111
Views
11
CrossRef citations to date
0
Altmetric
Review

Contribution of CYP2C9 to variability in vitamin K antagonist metabolism

&
Pages 3-15 | Published online: 01 Feb 2006

Bibliography

  • UMBENHAUER DR, MARTIN MV, LLOYD RS, GUENGERICH FP: Cloning and sequence determination of a complementary DNA related to human liver microsomal cytochrome P450 S-mephenytoin 4-hydroxylase. Biochemistry (1987) 26:1094-1099.
  • KIMURA S, PASTEWKA J, GELBOINHV, GONZALEZ FJ: cDNA and amino-acid-sequences of 2 members of the human P450IIC gene subfamily. Nucleic Acids Res. (1987) 15(23):10053-10054.
  • YASUMORI T, KAWANO S, NAGATA K, SHIMADA M, YAMAZOE Y, KATO R: Nucleotide sequence of a human liver cytochrome P450 related to the rat male-specific form. J. Biochem. (1987) 102:493-501.
  • MEEHAN RR, GOSDEN JR, ROUT D etal.: Human cytochrome P450 PB-1: a multigene family involved in mephenytoin and steroid oxidations that maps to chromosome 10. Am. J. Hum. Genet. (1988) 42:26-37.
  • RETTIE AE, KORZEKWA KR, KUNZEKL etal.: Hydroxylation of warfarin by human cDNA-expressed cytochrome P450 a role for P4502C9 in the etiology of (S)-warfarin drug interactions. Chem. Res. Toxicol. (1992) 5(1):54-59.
  • LEE CR, GOLDSTEIN JA, PIEPER JA: Cytochrome P4502C9 polymorphisms: a comprehensive review of the invitro and human data. Pharmacogenetics (2002) 12(3):251-263.
  • THIJSSEN HH, FLINOIS J-P, BEAUNEPH: Cytochrome P4502C9 is the principal catalyst of racemic acenocoumarol hydroxylation reactions in human liver microsomes. Drug Metab. Dispos. (2000) 28:1284-1290.
  • UFER M, SVENSSON JO, KRAUSZ KW, GELBOIN HV, RANE A, TYBRING G: Identification of cytochromes P450 2C9 and 3A4 as the major catalysts of phenprocoumon hydroxylation invitro. Eur. J. Clin. Pharmacol. (2004) 60(3):173-182.
  • EVANS WE, RELLING MV: Pharmacogenomics: translating functional genomics into rational therapeutics. Science (1999) 286:487-491.
  • SHIMADA T, YAMAZAKI H, MIMURAM, INUI Y, GUENGERICHFP: Interindividual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. (1994) 270:414-423.
  • LAPPLE F, VON RICHTER O, FROMMMF etal.: Differential expression and function of CYP2C isoforms in human intestine and liver. Pharmacogenetics (2003) 13(9):565-575.
  • DICKINS M: Induction of cytochromes P450. Cur. Top. Med. Chem. (2004) 4(16):1745-1766.
  • KIRCHHEINER J, BROCKMOLLER J: Clinical consequences of cytochrome P4502C9 polymorphisms. Clin. Pharmacol. Ther. (2005) 77(1):1-16.
  • MINERS JO, BIRKETT DJ: Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol. (1998) 45(6):525-538.
  • NIEMI M, BACKMAN JT, FROMM MF, NEUVONEN PJ, KIVISTO KT: Pharmacokinetic interactions with rifampicin clinical relevance. Clin. Pharmacokinet. (2003) 42(9):819-850.
  • DEMORAIS SMF, SCHWEIKL H, BLAISDELL J, GOLDSTEIN JA: Gene structure and upstream regulatory regions of human CYP2C9 and CYP2C18. Biochem. Biophys. Res. Commun. (1993) 194(1):194-201.
  • GED C, BEAUNE P: Isolation of the human cytochrome P450 IIC8 gene multiple glucocorticoid responsive elements in the 5 region. Biochim. Biophys. Acta (1991) 1088(3):433-435.
  • IBEANU GC, GOLDSTEIN JA: Transcriptional regulation of human CYP2C genes functional comparison of CYP2C9 and CYP2C18 promoter regions. Biochemistry (1995) 34(25):8028-8036.
  • GERBAL-CHALOIN S, DAUJAT M, PASCUSSI JM, PICHARD-GARCIA L, VILAREM MJ, MAUREL P: Transcriptional regulation of CYP2C9 gene role of glucocorticoid receptor and constitutive androstane receptor. J. Biol. Chem. (2002) 277(1):209-217.
  • HAINING RL, JONES JP, HENNE KR etal.: Enzymatic determinants of the substrate specificity of CYP2C9: role of BC loop residues in providing the -stacking anchor site for warfarin binding. Biochemistry (1999) 38(11):3285-3292.
  • MELET A, ASSRIR N, JEAN P etal.: Substrate selectivity of human cytochrome P4502C9: importance of residues 476, 365, and 114 in recognition of diclofenac and sulfaphenazole and in mechanism-based inactivation by tienilic acid. Arch. Biochem. Biophys. (2003) 409(1):80-91.
  • WILLIAMS PA, COSME J, WARD A, ANGOVA HC, VINKOVIC DM, JHOTIH: Crystal structure of human cytochrome P4502C9 with bound warfarin. Nature (2003) 424(6947):464-468.
  • WESTER MR, YANO JK, SCHOCH GA etal.: The structure of human cytochrome P4502C9 complexed with flurbiprofen at 2.0-angstrom resolution. J. Biol. Chem. (2004) 279(34):35630-35637.
  • HUTZLER JM, HAUER MJ, TRACY TS: Dapsone activation of CYP2C9-mediated metabolism: evidence for activation of multiple substrates and a two-site model. Drug Metab. Dispos. (2001) 29(7):1029-1034.
  • FURUYA H, FERNANDEZSALGUEROP, GREGORYW etal.: Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenetics (1995) 5(6):389-392.
  • WANG S-L, HUANG J-D, LAI M-D, TSAI J-J: Detection of CYP2C9 polymorphism based on the polymerase chain reaction in Chinese. Pharmacogenetics (1995) 5:37-42.
  • STUBBINS MJ, HARRIES LW, SMITHG, TARBIT MH, WOLF CR: Genetic analysis of the human cytochrome P450 CYP2C9 locus. Pharmacogenetics (1996) 6(5):429-439.
  • SULLIVAN TH, GHANAYEM BI, BELLDA etal.: The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics (1996) 6:341-349.
  • XIE H-G, PRASAD HC, KIM RB, STEINCM: CYP2C9 allelic variants: ethnic distribution and functional significance. Adv. Drug Deliv. Rev. (2002) 54:1257-1270.
  • CRESPI CL, MILLER VP: The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH:cytochrome P450 oxidoreductase. Pharmacogenetics (1997) 7(3):203-210.
  • HAINING RL, HUNTER AP, VERONESE ME, TRAGER WF, RETTIEAE: Allelic variants of human cytochrome P450 2C9: baculovirus-mediated expression, purification, structural characterization, substrate stereoselectivity, and prochiral selectivity of the wild-type and I359L mutant forms. Arch. Biochem. Biophys. (1996) 333(2):447-458.
  • KIDD RS, CURRY TB, GALLAGHER S, EDEKI T, BLAISDELL J, GOLDSTEINJA: Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics (2001) 11(9):803-808.
  • GOTOH O: Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem. (1992) 267:83-90.
  • SHINTANI M, IEIRI I, INOUE K etal.: Genetic polymorphisms and functional characterization of the 5-flanking region of the human CYP2C9 gene: invitro and invivo studies. Clin. Pharmacol. Ther. (2001) 70(2):175-182.
  • TAKAHASHI H, IEIRI I, WILKINSONGR etal.: 5-Flanking region polymorphisms of CYP2C9 and their relationship to S-warfarin metabolism in Caucasian and Japanese patients. Blood (2004) 103:3055-3057.
  • KING BP, KHAN TI, AITHAL GP, KAMALI F, DALY AK: Upstream and coding region CYP2C9 polymorphisms: correlation with warfarin dose and metabolism. Pharmacogenetics (2004) 14(12):813-822.
  • VEENSTRA DL, BLOUGH DK, HIGASHI MK etal.: CYP2C9 haplotype structure in European American warfarin patients and association with clinical outcomes. Clin. Pharmacol. Ther. (2005) 77(5):353-364.
  • DELOZIER TC, LEE SC, COULTER SJ, GOH BC, GOLDSTEIN JA: Functional characterization of novel allelic variants of CYP2C9 recently discovered in Southeast Asians. J. Pharmacol. Exp. Ther. (2005) (InPress).
  • TAI G, FARIN F, RIEDER MJ etal.: Invitro and invivo effects of the CYP2C9*11 polymorphism on warfarin metabolism and dose. Pharmacogenet. Genomics (2005) 15(7):475-481.
  • LEUNG AYH, CHOW HCH, KWONGYL etal.: Genetic polymorphism in exon 4 of cytochrome P450 CYP2C9 may be associated with warfarin sensitivity in Chinese patients. Blood (2001) 98(8):2584-2587.
  • RETTIE AE, TAI GY, VEENSTRA DL etal.: CYP2C9 exon 4 mutations and warfarin dose phenotype in Asians. Blood (2003) 101(7):2896-2897.
  • KAMINSKY LS, ZHANG ZY: Human P450 metabolism of warfarin. Pharmacol. Ther. (1997) 73(1):67-74.
  • YAMAZAKI H, SHIMADA T: Human liver cytochrome P450 enzymes involved in the 7-hydroxylation of R- and S-warfarin enantiomers. Biochem. Pharmacol. (1997) 54(11):1195-1203.
  • STEWARD DJ, HAINING RL, HENNEKR etal.: Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics (1997) 7(5):361-367.
  • AITHAL GP, DAY CP, KESTEVEN PJL, DALY AK: Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet (1999) 353(9154):717-719.
  • HIGASHI MK, VEENSTRA DL, KONDO LML etal.: Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA (2002) 287(13):1690-1698.
  • SANDERSON S, EMERY J, HIGGINS J: CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet (TM) systematic review and meta-analysis. Genet. Med. (2005) 7(2):97-104.
  • TAUBE J, HALSALL D, BAGLIN T: Influence of cytochrome P450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on long-term treatment. Blood (2000) 96(5):1816-1819.
  • GAGE BF, EBY C, MILLIGAN PE, BANET GA, DUNCAN JR, MCLEODHL: Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb. Haemost. (2004) 91(1):87-94.
  • KAMALI F, KHAN TI, KING BP etal.: Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin. Clin. Pharmacol. Ther. (2004) 75(3):204-212.
  • HILLMAN MA, WILKE RA, CALDWELL MD, BERG RL, GLURICHI, BURMESTER JK: Relative impact of covariates in prescribing warfarin according to CYP2C9 genotype. Pharmacogenetics (2004) 14(8):539-547.
  • TAKAHASHI H, KASHIMA T, NOMOTO S etal.: Comparisons between invitro and invivo metabolism of (S)-warfarin: catalytic activities of cDNA-expressed CYP2C9, its Leu359 variant and their mixture versus unbound clearance in patients with the corresponding CYP2C9 genotypes. Pharmacogenetics (1998) 8(5):365-373.
  • LOEBSTEIN R, YONATH H, PELEG D etal.: Interindividual variability in sensitivity to warfarin nature or nurture? Clin. Pharmacol. Ther. (2001) 70(2):159-164.
  • SCORDO MG, PENGO V, SPINA E, DAHL ML, GUSELLA M, PADRINI R: Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin. Pharmacol. Ther. (2002) 72:702-710.
  • LINDER MW, LOONEY S, ADAMSJE3rd etal.: Warfarin dose adjustments based on CYP2C9 genetic polymorphisms. J. Thromb. Thrombolysis (2002) 14(3):227-232.
  • TAKAHASHI H, ECHIZEN H: Pharmacogenetics of warfarin elimination and its clinical implications. Clin. Pharmacokinet. (2001) 40(8):587-603.
  • VOORA D, EBY C, LINDER MW etal.: Prospective dosing of warfarin based on cytochrome P4502C9 genotype. Thromb. Haemost. (2005) 93(4):700-705.
  • THIJSSEN HHW, VERKOOIJEN IWC, FRANK HLL: The possession of the CYP2C9*3 allele is associated with low dose requirement of acenocoumarol. Pharmacogenetics (2000) 10(8):757-760.
  • VERSTUYFT C, MORIN S, ROBERT A etal.: Early acenocoumarol overanticoagulation among cytochrome P4502C9 poor metabolizers. Pharmacogenetics (2001) 11(8):735-737.
  • HERMIDA J, ZARZA J, ALBERCA I etal.: Differential effects of 2C9*3 and 2C9*2 variants of cytochrome P450CYP2C9 on sensitivity to acenocournarol. Blood (2002) 99(11):4237-4239.
  • TASSIES D, FREIRE C, PUOAN J etal.: Pharmacogenetics of acenocoumarol: cytochrome P450 CYP2C9 polymorphisms influence dose requirements and stability of anticoagulation. Haematologica (2002) 87(11):1185-1191.
  • SCHALEKAMP T, OOSTERHOF M, VAN MEEGEN E etal.: Effects of cytochrome P4502C9 polymorphisms on phenprocoumon anticoagulation status. Clin. Pharmacol. Ther. (2004) 76(5):409-417.
  • MORIN S, BODIN L, LORIOT MA etal.: Pharmacogenetics of acenocoumarol pharmacodynamics. Clin. Pharmacol. Ther. (2004) 75(5):403-414.
  • VISSER LE, VAN VLIET M, VANSCHAIK RHN etal.: The risk of overanticoagulation in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Pharmacogenetics (2004) 14(1):27-33.
  • KIRCHHEINER J, UFER M, WALTEREC etal.: Effects of CYP2C9 polymorphisms on the pharmacokinetics of R- and S-phenprocoumon in healthy volunteers. Pharmacogenetics (2004) 14(1):19-26.
  • UFER M: Effects of CYP2C9 polymorphisms on phenprocoumon anticoagulation status. Clin. Pharmacol. Ther. (2005) 77(4):335-336.
  • ROST S, FREGIN A, IVASKEVICIUS V etal.: Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature (2004) 427(6974):537-541.
  • LI T, CHANG CY, JIN DY, LIN PJ, KHVOROVA A, STAFFORD DW: Identification of the gene for vitamin K epoxide reductase. Nature (2004) 427(6974):541-544.
  • DANDREA G, DAMBROSIO RL, DIPERNA P etal.: A polymorphism in VKORC1 gene is associated with an inter-individual variability in the dose-anticoagulant effect of warfarin. Blood (2005) 105(2):645-649.
  • BODIN L, VERSTUYFT C, TREGOUETDA etal.: Cytochrome P4502C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood (2005) 106(1):135-140.
  • RIEDER MJ, REINER AP, GAGE BF etal.: Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med. (2005) 352(22):2285-2293.
  • SCONCE EA, KHAN TI, WYNNE HA etal.: The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood (2005) 106:2329-2333.
  • YUAN HY, CHEN JJ, LEE MTM etal.: A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum. Mol. Genet. (2005) 14(13):1745-1751.
  • WADELIUS M, CHEN LY, DOWNES K etal.: Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J. (2005) 5(4):262-270.
  • HALLAK HO, WEDLUND PJ, MODIMW etal.: High clearance of (S)-warfarin in a warfarin-resistant subject. Br. J. Clin. Pharmacol. (1993) 35:327-330.
  • IEIRI I, TAINAKA H, MORITA T etal.: Catalytic activity of three variants (Ile, Leu, and Thr) at amino acid residue 359 in human CYP2C9 gene and simultaneous detection using single-strand conformation polymorphism analysis. Ther. Drug Monit. (2000) 22(3):237-244.
  • DICKMANN LJ, RETTIE AE, KNELLERMB etal.: Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African-Americans. Mol. Pharmacol. (2001) 60(2):382-387.
  • BLAISDELL J, JORGE-NEBERT LF, COULTER S etal.: Discovery of new potentially defective alleles of human CYP2C9. Pharmacogenetics (2004) 14(8):527-537.
  • SI DY, GUO YJ, ZHANG YF, YANG L, ZHOU H, ZHONG DF: Identification of a novel variant CYP2C9 allele in Chinese. Pharmacogenetics (2004) 14(7):465-469.
  • ZHAO F, LOKE C, RANKIN SC etal.: Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose. Clin. Pharmacol. Ther. (2004) 76(3):210-219.
  • OGG MS, BRENNAN P, MEADE T, HUMPHRIES SE: CYP2C9*3 allelic variant and bleeding complications. Lancet (1999) 354(9184):1124.
  • MARGAGLIONE M, COLAIZZO D, DANDREA G etal.: Genetic modulation of oral anticoagulation with warfarin. Thromb. Haemost. (2000) 84(5):775-778.
  • TABRIZI AR, ZEHNBAUER BA, BORECKI IB, MCGRATH SD, BUCHMAN TG, FREEMAN BD: The frequency and effects of cytochrome P450 (CYP) 2C9 polymorphisms in patients receiving warfarin. J. Am. Coll. Surg. (2002) 194(3):267-273.
  • LEE S, KIM JM, CHUNG CS, CHO KJ, KIM JH: Polymorphism in CYP2C9 as a non-critical factor of warfarin dosage adjustment in Korean patients. Arch. Pharmacol. Res. (2003) 26(11):967-972.
  • WADELIUS M, SORLIN K, WALLERMAN O etal.: Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J. (2004) 4(1):40-48.
  • PEYVANDI F, SPREAFICO M, SIBONISM, MOIA M, MANNUCCIPM: CYP2C9 genotypes and dose requirements during the induction phase of oral anticoagulant therapy. Clin. Pharmacol. Ther. (2004) 75(3):198-203.
  • REDMAN AR, DICKMANN LJ, KIDDRS, GOLDSTEIN JA, RITCHIEDM, HON YY: CYP2C9 genetic polymorphisms and warfarin. Clin. App. Thromb.-Hemost. (2004) 10(2):149-154.
  • SHIKATA E, IEIRI I, ISHIGURO S etal.: Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and -glutamyl carboxylase) gene variants with warfarin sensitivity. Blood (2004) 103(7):2630-2635.
  • JOFFE HV, XU RL, JOHNSON FB, LONGTINE J, KUCHER N, GOLDHABER SZ: Warfarin dosing and cytochrome P4502C9 polymorphisms. Thromb. Haemost. (2004) 91(6):1123-1128.
  • PCHELINA SN, SIROTKINA OV, TARASKINA AE, VAVILOVA TV, SHWARZMAN AL, SCHWARTZ EI: The frequency of cytochrome P450 2C9 genetic variants in the Russian population and their associations with individual sensitivity to warfarin therapy. Thromb. Res. (2005) 115(3):199-203.
  • HERMAN D, LOCATELLI I, GRABNARI etal.: Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J. (2005) 5(3):193-202.
  • PALARETI G, LEGNANI C, GUAZZALOCA G etal.: Risks factors for highly unstable response to oral anticoagulation: a case-control study. Br. J. Haematol. (2005) 129(1):72-78.
  • HILLMAN MA, WILKE RA, YALE SH etal.: A prospective, randomized pilot trial of model-based warfarin dose initiation using CYP2C9 genotype and clinical data. Clin. Med. Res. (2005) 3(3):137-145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.