196
Views
17
CrossRef citations to date
0
Altmetric
Review

Mitochondria: new drug targets for oxidative stress-induced diseases

, &
Pages 71-79 | Published online: 01 Feb 2006

Bibliography

  • CASHMAN JR: Monoamine oxidase and flavin-containing monooxygenases. In: Biotransformation. FP Guengerich (Ed.), Elsevier, New York, USA (1997):69-96.
  • SINGER TP, SALACH JI, CASTAGNOLIN Jr, TREVOR A: Interactions of the neurotoxic amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine with monoamine oxidases. Biochem. J. (1986) 235:785-789.
  • JAVITCH J, DAMATO R, NYE J, JAVITCH J: Parkinsonism-inducing neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. USA (1985) 82:2173-2177.
  • ANDERS MW, DEKANT W: Glutathione-dependent bioactivation of haloalkenes. Ann. Rev. Pharmacol. Toxicol. (1998) 38:501-537.
  • SHERRATT HSA: Hypoglycin, the famous toxin of the unripe Jamaican ackee fruit. Trends Pharmacol. Sci. (1986) 7:186-191.
  • BJORGE SM, BAILLIE TA: Studies on the -oxidation of valproic acid in rat liver mitochondrial preparations. Drug Metab. Dispos. (1991) 19:823-829.
  • HANLEY PJ, GOPALAN KV, LAREAURA, SRIVASTAVA DK, VONMELTZER M, DAUT J: -Oxidation of 5-hydroxydecanoate, a putative blocker of mitochondrial ATP-sensitive potassium channels. J. Physiol. Paris (2003) 547:387-393.
  • AICHER TD, BEBERNITZ GR, BELLPA etal.: Hypoglycemic prodrugs of 4-(2,2-dimethyl-1-oxopropyl)benzoic acid. J. Med. Chem. (1999) 42:153-163.
  • CLEMENT B, LOPIAN K: Characterization of invitro biotransformation of new, orally active, direct thrombin inhibitor ximelagatran, an amidoxime and ester prodrug. Drug Metab. Dispos. (2003) 31:645-651.
  • ANDERSSON S, HOFMANN Y, NORDLING A et al.: Characterization and partial purification of the rat and human enzyme systems active in the reduction of N-hydroxymelagatran and benzamidoxime. Drug Metab. Dispos. (2005) 33:570-578.
  • BROOKES PS, YOON Y, ROBOTHAMJL, ANDERS MW, SHEUSS: Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. (2004) 287:C817-C833.
  • SCHEFFLER IE: A century of mitochondrial research: achievements and perspectives. Mitochondrion (2000) 1:3-31.
  • LUFT R, IKKOS D, PALMIERI G, ERNSTER L, AFZELIUS B: A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J. Clin. Invest. (1962) 41:1776-1804.
  • DIMAURO S, SCHON EA: Mitochondrial respiratory-chain diseases. N. Engl. J. Med. (2003) 348:2656-2668.
  • WALLACE DC: Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science (1992) 256:628-632.
  • REED JC: Mechanisms of apoptosis. Am. J. Pathol. (2000) 157:1415-1430.
  • UEDA S, MASUTANI H, NAKAMURAH, TANAKA T, UENO M, YODOI J: Redox control of cell death. Antioxid. Redox Signal. (2002) 4:405-414.
  • ADRIE C, BACHELET M, VAYSSIER-TAUSSAT M etal.: Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am. J. Respir. Crit. Care Med. (2001) 164:389-395.
  • DELOGU G, MORETTI S, FAMULAROG etal.: Mitochondrial perturbations and oxidant stress in lymphocytes from patients undergoing surgery and general anesthesia. Arch. Surg. (2001) 136:1190-1196.
  • IWATA S, TAKI Y, KAWAI Y, KANAI M, TAKABAYASHI A: Mitochondrial membrane potential is reduced in peripheral natural killer cells following partial hepatectomy. Immunol. Lett. (2002) 82:225-233.
  • GIBSON BW: The human mitochondrial proteome: oxidative stress, protein modifications and oxidative phosphorylation. Int. J. Biochem. Cell Biol. (2005) 37:927-934.
  • SCHRINER SE, LINFORD NJ, MARTINGM etal.: Extension of murine life span by overexpression of catalase targeted to mitochondria. Science (2005) 308:1909-1911.
  • QUADRILATERO J, HOFFMAN-GOETZ L: N-Acetyl-l-cysteine prevents exercise-induced intestinal lymphocyte apoptosis by maintaining intracellular glutathione levels and reducing mitochondrial membrane depolarization. Biochem. Biophys. Res. Commun. (2004) 319:894-901.
  • HUGHES G, MURPHY MP, LEDGERWOOD EC: Mitochondrial reactive oxygen species regulate the temporal activation of nuclear factor-B to modulate tumour necrosis factor-induced apoptosis: evidence from mitochondria-targeted antioxidants. Biochem. J. (2005) 389:83-89.
  • ANDELA VB, ALTUWAIJRI S, WOOD J, ROSIER RN: Inhibition of -oxidative respiration is a therapeutic window associated with the cancer chemo-preventive activity of PPAR agonists. FEBS Lett. (2005) 579:1765-1769.
  • TERMAN A, DALEN H, EATON JW, NEUZIL J, BRUNK UT: Aging of cardiac myocytes in culture: oxidative stress, lipofuscin accumulation, and mitochondrial turnover. Ann. NY Acad. Sci. (2004) 1019:70-77.
  • FINKEL T: Redox-dependent signal transduction. FEBS Lett. (2000) 476:52-54.
  • TURRENS JF: Mitochondrial formation of reactive oxygen species. J. Physiol. Paris (2003) 552:335-344.
  • ST-PIERRE J, BUCKINGHAM JA, ROEBUCK SJ, BRAND MD: Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. (2002) 277:44784-44790.
  • STARKOV AA, FISKUM G, CHINOPOULOS C etal.: Mitochondrial -ketoglutarate dehydrogenase complex generates reactive oxygen species. J. Neurosci. (2004) 24:7779-7788.
  • HALLIWELL B: Antioxidants: the basics what they are and how to evaluate them. Adv. Pharmacol. (1997) 38:3-20.
  • WEISSIG V: Mitochondrial-targeted drug and DNA delivery. Crit. Rev. Ther. Drug Carrier Syst. (2003) 20:1-62.
  • WEISSIG V, BODDAPATI SV, DSOUZAGGM, CHENG SM: Targeting of low-molecular weight drugs to mammalian mitochondria. Drug Design Rev.-Online (2004) 1:15-28.
  • MURATOVSKA A, LIGHTOWLERS RN, TAYLOR RW etal.: Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res. (2001) 29:1852-1863.
  • ROSANIA GR: Supertargeted chemistry: identifying relationships between molecular structures and their sub-cellular distribution. Curr. Top. Med. Chem. (2003) 3:659-685.
  • ROSS MF, KELSO GF, BLAIKIE FH etal.: Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Moscow) (2005) 70:222-230.
  • SMITH RA, PORTEOUS CM, COULTER CV, MURPHY MP: Selective targeting of an antioxidant to mitochondria. Eur. J. Biochem. (1999) 263:709-716.
  • JAUSLIN ML, MEIER T, SMITH RA, MURPHY MP: Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J. (2003) 17:1972-1974.
  • DHANASEKARAN A, KOTAMRAJU S, KALIVENDI SV etal.: Supplementation of endothelial cells with mitochondria-targeted antioxidants inhibit peroxide-induced mitochondrial iron uptake, oxidative damage, and apoptosis. J. Biol. Chem. (2004) 279:37575-37587.
  • KELSO GF, PORTEOUS CM, COULTER CV etal.: Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J. Biol. Chem. (2001) 276:4588-4596.
  • ASIN-CAYUELA J, MANAS AR, JAMESAM, SMITH RA, MURPHY MP: Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant. FEBS Lett. (2004) 571:9-16.
  • ECHTAY KS, MURPHY MP, SMITH RA, TALBOT DA, BRAND MD: Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. J. Biol. Chem. (2002) 277:47129-47135.
  • SARETZKI G, MURPHY MP, VONZGLINICKI T: MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell (2003) 2:141-143.
  • ADLAM VJ, HARRISON JC, PORTEOUS CM etal.: Targeting an antioxidant to mitochondria decreases cardiac ischemiareperfusion injury. FASEB J. (2005) 19:1088-1095.
  • MURPHY MP, ECHTAY KS, BLAIKIEFH etal.: Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: studies using a mitochondria-targeted spin trap derived from -phenyl-N-tert-butylnitrone. J. Biol. Chem. (2003) 278:48534-48545.
  • MUGESH G, DU MONT WW, SIES H: Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev. (2001) 101:2125-2179.
  • FILIPOVSKA A, KELSO GF, BROWNSE, BEER SM, SMITH RA, MURPHY MP: Synthesis and characterization of a triphenylphosphonium-conjugated peroxidase mimetic: insights into the interaction of ebselen with mitochondria. J. Biol. Chem. (2005) 280:24113-24126.
  • ZHAO K, ZHAO GM, WU D etal.: Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J. Biol. Chem. (2004) 279:34682-34690.
  • SCHILLER PW, NGUYEN TM-D, BEREZOWSKA I etal.: Synthesis and invitro opioid activity profiles of DALDA analogues. Eur. J. Med. Chem. (2000) 35:895-901.
  • ZHAO K, LUO G, ZHAO GM, SCHILLER PW, SZETO HH: Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide. J. Pharmacol. Exp. Ther. (2003) 304:425-432.
  • SKULACHEV VP: How to clean the dirtiest place in the cell: cationic antioxidants as intramitochondrial ROS scavengers. IUBMB Life (2005) 57:305-310.
  • TANIGUCHI N, HIGASHI T, SAKAMOTO Y, MEISTER A: Book Glutathione Centennial. Molecular Perspectives and Clinical Implications. Academic Press, San Diego, US (1989).
  • CHEN Z, PUTT DA, LASH LH: Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria: further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mitochondrial glutathione transport. Arch. Biochem. Biophys. (2000) 373:193-202.
  • SHAN X, JONES DP, HASHMI M, ANDERS MW: Selective depletion of mitochondrial glutathione concentrations by (R,S)-3-hydroxy-4-pentenoate potentiates oxidative cell death. Chem. Res. Toxicol. (1993) 6:75-81.

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.