-8104.
  • MA JD, NAFZIGER AN, BERTINO JS Jr: Genetic polymorphisms of cytochrome P450 enzymes and the effect on interindividual, pharmacokinetic variability in extensive metabolizers. J. Clin. Pharmacol. (2004) 44(5):447-456.
  • HIGASHI MK, VEENSTRA DL, KONDO LM etal.: Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA (2002) 287(13):1690-1698.
  • VAN DER WEIDE J, STEIJNS LS, VANWEELDEN MJ, DE HAAN K: The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. Pharmacogenetics (2001) 11(4):287-291.
  • ANDO Y, PRICE DK, DAHUT WL etal.: Pharmacogenetic associations of CYP2C19 genotype with invivo metabolisms and pharmacological effects of thalidomide. Cancer Biol. Ther. (2002) 1(6):669-673.
  • PRICE DK, ANDO Y, KRUGER EA, WEISS M, FIGG WD: 5-OH-thalidomide, a metabolite of thalidomide, inhibits angiogenesis. Ther. Drug Monit. (2002) 24(1):104-110.
  • DEHAL SS, KUPFER D: CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res. (1997) 57(16):3402-3406.
  • MANI C, GELBOIN HV, PARK SS etal.: Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. I. Cytochrome P450-catalyzed N-demethylation and 4-hydroxylation. Drug Metab. Dispos. (1993) 21(4):645-656.
  • SRIDAR C, KENT UM, NOTLEY LM, GILLAM EM, HOLLENBERG PF: Effect of tamoxifen on the enzymatic activity of human cytochrome CYP2B6. J. Pharmacol. Exp. Ther. (2002) 301(3):945-952.
  • DESTA Z, WARD BA, SOUKHOVA NV, FLOCKHART DA: Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system invitro: prominent roles for CYP3A and CYP2D6. J. Pharmacol. Exp. Ther. (2004) 310(3):1062-1075.
  • CREWE HK, ELLIS SW, LENNARD MS, TUCKER GT: Variable contribution of cytochromes P450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem. Pharmacol. (1997) 53(2):171-178.
  • DESTA Z, WARD BA, SOUKHOVA NV, FLOCKHART DA: Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system invitro: prominent roles for CYP3A and CYP2D6. J. Pharmacol. Exp. Ther. (2004) 310(3):75.
  • STEARNS V, JOHNSON MD, RAE JM etal.: Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J. Natl. Cancer Inst. (2003) 95(23):64.
  • SHIMADA T, YAMAZAKI H, MIMURAM, INUI Y, GUENGERICHFP: Interindividual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. (1994) 270(1):414-423.
  • OZDEMIR V, KALOWA W, TANG BK etal.: Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics (2000) 10(5):373-388.
  • SCRIPTURE CD, SPARREBOOM A, FIGG WD: Modulation of cytochrome P450 activity: implications for cancer therapy. Lancet Oncol. (2005) 6(10):780-789.
  • MARRE F, SANDERINK GJ, DESOUSAG etal.: Hepatic biotransformation of docetaxel (Taxotere) invitro: involvement of the CYP3A subfamily in humans. Cancer Res. (1996) 56(6):1296-1302.
  • SHOU M, MARTINET M, KORZEKWAKR etal.: Role of human cytochrome P450 3A4 and 3A5 in the metabolism of taxotere and its derivatives: enzyme specificity, interindividual distribution and metabolic contribution in human liver. Pharmacogenetics (1998) 8(5):391-401.
  • CLARKE SJ, RIVORY LP: Clinical pharmacokinetics of docetaxel. Clin. Pharmacokinet. (1999) 36(2):99-114.
  • HIRTH J, WATKINS PB, STRAWDERMAN M etal.: The effect of an individuals cytochrome CYP3A4 activity on docetaxel clearance. Clin. Cancer Res. (2000) 6(4):1255-1258.
  • YAMAMOTO N, TAMURA T, KAMIYAY etal.: Correlation between docetaxel clearance and estimated cytochrome P450 activity by urinary metabolite of exogenous cortisol. J. Clin. Oncol. (2000) 18(11):2301-2308.
  • ENGELS FK, TEN TIJE AJ, BAKER SD etal.: Effect of cytochrome P450 3A4 inhibition on the pharmacokinetics of docetaxel. Clin. Pharmacol. Ther. (2004) 75(5):448-454.
  • GOH BC, LEE SC, WANG LZ etal.: Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies. J. Clin. Oncol. (2002) 20(17):3683-3690.
  • HEGGIE GD, SOMMADOSSI JP, CROSS DS, HUSTER WJ, DIASIO RB: Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res. (1987) 47(8):2203-2206.
  • LU Z, ZHANG R, DIASIO RB: Dihydropyrimidine dehydrogenase activity in human peripheral blood mononuclear cells and liver: population characteristics, newly identified deficient patients, and clinical implication in 5-fluorouracil chemotherapy. Cancer Res. (1993) 53(22):5433-5438.
  • ETIENNE MC, LAGRANGE JL, DASSONVILLE O etal.: Population study of dihydropyrimidine dehydrogenase in cancer patients. J. Clin. Oncol. (1994) 12(11):2248-2253.
  • RIDGE SA, SLUDDEN J, BROWN O etal.: Dihydropyrimidine dehydrogenase pharmacogenetics in Caucasian subjects. Br. J. Clin. Pharmacol. (1998) 46(2):151-156.
  • RIDGE SA, SLUDDEN J, WEI X etal.: Dihydropyrimidine dehydrogenase pharmacogenetics in patients with colorectal cancer. Br. J. Cancer (1998) 77(3):497-500.
  • RELLING MV, DERVIEUX T: Pharmacogenetics and cancer therapy. Nat. Rev. Cancer (2001) 1(2):99-108.
  • JOHNSON MR, HAGEBOUTROS A, WANG K etal.: Life-threatening toxicity in a dihydropyrimidine dehydrogenase-deficient patient after treatment with topical 5-fluorouracil. Clin. Cancer Res. (1999) 5(8):2006-2011.
  • VAN KUILENBURG AB, MULLER EW, HAASJES J etal.: Lethal outcome of a patient with a complete dihydropyrimidine dehydrogenase (DPD) deficiency after administration of 5-fluorouracil: frequency of the common IVS14+1G > A mutation causing DPD deficiency. Clin. Cancer Res. (2001) 7(5):1149-1153.
  • MAGNE N, RENEE N, FORMENTO J etal.: Prospective study of dihydropyrimidine dehydrogenase (DPD) activity and DPYD IVS14+1G > A mutation in patients developing FU-related toxicities: an updated analysis based on a ten-year recruitment across multiple French institutions. Proc. Am. Soc. Clin. Oncol. (2005) 23(16S):2003.
  • JIN Y, DESTA Z, STEARNS V etal.: CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J. Natl. Cancer Inst. (2005) 97(1):30-39.
  • SWEENEY C, MCCLURE GY, FARESMY etal.: Association between survival after treatment for breast cancer and glutathione S-transferase P1 Ile105Val polymorphism. Cancer Res. (2000) 60(20):5621-5624.
  • MARSH S, MCLEOD HL: Cancer pharmacogenetics. Br. J. Cancer (2004) 90(1):8-11.
  • HEIN DW, DOLL MA, FRETLAND AJ etal.: Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol. Biomarkers Prev. (2000) 9(1):29-42.
  • RATAIN MJ, MICK R, BEREZIN F etal.: Paradoxical relationship between acetylator phenotype and amonafide toxicity. Clin. Pharmacol. Ther. (1991) 50(5Pt1):573-579.
  • RATAIN MJ, MICK R, BEREZIN F etal.: Phase I study of amonafide dosing based on acetylator phenotype. Cancer Res. (1993) 53(10 Suppl.):2304-2308.
  • RATAIN MJ, MICK R, JANISCH L etal.: Individualized dosing of amonafide based on a pharmacodynamic model incorporating acetylator phenotype and gender. Pharmacogenetics (1996) 6(1):93-101.
  • EVANS WE: Pharmacogenetics of thiopurine S-methyltransferase and thiopurine therapy. Ther. Drug Monit. (2004) 26(2):186-191.
  • EVANS WE, HORNER M, CHU YQ, KALWINSKY D, ROBERTS WM: Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. J. Pediatr. (1991) 119(6):985-989.
  • LENNARD L, LILLEYMAN JS: Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia. J. Clin. Oncol. (1989) 7(12):1816-1823.
  • LENNARD L, LILLEYMAN JS, VANLOON J, WEINSHILBOUM RM: Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet (1990) 336(8709):225-229.
  • RELLING MV, HANCOCK ML, RIVERA GK etal.: Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J. Natl. Cancer Inst. (1999) 91(23):2001-2008.
  • PULLARKAT ST, STOEHLMACHER J, GHADERI V etal.: Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J. (2001) 1(1):65-70.
  • ANDO Y, SAKA H, ASAI G etal.: UGT1A1 genotypes and glucuronidation of SN-38, the active metabolite of irinotecan. Ann. Oncol. (1998) 9(8):845-847.
  • ANDO Y, SAKA H, ANDO M etal.: Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res. (2000) 60(24):6921-6926.
  • IYER L, DAS S, JANISCH L etal.: UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J. (2002) 2(1):43-47.
  • INNOCENTI F, UNDEVIA SD, IYER L etal.: Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J. Clin. Oncol. (2004) 22(8):1382-1388.
  • ULRICH CM, ROBIEN K, MCLEODHL: Cancer pharmacogenetics: polymorphisms, pathways and beyond. Nat. Rev. Cancer (2003) 3(12):912-920.
  • BACHMANN KA: Genotyping and phenotyping the cytochrome P450 enzymes. Am. J. Ther. (2002) 9(4):309-316.
  • SLAVIERO KA, CLARKE SJ, MCLACHLAN AJ, BLAIR EY, RIVORYLP: Population pharmacokinetics of weekly docetaxel in patients with advanced cancer. Br. J. Clin. Pharmacol. (2004) 57(1):44-53.
  • BAKER SD, TEN TIJE AJ, CARDUCCIMA etal.: Evaluation of CYP3A activity as a predictive covariate for docetaxel clearance. Proc. Am. Soc. Clin. Oncol. (2004) 23(128s):2006.
  • PUISSET F, CHATELUT E, DALENC F etal.: Dexamethasone as a probe for docetaxel clearance. Cancer Chemother. Pharmacol. (2004) 54(3):72.
  • YAMAMOTO N, TAMURA T, MURAKAMI H etal.: Randomized pharmacokinetic and pharmacodynamic study of docetaxel: dosing based on body-surface area compared with individualized dosing based on cytochrome P450 activity estimated using a urinary metabolite of exogenous cortisol. J. Clin. Oncol. (2005) 23(6):1061-1069.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.