632
Views
52
CrossRef citations to date
0
Altmetric
Reviews

Integration of in silico and in vitro platforms for pharmacokinetic–pharmacodynamic modeling

, PhD, &
Pages 1063-1081 | Published online: 12 Jun 2010

Bibliography

  • Carlson TJ, Fisher MB. Recent advances in high throughput screening for ADME properties. Comb Chem High Throughput Screen 2008;11(3):258-64
  • Lahoz A, Gombau L, Donato MT, In vitro ADME medium/high-throughput screening in drug preclinical development. Mini Rev Med Chem 2006;6(9):1053-62
  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004;3(8):711-5
  • Dingemanse J, Appel-Dingemanse S. Integrated pharmacokinetics and pharmacodynamics in drug development. Clin Pharmacokinet 2007;46(9):713-37
  • Meibohm B, Derendorf H. Pharmacokinetic/pharmacodynamic studies in drug product development. J Pharm Sci 2002;91(1):18-31
  • Danhof M, de Lange EC, Della Pasqua OE, Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drug research. Trends Pharmacol Sci 2008;29(4):186-91
  • Aarons L. Physiologically based pharmacokinetic modelling: a sound mechanistic basis is needed. Br J Clin Pharmacol 2005;60(6):581-3
  • Breslauer DN, Lee PJ, Lee LP. Microfluidics-based systems biology. Mol Biosyst 2006;2(2):97-112
  • Park TH, Shuler ML. Integration of cell culture and microfabrication technology. Biotechnol Prog 2003;19(2):243-53
  • Sin A, Chin KC, Jamil MF, The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol Prog 2004;20(1):338-45
  • Agoram BM, Martin SW, van der Graaf PH. The role of mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modelling in translational research of biologics. Drug Discov Today 2007;12(23-24):1018-24
  • Bonate PL. Pharmacokinetic-pharmacodynamic modeling and simulation. [S.l.]. Springer Science+Business Media, Inc.; 2006
  • Csajka C, Verotta D. Pharmacokinetic-pharmacodynamic modelling: history and perspectives. J Pharmacokinet Pharmacodyn 2006;33(3):227-79
  • Derendorf H, Lesko LJ, Chaikin P, Pharmacokinetic/pharmacodynamic modeling in drug research and development. J Clin Pharmacol 2000;40(12 Pt 2):1399-418
  • Meibohm B, Derendorf H. Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int J Clin Pharmacol Ther 1997;35(10):401-13
  • Antoniades C, Antonopoulos AS, Tousoulis D, Relationship between the pharmacokinetics of levosimendan and its effects on cardiovascular system. Curr Drug Metab 2009;10(2):95-103
  • McCarley KD, Bunge AL. Pharmacokinetic models of dermal absorption. J Pharm Sci 2001;90(11):1699-719
  • Czock D, Keller F, Rasche FM, Haussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet 2005;44(1):61-98
  • Materi W, Wishart DS. Computational systems biology in drug discovery and development: methods and applications. Drug Discov Today 2007;12(7-8):295-303
  • Schuhmann G, Fichtl B, Kurz H. Prediction of drug distribution in vivo on the basis of in vitro binding data. Biopharm Drug Dispos 1987;8(1):73-86
  • Poulin P, Theil FP. Prediction of pharmacokinetics prior to in vivo studies. II. Generic physiologically based pharmacokinetic models of drug disposition. J Pharm Sci 2002;91(5):1358-70
  • Iwatsubo T, Hirota N, Ooie T, Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol Ther 1997;73(2):147-71
  • Garg A, Balthasar JP. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 2007;34(5):687-709
  • Ahmad AM. Recent advances in pharmacokinetic modeling. Biopharm Drug Dispos 2007;28(3):135-43
  • Jonsson F, Johanson G. The Bayesian population approach to physiological toxicokinetic-toxicodynamic models – an example using the MCSim software. Toxicol Lett 2003;138(1-2):143-50
  • Mager DE, Wyska E, Jusko WJ. Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 2003;31(5):510-8
  • Ritchie RH, Morgan DJ, Horowitz JD. Myocardial effect compartment modeling of metoprolol and sotalol: importance of myocardial subsite drug concentration. J Pharm Sci 1998;87(2):177-82
  • Valle M, Garrido MJ, Pavon JM, Pharmacokinetic-pharmacodynamic modeling of the antinociceptive effects of main active metabolites of tramadol, (+)-O-desmethyltramadol and (-)-O-desmethyltramadol, in rats. J Pharmacol Exp Ther 2000;293(2):646-53
  • Czock D, Keller F. Mechanism-based pharmacokinetic-pharmacodynamic modeling of antimicrobial drug effects. J Pharmacokinet Pharmacodyn 2007;34(6):727-51
  • Kearns CM, Gianni L, Egorin MJ. Paclitaxel pharmacokinetics and pharmacodynamics. Semin Oncol 1995;22(3 Suppl 6):16-23
  • Jusko WJ. Pharmacodynamics of chemotherapeutic effects: dose-time-response relationships for phase-nonspecific agents. J Pharm Sci 1971;60(6):892-5
  • Lobo ED, Balthasar JP. Pharmacokinetic-pharmacodynamic modeling of methotrexate-induced toxicity in mice. J Pharm Sci 2003;92(8):1654-64
  • Karlsson MO, Anehall T, Friberg LE, Pharmacokinetic/pharmacodynamic modelling in oncological drug development. Basic Clin Pharmacol Toxicol 2005;96(3):206-11
  • Perez-Urizar J, Granados-Soto V, Flores-Murrieta FJ, Castaneda-Hernandez G. Pharmacokinetic-pharmacodynamic modeling: why? Arch Med Res 2000;31(6):539-45
  • Rajman I. PK/PD modelling and simulations: utility in drug development. Drug Discov Today 2008;13(7-8):341-6
  • Nong A, Tan YM, Krolski ME, Bayesian calibration of a physiologically based pharmacokinetic/pharmacodynamic model of carbaryl cholinesterase inhibition. J Toxicol Environ Health A 2008;71(20):1363-81
  • Timchalk C, Kousba AA, Poet TS. An age-dependent physiologically based pharmacokinetic/pharmacodynamic model for the organophosphorus insecticide chlorpyrifos in the preweanling rat. Toxicol Sci 2007;98(2):348-65
  • Timchalk C, Nolan RJ, Mendrala AL, A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans. Toxicol Sci 2002;66(1):34-53
  • Timchalk C, Poet TS. Development of a physiologically based pharmacokinetic and pharmacodynamic model to determine dosimetry and cholinesterase inhibition for a binary mixture of chlorpyrifos and diazinon in the rat. Neurotoxicology 2008;29(3):428-43
  • Sung JH, Dhiman A, Shuler ML. A combined pharmacokinetic-pharmacodynamic (PK-PD) model for tumor growth in the rat with UFT administration. J Pharm Sci 2009;98(5):1885-904
  • Sims CE, Allbritton NL. Analysis of single mammalian cells on-chip. Lab Chip 2007;7(4):423-40
  • El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature 2006;442(7101):403-11
  • Rutkowski JM, Swartz MA. A driving force for change: interstitial flow as a morphoregulator. Trends Cell Biol 2007;17(1):44-50
  • Kietzmann T, Dimova EY, Flugel D, Scharf JG. Oxygen: modulator of physiological and pathophysiological processes in the liver. Z Gastroenterol 2006;44(1):67-76
  • Keenan TM, Folch A. Biomolecular gradients in cell culture systems. Lab Chip 2008;8(1):34-57
  • Khamsi R. Labs on a chip: meet the stripped down rat. Nature 2005;435(7038):12-3
  • Sung JH, Shuler ML. Pharmacokinetic-pharmacodynamic models on a chip. In: Nahmias Y, S Bhatia, editors. Methods in bioengineering: microdevices in biology and medicine. Artech House; 2009
  • Ma B, Zhang G, Qin J, Lin B. Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device. Lab Chip 2009;9(2):232-8
  • Koebe HG, Deglmann CJ, Metzger R, In vitro toxicology in hepatocyte bioreactors-extracellular acidification rate (EAR) in a target cell line indicates hepato-activated transformation of substrates. Toxicology 2000;154(1-3):31-44
  • Lee MY, Kumar RA, Sukumaran SM, Three-dimensional cellular microarray for high-throughput toxicology assays. Proc Natl Acad Sci USA 2008;105(1):59-63
  • Vozzi F, Heinrich JM, Bader A, Ahluwalia AD. Connected culture of murine hepatocytes and HUVEC in a multicompartmental bioreactor. Tissue Eng Part A 2009;15(6):1291-9
  • Zhang C, Zhao Z, Abdul Rahim NA, Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 2009;9(22):3185-92
  • Viravaidya K, Sin A, Shuler ML. Development of a microscale cell culture analog to probe naphthalene toxicity. Biotechnol Prog 2004;20(1):316-23
  • Viravaidya K, Shuler ML. Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol Prog 2004;20(2):590-7
  • Tatosian DA, Shuler ML. A novel system for evaluation of drug mixtures for potential efficacy in treating multidrug resistant cancers. Biotechnol Bioeng 2009;103(1):187-98
  • Chao P, Maguire T, Novik E, Evaluation of a microfluidic based cell culture platform with primary human hepatocytes for the prediction of hepatic clearance in human. Biochem Pharmacol 2009;78(6):625-32
  • Sung JH, Shuler ML. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 2009;9(10):1385-94
  • Sung JH, Kam C, Shuler ML. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 2010;10(4):446-55
  • Brandon EF, Raap CD, Meijerman I, An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol 2003;189(3):233-46
  • Pelkonen O, Turpeinen M. In vitro–in vivo extrapolation of hepatic clearance: biological tools, scaling factors, model assumptions and correct concentrations. Xenobiotica 2007;37(10-11):1066-89
  • Nahmias Y, Berthiaume F, Yarmush ML. Integration of technologies for hepatic tissue engineering. Adv Biochem Eng Biotechnol 2007;103:309-29
  • Baudoin R, Corlu A, Griscom L, Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity. Toxicol In Vitro 2007;21(4):535-44
  • Oinonen T, Lindros KO. Zonation of hepatic cytochrome P-450 expression and regulation. Biochem J 1998;329(Pt 1):17-35
  • Camp JP, Capitano AT. Induction of zone-like liver function gradients in HepG2 cells by varying culture medium height. Biotechnol Prog 2007;23(6):1485-91
  • Allen JW, Khetani SR, Bhatia SN. In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol Sci 2005;84(1):110-9
  • Leclerc E, Sakai Y, Fujii T. Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane). Biomed Microdevices 2003;5(2):109-14
  • Leclerc E, Sakai Y, Fujii T. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes. Biotechnol Prog 2004;20(3):750-5
  • Leclerc E, Sakai Y, Fujii T. Perfusion culture of fetal human hepatocytes in microfluidic environments. Biochem Eng J 2004;20(1):143-8
  • Powers MJ, Domansky K, Kaazempur-Mofrad MR, A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng 2002;78(3):257-69
  • Powers MJ, Janigian DM, Wack KE, Functional behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor. Tissue Eng 2002;8(3):499-513
  • Sivaraman A, Leach JK, Townsend S, A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr Drug Metab 2005;6(6):569-91
  • Domansky K, Inman W, Serdy J, Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 2010;10(1):51-8
  • Bhatia SN, Balis UJ, Yarmush ML, Toner M. Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 1999;13(14):1883-900
  • Khetani SR, Bhatia SN. Microscale culture of human liver cells for drug development. Nat Biotechnol 2008;26(1):120-6
  • Humes HD, Fissell WH, Tiranathanagul K. The future of hemodialysis membranes. Kidney Int 2006;69(7):1115-9
  • Clark WR. Hemodialyzer membranes and configurations: a historical perspective. Semin Dial 2000;13(5):309-11
  • Borenstein JT, Weinberg EJ, Orrick BK, Microfabrication of three-dimensional engineered scaffolds. Tissue Eng 2007;13(8):1837-44
  • Leonard EF, Cortell S, Vitale NG. Membraneless dialysis – is it possible? Contrib Nephrol 2005;149:343-53
  • Leonard EF, West AC, Shapley NC, Larsen MU. Dialysis without membranes: how and why? Blood Purif 2004;22(1):92-100
  • Nissenson AR, Ronco C, Pergamit G, Continuously functioning artificial nephron system: the promise of nanotechnology. Hemodial Int 2005;9(3):210-7
  • Fissell WH, Humes HD, Fleischman AJ, Roy S. Dialysis and nanotechnology: now, 10 years, or never? Blood Purif 2007;25(1):12-7
  • Humes HD, Weitzel WF, Bartlett RH, Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure. Kidney Int 2004;66(4):1578-88
  • Baudoin R, Griscom L, Monge M, Development of a renal microchip for in vitro distal tubule models. Biotechnol Prog 2007;23(5):1245-53
  • Gura V, Ronco C, Davenport A. The wearable artificial kidney, why and how: from holy grail to reality. Semin Dial 2009;22(1):13-7
  • Weinberg E, Kaazempur-Mofrad M, Borenstein J. Concept and computational design for a bioartificial nephron-on-a-chip. Int J Artif Organs 2008;31(6):508-14
  • Newhouse MT. Tennis anyone? The lungs as a new court for systemic therapy. CMAJ 1999;161(10):1287-8
  • Wnek GE, Bowlin GL. Encyclopedia of biomaterials and biomedical engineering. Marcel Dekker, New York; 2004
  • Lee JK, Kung HH, Mockros LF. Microchannel technologies for artificial lungs: (1) theory. ASAIO J 2008;54(4):372-82
  • Kung MC, Lee JK, Kung HH, Mockros LF. Microchannel technologies for artificial lungs: (2) screen-filled wide rectangular channels. ASAIO J 2008;54(4):383-9
  • Lee JK, Kung MC, Kung HH, Mockros LF. Microchannel technologies for artificial lungs: (3) open rectangular channels. ASAIO J 2008;54(4):390-5
  • Burgess KA, Hu HH, Wagner WR, Federspiel WJ. Towards microfabricated biohybrid artificial lung modules for chronic respiratory support. Biomed Microdevices 2009;11(1):117-27
  • Bohets H, Annaert P, Mannens G, Strategies for absorption screening in drug discovery and development. Curr Top Med Chem 2001;1(5):367-83
  • Balimane PV, Han YH, Chong S. Current industrial practices of assessing permeability and P-glycoprotein interaction. AAPS J 2006;8(1):E1-13
  • Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 2001;46(1-3):27-43
  • Polentarutti BI, Peterson AL, Sjoberg AK, Evaluation of viability of excised rat intestinal segments in the Ussing chamber: investigation of morphology, electrical parameters, and permeability characteristics. Pharm Res 1999;16(3):446-54
  • Tukker JJ. Characterization of transport over epithelial barriers. In: Lehr CM, editor. Cell culture models of biological barriers in vitro test systems for drug absorption and delivery. Taylor and Francis, London; 2002. p. 52-61
  • Mahler GJ, Shuler ML, Glahn RP. Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J Nutr Biochem 2009;20(7):494-502
  • Choi S, Nishikawa M, Sakoda A, Sakai Y. Feasibility of a simple double-layered coculture system incorporating metabolic processes of the intestine and liver tissue: application to the analysis of benzo[a]pyrene toxicity. Toxicol In Vitro 2004;18(3):393-402
  • Lau YY, Chen YH, Liu TT, Evaluation of a novel in vitro Caco-2 hepatocyte hybrid system for predicting in vivo oral bioavailability. Drug Metab Dispos 2004;32(9):937-42
  • Choi SH, Fukuda O, Sakoda A, Sakai Y. Enhanced cytochrome P450 capacities of Caco-2 and HepG2 cells in new coculture system under the static and perfused conditions: evidence for possible organ-to-organ interaction against exogenous stimuli. Mat Sci Eng 2004;24(3):333
  • Mahler GJ, Esch MB, Glahn RP, Shuler ML. Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol Bioeng 2009;104(1):193-205
  • Zarbock A, Ley K. Mechanisms and consequences of neutrophil interaction with the endothelium. Am J Pathol 2008;172(1):1-7
  • Stoltz JF, Muller S, Kadi A, Introduction to endothelial cell biology. Clin Hemorheol Microcirc 2007;37(1-2):5-8
  • Blow N. Cell migration: our protruding knowledge. Nat Methods 2007;4(7):589-93
  • Chrobak KM, Potter DR, Tien J. Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 2006;71(3):185-96
  • Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng 2005;11(1-2):302-9
  • Golden AP, Tien J. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 2007;7(6):720-5
  • Mager DE, Woo S, Jusko WJ. Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab Pharmacokinet 2009;24(1):16-24
  • Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 2006;103(8):2480-7
  • Kang L, Chung BG, Langer R, Khademhosseini A. Microfluidics for drug discovery and development: from target selection to product lifecycle management. Drug Discov Today 2008;13(1-2):1-13
  • Sung JH, Shuler ML. In vitro microscale systems for systematic drug toxicity study. Bioprocess Biosyst Eng 2009;33(1):5-19
  • Kim L, Toh YC, Voldman J, Yu H. A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip 2007;7(6):681-94
  • Andersson H, van den Berg A. Where are the biologists? Lab Chip 2006;6(4):467-70
  • Meyvantsson I, Warrick JW, Hayes S, Automated cell culture in high density tubeless microfluidic device arrays. Lab Chip 2008;8(5):717-24
  • Kang JH, Kim YC, Park JK. Analysis of pressure-driven air bubble elimination in a microfluidic device. Lab Chip 2008;8(1):176-8
  • Sung JH, Shuler ML. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap. Biomed Microdevices 2009;11(4):731-8
  • Novak L, Neuzil P, Pipper J, An integrated fluorescence detection system for lab-on-a-chip applications. Lab Chip 2007;7(1):27-9
  • Oh TI, Sung JH, Tatosian DA, Real-time fluorescence detection of multiple microscale cell culture analog devices in situ. Cytometry A 2007;71(10):857-65
  • Sung JH, Choi JR, Kim D, Shuler ML. Fluorescence optical detection in situ for real-time monitoring of cytochrome P450 enzymatic activity of liver cells in multiple microfluidic devices. Biotechnol Bioeng 2009;104(3):516-25
  • Yu H, Alexander CM, Beebe DJ. A plate reader-compatible microchannel array for cell biology assays. Lab Chip 2007;7(3):388-91
  • Tatosian DA, Shuler ML, Kim D. Portable in situ fluorescence cytometry of microscale cell-based assays. Opt Lett 2005;30(13):1689-91
  • Asphahani F, Zhang M. Cellular impedance biosensors for drug screening and toxin detection. Analyst 2007;132(9):835-41
  • Xing JZ, Zhu L, Gabos S, Xie L. Microelectronic cell sensor assay for detection of cytotoxicity and prediction of acute toxicity. Toxicol In Vitro 2006;20(6):995-1004
  • Natarajan A, Molnar P, Sieverdes K, Microelectrode array recordings of cardiac action potentials as a high throughput method to evaluate pesticide toxicity. Toxicol In Vitro 2006;20(3):375-81
  • Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res 1993;10(7):1093-5
  • Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995;75(3):519-60
  • Lalor PF, Adams DH. Adhesion of lymphocytes to hepatic endothelium. Mol Pathol 1999;52(4):214-9
  • Allen JW, Bhatia SN. Formation of steady-state oxygen gradients in vitro: application to liver zonation. Biotechnol Bioeng 2003;82(3):253-62
  • Jang KJ, Suh KY. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 2010;10(1):36-42
  • Cai Z, Xin J, Pollock DM, Pollock JS. Shear stress-mediated NO production in inner medullary collecting duct cells. Am J Physiol Renal Physiol 2000;279(2):F270-4
  • Du Z, Duan Y, Yan Q, Mechanosensory function of microvilli of the kidney proximal tubule. Proc Natl Acad Sci USA 2004;101(35):13068-73
  • Liu W, Xu S, Woda C, Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol 2003;285(5):F998-F1012
  • Dierickx PW, De Wachter DS, De Somer F, Mass transfer characteristics of artificial lungs. ASAIO J 2001;47(6):628-33
  • Bronzino JD. The biomedical engineering handbook. 2nd edition. CRC Press, Boca Raton, FL; 2000
  • DeSesso JM, Jacobson CF. Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food Chem Toxicol 2001;39(3):209-28
  • Brand RM, Hannah TL, Mueller C, A novel system to study the impact of epithelial barriers on cellular metabolism. Ann Biomed Eng 2000;28(10):1210-7
  • Wu QD, Wang JH, Condron C, Human neutrophils facilitate tumor cell transendothelial migration. Am J Physiol Cell Physiol 2001;280(4):C814-22
  • Ngai AC, Winn HR. Modulation of cerebral arteriolar diameter by intraluminal flow and pressure. Circ Res 1995;77(4):832-40
  • Frangos JA, McIntire LV, Eskin SG. Shear stress induced stimulation of mammalian cell metabolism. Biotechnol Bioeng 1988;32(8):1053-60
  • Brown TD. Techniques for mechanical stimulation of cells in vitro: a review. J Biomech 2000;33(1):3-14
  • Slattery MJ, Dong C. Neutrophils influence melanoma adhesion and migration under flow conditions. Int J Cancer 2003;106(5):713-22

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.