529
Views
115
CrossRef citations to date
0
Altmetric
Reviews

Reversible and irreversible protein glutathionylation: biological and clinical aspects

, PhD DSc (Professor of Biochemistry and Molecular Biology) , , PhD (Professor of Biochemistry and Molecular Biology) & , PhD (Professor of Pharmaceutical Sciences)
Pages 891-910 | Published online: 11 May 2011

Bibliography

  • Meister A. Biochemistry of Glutathione. In: Greenberg DM, editor, Metabolism of Sulfur Compounds. 3rd edition. Volume 7. Metabolic Pathways; 1975. p. 101-88
  • Meister A, Anderson MA. Glutathione. Annu Rev Biochem 1983;52:711-60
  • Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med 1999;27:916-21
  • Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 2001;30:1191-212
  • Jacob C, Giles GI, Giles NM, Sulfur and selenium: the role of oxidation state in protein structure and function. Angew Chem Int Ed Engl 2003;42:4742-58
  • Shelton MD, Chock PB, Mieyal JJ. Glutaredoxin: role in reversible protein S-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid Redox Signal 2005;7:348-66
  • Townsend DM. S-Glutathionylation: indicator of cell stress and regulator of the unfolded protein response. Mol Interv 2007;7:313-24
  • Mieyal JJ, Gallogly MM, Qanungo S, Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 2008;10:1941-88
  • Dalle-Donne I, Rossi R, Colombo G, Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci 2009;34:85-96
  • Dalle-Donne I, Colombo G, Gagliano N, S-Glutathiolation in life and death decisions of the cell. Free Radic Res 2010;10:545-52
  • Cooper AJL, Hanigan MH. Enzymes involved in processing of glutathione conjugates. In: McQueen CA, Guengerich FP, editors, Comprehensive Toxicology. 2nd edition. Volume 4. Biotransformations, Elsevier Press, Oxford, 2010. p. 323-65
  • Markovic J, García-Gimenez JL, Gimeno A, Role of glutathione in cell nucleus. Free Radic Res 2010;44:721-33
  • Diaz Vivancos P, Wolff T, Markovic J, A nuclear glutathione cycle within the cell cycle. Biochem J 2010;431:169-78
  • Garcia J, Han D, Sancheti H, Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates. J Biol Chem 2010;285:39646-56
  • Tew KD, Townsend DM. Redox platforms in cancer drug discovery and development. Curr Opin Chem Biol 2010;15:156-61
  • Cooper AJL, Pulsinelli WA, Duffy TE. Glutathione and ascorbate during ischemia and postischemic reperfusion in rat brain. J Neurochem 1980;35:1242-5
  • Akerboom TP, Bilzer M, Sies H. The relationship of biliary glutathione disulfide efflux and intracellular glutathione disulfide content in perfused rat liver. J Biol Chem 1982;257:4248-52
  • Rodkey FL. Oxidation-reduction potentials of the triphosphopyridine nucleotide system. J Biol Chem 1955;213:777-86
  • Harrison FE, May JM. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med 2009;46:719-30
  • Hofmann B, Hecht HJ, Flohe L. Peroxiredoxins. Biol Chem 2002;383:347-64
  • Mauri P, Benazzi L, Flohe L, Versatility of selenium catalysis in PHGPx unraveled by LC/ESI-MS/MS. Biol Chem 2003;384:575-88
  • Fratelli M, Goodwin LO, Orom UA, Gene expression profiling reveals a signaling role of glutathione in redox regulation. Proc Natl Acad Sci USA 2005;102:13998-4003
  • Seres T, Ravichandran V, Moriguchi T, Protein S-thiolation and dethiolation during the respiratory burst in human monocytes. A reversible post-translational modification with potential for buffering the effects of oxidant stress. J Immunol 1996;156:1973-80
  • Gallogly MM, Starke DW, Leonberg AK, Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles. Biochemistry 2008;47:11144-57
  • Starke DW, Chock PB, Mieyal JJ. Glutathione-thiyl radical scavenging and transferase properties of human glutaredoxin (thioltransferase). Potential role in redox signal transduction. J Biol Chem 2003;278:14607-13
  • Lei K, Townsend DM, Tew KD. Protein cysteine sulfinic acid reductase (sulfiredoxin) as a regulator of cell proliferation and drug response. Oncogene 2008;27:4877-87
  • Jonsson TJ, Murray MS, Johnson LC, Reduction of cysteine sulfinic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfinic phosphoryl ester intermediate. J Biol Chem 2008;283:23846-51
  • Rehder DS, Borges CR. Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding. Biochemistry 2010;49:7748-55
  • Boot-Handford RP, Briggs MD. The unfolded protein response and its relevance to connective tissue diseases. Cell Tissue Res 2010;339:197-211
  • Ranaivoson FM, Neiers F, Kauffmann B, Methionine sulfoxide reductase B displays a high level of flexibility. J Mol Biol 2009;394:83-93
  • Gates KS, Tanner JJ, Parsons ZD, Redox regulation of protein tyrosine phosphatases: Structural and chemical aspects. Antioxid Redox Signal 2010. [Epub ahead of print]
  • Leonard SE, Reddie KG, Carroll KS. Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem Biol 2009;4:783-99
  • Reddie KG, Seo YH, Muse WB III, A chemical approach for detecting sulfenic acid-modified proteins in living cells. Mol Biosyst 2008;4:521-31
  • Seth D, Stamler JS. The SNO-proteome: causation and classifications. Curr Opin Chem Biol 2010;15:129-36
  • Jarry A, Charrier L, Bou-Hanna C, Position in cell cycle controls the sensitivity of colon cancer cells to nitric oxide-dependent programmed cell death. Cancer Res 2004;64:4227-34
  • Rossig L, Fichtlscherer B, Breitschopf K, Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem 1999;274:6823-6
  • Klein JA, Ackerman SL. Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 2003;111:785-93
  • Huang Z, Pinto JT, Deng H, Richie JP Jr. Inhibition of caspase-3 activity and activation by protein glutathionylation. Biochem Pharmacol 2008;75:2234-44
  • Giustarini D, Milzani A, Aldini G, S-nitrosation versus S-glutathionylation of protein sulfhydryl groups by S-nitrosoglutathione. Antioxid Redox Signal 2005;7:930-9
  • Martínez-Ruiz A, Lamas S. Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences. Cardiovasc Res 2007;75:220-8
  • Foster DB, Van Eyk JE, Marban E, Redox signaling and protein phosphorylation in mitochondria: progress and prospects. J Bioenerg Biomembr 2009;41:159-68
  • Townsend DM, Tew KD. Pharmacology of a mimetic of glutathione disulfide, NOV-002. Biomed Pharmacother 2009;63:75-8
  • Findlay VJ, Townsend DM, Morris TE, A novel role for human sulfiredoxin in the reversal of glutathionylation. Cancer Res 2006;66:6800-6
  • Peltoniemi MJ, Karala AR, Jurvansuu JK, Insights into deglutathionylation reactions. Different intermediates in the glutaredoxin and protein disulfide isomerase catalyzed reactions are defined by the gamma-linkage present in glutathione. J Biol Chem 2006;281:33107-14
  • Townsend DM, Manevich Y, He L, Novel role for glutathione S-transferase pi. Regulator of protein S-glutathionylation following oxidative and nitrosative stress. J Biol Chem 2009;284:436-45
  • Schneider A, Brandt W, Wessjohann LA. Influence of pH and flanking serine on the redox potential of S-S and S-Se bridges of Cys-Cys and Cys-Sec peptides. Biol Chem 2007;388:1099-101
  • Wang PF, Flynn AJ, Naor MM, Exploring the role of the active site cysteine in human muscle creatine kinase. Biochemistry 2006;45:11464-72
  • Gopalakrishna R, Jaken S. Protein kinase C signaling and oxidative stress. Free Radic Biol Med 2000;28:1349-61
  • Liu X, Alexander C, Serrano J, Variable reactivity of an engineered cysteine at position 338 in cystic fibrosis transmembrane conductance regulator reflects different chemical states of the thiol. J Biol Chem 2006;281:8275-85
  • Singleton WC, McInnes KT, Cater MA, Role of glutaredoxin1 and glutathione in regulating the activity of the copper-transporting P-type ATPases, ATP7A and ATP7B. J Biol Chem 2010;285:27111-21
  • Gromer S, Eubel JK, Lee BL, Human selenoproteins at a glance. Cell Mol Life Sci 2005;62:2414-37
  • Huber RE, Criddle RS. Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs. Arch Biochem Biophys 1967;122:164-73
  • Wessjohann LA, Schneider A, Abbas M, Selenium in chemistry and biochemistry in comparison to sulfur. Biol Chem 2007;388:997-1006
  • Reeves MA, Hoffmann PR. The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci 2009;66:2457-78
  • Lu J, Holmgren A. Selenoproteins. J Biol Chem 2009;284:723-7
  • Sarma BK, Mugesh G. Thiol cofactors for selenoenzymes and their synthetic mimics. Org Biomol Chem 2008;6:965-74
  • Brennan JP, Miller JI, Fuller W, The utility of N,N-biotinyl glutathione disulfide in the study of protein S-glutathiolation. Mol Cell Proteomic 2006;5:215-25
  • Eaton P. Protein thiol oxidation in health and disease: techniques for measuring disulfides and related modifications in complex protein mixtures. Free Radic Biol Med 2006;40:1889-99
  • Priora R, Coppo L, Salzano S, Measurement of mixed disulfides including glutathionylated proteins. Methods Enzymol 2010;473:149-59
  • Aesif SW, Janssen-Heininger YM, Reynaert NL. Protocols for the detection of S-glutathionylated and S-nitrosylated proteins in situ. Methods Enzymol 2010;474:289-96
  • Hu Y, Wang T, Liao X, Anti-oxidative stress and beyond: multiple functions of the protein glutathionylation. Protein Pept Lett 2010;17:1234-44
  • Huang Z, Pinto JT, Deng H, Inhibition of caspase-3 activity and activation by protein glutathionylation. Biochem Pharmacol 2008;75:2234-44
  • Azam S, Jouvet N, Jilani A, Human glyceraldehyde-3-phosphate dehydrogenase plays a direct role in reactivating oxidized forms of the DNA repair enzyme APE1. J Biol Chem 2008;283:30632-41
  • Rodriguez-Pascual F, Redondo-Horcajo M, Magan-Marchal N, Glyceraldehyde-3-phosphate dehydrogenase regulates endothelin-1 expression by a novel, redox-sensitive mechanism involving mRNA stability. Mol Cell Biol 2008;28:7139-55
  • Kornberg MD, Sen N, Hara MR, GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol 2010;12:1094-100
  • Nulton-Persson AC, Starke DW, Mieyal JJ, Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status. Biochemistry 2003;42:4235-42
  • Applegate MA, Humphries KM, Szweda LI. Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid. Biochemistry 2008;47:473-8
  • Templeton DJ, Aye MS, Rady J, Purification of reversibly oxidized proteins (PROP) reveals a redox switch controlling p38 MAP kinase activity. PLoS One 2010;5:e15012
  • Cross JV, Templeton DJ. Oxidative stress inhibits MEKK1 by site-specific glutathionylation in the ATP-binding domain. Biochem J 2004;381:675-83
  • Rinna A, Torres M, Forman HJ. Stimulation of the alveolar macrophage respiratory burst by ADP causes selective glutathionylation of protein tyrosine phosphatase 1B. Free Radic Biol Med 2006;41:86-91
  • Anamika K, Garnier N, Srinivasan N. Functional diversity of human protein kinase splice variants marks significant expansion of human kinome. BMC Genomics 2009;10:622
  • Maher P. Redox control of neural function: background, mechanisms, and significance. Antioxid Redox Signal 2006;8:1941-70
  • Reynaert NL, van der Vliet A, Guala AS, Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci USA 2006;103:13086-91
  • Yusuf MA, Chuang T, Bhat GJ, Cys-141 glutathionylation of human p53: Studies using specific polyclonal antibodies in cancer samples and cell lines. Free Radic Biol Med 2010;49:908-17
  • Codutti L, van Ingen H, Vascotto C, The solution structure of DNA-free Pax-8 paired box domain accounts for redox regulation of transcriptional activity in the pax protein family. J Biol Chem 2008;283:33321-8
  • Prinarakis E, Chantzoura E, Thanos D, S-glutathionylation of IRF3 regulates IRF3-CBP interaction and activation of the IFNbeta pathway. EMBO J 2008;27:865-75
  • Franco R, Cidlowski JA. Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 2009;16:1303-14
  • Pan S, Berk BC. Glutathiolation regulates tumor necrosis factor-alpha-induced caspase-3 cleavage and apoptosis: key role for glutaredoxin in the death pathway. Circ Res 2007;100:213-19
  • Meissner F, Molawi K, Zychlinsky A. Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nat Immunol 2008;9:866-72
  • Frosali S, Leonini A, Ettorre A, Role of intracellular calcium and S-glutathionylation in cell death induced by a mixture of isothiazolinones in HL60 cells. Biochim Biophys Acta 2009;1793:572-83
  • Markovic J, Borras C, Ortega A, Glutathione is recruited into the nucleus in early phases of cell proliferation. J Biol Chem 2007;282:20416-24
  • Markovic J, Mora NJ, Broseta AM, Nuclear GSH depletion impairs cell proliferation in 3T3 fibroblasts. PLoS One 2009;29:e6413
  • Soderdahl T, Enoksson M, Lundberg M, Visualization of the compartmentalization of glutathione and protein-glutathione mixed disulfides in cultured cells. FASEB J 2003;17:124-6
  • Yang Y, Shi W, Cui N, Oxidative stress inhibits vascular KATP channels by S-glutathionylation. J Biol Chem 2010;285:38641-8
  • Aracena-Parks P, Goonasekera SA, Gilman CP, Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1. J Biol Chem 2006;281:40354-68
  • Hawkins BJ, Irrinki KM, Mallilankaraman K, S-Glutathionylation activates STIM1 and alters mitochondrial homeostasis. J Cell Biol 2010;190:391-405
  • Wang J, Boja ES, Tan W, Reversible glutathionylation regulates actin polymerization in A431 cells. J Biol Chem 2001;276:47763-6
  • Dalle-Donne I, Giustarini D, Colombo R, S-glutathionylation in human platelets by a thiol-disulfide exchange-independent mechanism. Free Radic Biol Med 2005;38:1501-10
  • Johansson M, Lundberg M. Glutathionylation of beta-actin via a cysteinyl sulfenic acid intermediary. BMC Biochem 2007;8:26
  • Fiaschi T, Cozzi G, Raugei G, Redox regulation of beta-actin during integrin-mediated cell adhesion. J Biol Chem 2006;281:22983-91
  • Passarelli C, Di Venere A, Piroddi N, Susceptibility of isolated myofibrils to in vitro glutathionylation: potential relevance to muscle functions. Cytoskeleton 2010;67:81-9
  • Sparaco M, Gaeta LM, Santorelli FM, Friedreich's ataxia: oxidative stress and cytoskeletal abnormalities. J Neurol Sci 2009;287:111-18
  • Chen FC, Ogut O. Decline of contractility during ischemia-reperfusion injury: actin glutathionylation and its effect on allosteric interaction with tropomyosin. Am J Physiol Cell Physiol 2006;290:C719-27
  • Hwang C, Sinskey AJ, Lodish HF. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 1992;257:1496-502
  • Townsend DM, Manevich Y, He L, Nitrosative stress-induced S-glutathionylation of protein disulfide isomerase leads to activation of the unfolded protein response. Cancer Res 2009;69:7626-34
  • Demasi M, Piassa Filho GM, Castro LM, Oligomerization of the cysteinyl-rich oligopeptidase EP24.15 is triggered by S-glutathionylation. Free Radic Biol Med 2008;44:1180-90
  • Shi Q, Xu H, Kleinman WA, Novel functions of the alpha-ketoglutarate dehydrogenase complex may mediate diverse oxidant-induced changes in mitochondrial enzymes associated with Alzheimer's disease. Biochim Biophys Acta 2008;1782:229-38
  • Dinoto L, Deture MA, Purich DL. Structural insights into Alzheimer filament assembly pathways based on site-directed mutagenesis and S-glutathionylation of three-repeat neuronal Tau protein. Microsc Res Tech 2005;67:156-63
  • Di Domenico F, Cenini G, Sultana R, Glutathionylation of the pro-apoptotic protein p53 in Alzheimer's disease brain: implications for AD pathogenesis. Neurochem Res 2009;34:727-33
  • Sampathkumar R, Balasubramanyam M, Sudarslal S, Increased glutathionylated hemoglobin (HbSSG) in type 2 diabetes subjects with microangiopathy. Clin Biochem 2005;38:892-9
  • Shelton MD, Kern TS, Mieyal JJ. Glutaredoxin regulates nuclear factor kappa-B and intercellular adhesion molecule in Muller cells: model of diabetic retinopathy. J Biol Chem 2007;282:12467-74
  • Wang W, Oliva C, Li G, Reversible silencing of CFTR chloride channels by glutathionylation. J Gen Physiol 2005;125:127-41
  • Zaman K, Carraro S, Doherty J, S-Nitrosylating agents: a novel class of compounds that increase cystic fibrosis transmembrane conductance regulator expression and maturation in epithelial cells. Mol Pharmacol 2006;70:1435-42
  • Craghill J, Cronshaw AD, Harding JJ. The identification of a reaction site of glutathione mixed-disulphide formation on gammaS-crystallin in human lens. Biochem J 2004;379:595-600
  • Zhang S, Chai FY, Yan H, Effects of N-acetylcysteine and glutathione ethyl ester drops on streptozotocin-induced diabetic cataract in rats. Mol Vis 2008;14:862-70
  • Velu CS, Niture SK, Doneanu CE, Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry 2007;46:7765-80
  • Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001;357:539-45
  • Voronov E, Shouval DS, Krelin Y, IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci USA 2003;100:2645-50
  • Jung YJ, Isaacs JS, Lee S, IL-1beta-mediated up-regulation of HIF-1alpha via an NFκB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J 2003;17:2115-17
  • Shelton MD, Mieyal JJ. Regulation by reversible S-glutathionylation: molecular targets implicated in inflammatory diseases. Mol Cells 2008;25:332-46
  • Qanungo S, Starke DW, Pai HV, Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFkappaB. J Biol Chem 2007:282:18427-36
  • Reynaert NL, van der Vliet A, Guala AS, Dynamic redox control of NF-κB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci USA 2006;103:13086-91
  • Diotte NM, Xiong Y, Gao J, Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2. Biochim Biophys Acta 2009;1793:427-38
  • Walk TB, Sussmuth R, Kempter C, Identification of unusual amino acids in peptides using automated sequential Edman degradation coupled to direct detection by electrospray-ionization mass spectrometry. Biopolymers 1999;49:329-40
  • Asaduzzaman SM, Sonomoto K. Lantibiotics: diverse activities and unique modes of action. J Biosci Bioeng 2009;107:475-87
  • Linetsky M, Hill JM, LeGrand RD, Dehydroalanine crosslinks in human lens. Exp Eye Res 2004;79:499-512
  • Linetsky M, LeGrand RD. Glutathionylation of lens proteins through the formation of thioether bond. Mol Cell Biochem 2005;272:133-44
  • Bo Li B, van der Donk WA. Identification of essential catalytic residues of the cyclase NisC involved in the biosynthesis of nisin. J Biol Chem 2007;282:21169-75
  • Meister A, Greenstein JP. Glycyl dehydropeptides of leucine, valine, and isoleucine. J Biol Chem 1952;195:849-54
  • Wang H, Zhang J, Xian M. Facile formation of dehydroalanine from S-nitrosocysteines. J Am Chem Soc 2009;131:13238-9
  • McLachlin DT, Chait BT. Improved beta-elimination-based affinity purification strategy for enrichment of phosphopeptides. Anal Chem 2003;75:6826-36
  • Herbert B, Hopwood F, Oxley D, beta-Elimination: an unexpected artefact in proteome analysis. Proteomics 2003;3:826-31
  • Bar-Or R, Rael LT, Bar-Or D. Dehydroalanine derived from cysteine is a common post-translational modification in human serum albumin. Rapid Commun Mass Spectrom 2008;22:711-16
  • Ma S, Caprioli RM, Hill KE, Loss of selenium from selenoproteins: Conversion of selenocysteine to dehydroalanine in vitro. J Am Soc Mass Spectrom 2003;14:593-600
  • Friedman M. Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. J Agric Food Chem 1999;47:1295-319
  • Snow JT, Finley JW, Friedman M. Relative reactivities of sulfhydryl groups with N-acetyl dehydroalanine and N-acetyl dehydroalanine methyl ester. Int J Pept Protein Res 1976;8:57-64
  • Friedman M, Finley JW, Yeh LS. Reactions of proteins with dehydroalanines. Adv Exp Med Biol 1977;86B:213-24
  • Bernardes GJ, Chalker JM, Errey JC, Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins. J Am Chem Soc 2008;130:5052-3
  • Amini A, Nilsson E. Quantitative analysis of polypeptide pharmaceuticals by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Pharm Biomed Anal 2008;46:411-17
  • Jeong J, Jung Y, Na S, Novel oxidative modifications in redox-active cysteine residues. Mol Cell Proteomics 2010. [Epub ahead of print]
  • Stein TP, Leskiw MJ, Buzby GP, Measurement of protein synthesis rates with [15N]glycine. Am J Physiol 1980;239:E294-300
  • Cho CS, Lee S, Lee GT, Irreversible inactivation of glutathione peroxidase 1 and reversible inactivation of peroxiredoxin II by H2O2 in red blood cells. Antioxid Redox Signal 2010;12:1235-46
  • Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 1969;27:502-22
  • Iwamoto T, Hiraku Y, Oikawa S, DNA intrastrand cross-link at the 5′-GA-3′ sequence formed by busulfan and its role in the cytotoxic effect. Cancer Sci 2004;95:454-8
  • Ritter CA, Bohnenstengel F, Hofmann U, Determination of tetrahydrothiophene formation as a probe of in vitro busulfan metabolism by human glutathione S-transferase A1-1: use of highly sensitive gas chromatographic-mass spectrometric method. J Chromatog B Biomed Sci Appl 1999;730:25-31
  • Czerwinski M, Gibbs JP, Slattery JT. Busulfan conjugation by glutathione S-transferases alpha, mu, and pi. Drug Metab Dispos 1996;24:1015-19
  • Gibbs JP, Czerwinski M, Slattery JT. Busulfan-glutathione conjugation catalyzed by human liver cytosolic glutathione S-transferases. Cancer Res 1996;56:3678-81
  • Ritter CA, Sperker B, Grube M, Overexpression of glutathione S-transferase A1-1 in ECV 304 cells protects against busulfan mediated G2-arrest and induces tissue factor expression. Br J Pharmacol 2002;137:1100-6
  • Roberts JJ, Warwick GP. The mode of action of alkylating agents. III. The formation of 3-hydroxytetrahydrothiophene-1:1-dioxide from 1:4-dimethanesulphonyloxybutane (myleran), S-beta-L-alanyl-tetrahydrothiophenium mesylate, tetrahydrothiophene and tetrahydrothiophene-1:1-dioxide in the rat, rabbit and mouse. Biochem Pharmacol 1961;6:217-27
  • Cooper AJL, Younis IR, Niatsetskaya ZV, Metabolism of the cysteine S-conjugate of busulfan involves a beta-lyase reaction. Drug Metab Dispos 2008;36:1546-52
  • Younis IR, Elliott M, Peer CJ, Dehydroalanine analog of glutathione: an electrophilic busulfan metabolite that binds to human glutathione S-transferase A1-1. J Pharmacol Exp Ther 2008;327:770-6
  • Kalayoglu-Besisik S, Yenerei MN, Caliskan Y, Time-related changes in the incidence, severity, and clinical outcome of hepatic veno-occlusive disease in hematopoietic cell transplantation patients during the past 10 years. Transplant Proc 2005;37:2285-9
  • Holmstrom G, Borgstrom B, Calissendorff B. Cataract formation after bone marrow transplantation: relation to conditioning regimen. Acta Ophthalmol Scand 2002;80:211-15
  • Wadleigh M, Ho V, Momtaz P, Hepatic veno-occlusive disease: pathogenesis, diagnosis and treatment. Curr Opin Hematol 2003;10:451-62
  • Kera Y, Penttila KE, Lindros KO. Glutathione replenishment capacity is lower in isolated perivenous than in periportal hepatocytes. Biochem J 1988;254:411-17
  • Deleve LD. Dacarbazine toxicity in murine liver cells: a model of hepatic endothelial injury and glutathione defense. J Pharmacol Exp Ther 1994;268:1261-70
  • Deleve LD. Glutathione defense in non-parenchymal cells. Semin Liver Dis 1998;18:403-13
  • Srivastava A, Poonkuzhali B, Shaji RV, Glutathione S-transferase M1 polymorphism: a risk factor for hepatic venoocclusive disease in bone marrow transplantation. Blood 2004;104:1574-7
  • DeLeve LD, Wang X. Role of oxidative stress and glutathione in busulfan toxicity in cultured murine hepatocytes. Pharmacology 2000;60:143-54
  • Bouligand J, Deroussent A, Simonnard N, Induction of glutathione synthesis explains pharmacodynamics of high-dose busulfan in mice and highlights putative mechanisms of drug interaction. Drug Metab Dispos 2007;35:306-14
  • Zeiger E, Pagano DA. Mutagenicity of the human carcinogen treosulphan in Salmonella. Environ Mol Mutagen 1989;13:343-6
  • Werner S, Mendoza A, Hilger RA, Preclinical studies of treosulfan demonstrate potent activity in Ewing's sarcoma. Cancer Chemother Pharmacol 2008;62:19-31
  • Feyerabend S, Feil G, Krug J, Cytotoxic effects of treosulfan on prostate cancer cell lines. Anticancer Res 2007;27:2403-8
  • Armstrong DK, Gordon GB, Hilton J, Hepsulfam sensitivity in human breast cancer cell lines: the role of glutathione and glutathione S-transferase in resistance. Cancer Res 1992;52:1416-21
  • Westerhof GR, Ploemacher RE, Boudewijn A, Comparison of different busulfan analogues for depletion of hematopoietic stem cells and promotion of donor-type chimerism in murine bone marrow transplant recipients. Cancer Res 2000;60:5470-8
  • Onkenhout W, van Loon WM, Buijs W, Biotransformation and quantitative determination of sulfur-containing metabolites of 1,4-dibromobutane in the rat. Drug Metab Dispos 1986;14:608-12
  • Anders MW. Chemical toxicology of reactive intermediates formed by the glutathione-dependent bioactivation of halogen-containing compounds. Chem Res Toxicol 2008;21:145-59
  • Guengerich FP. Metabolism and genotoxicity of dihaloalkanes. Adv Pharmacol 1994;27:211-36
  • Bentley TW. Additivity rules using similarity models for chemical reactivity: calculation and interpretation of electrofugality and nucleofugality. Chemistry 2006;25:6514-20
  • Zhu X, Gallogly MM, Mieyal JJ, Covalent cross-linking of glutathione and carnosine to proteins by 4-oxo-2-nonenal. Chem Res Toxicol 2009;22:1050-9
  • Choi C, Dimitrov IE, Douglas D, Improvement of resolution for brain coupled metabolites by optimized 1H MRS at 7T. NMR Biomed 2010;23:1044-52
  • Choi IY, Lee SP, Denney D, Lynch S. Lower levels of glutathione in the brains of secondary progressive multiple sclerosis patients measured by 1H magnetic resonance chemical shift imaging at 3 T. Mult Scler 2011;17:289-96
  • Matsuzawa D, Hashimoto K. Magnetic resonance spectroscopy study of the antioxidant defense system in schizophrenia. Antioxid Redox Signal 2010. [Epub ahead of print]
  • Wright AJ, Fellows GA, Griffiths JR, Ex-vivo HRMAS of adult brain tumours: metabolite quantification and assignment of tumour biomarkers. Mol Cancer 2010;9:66
  • Thelwall PE, Yemin AY, Gillian TL, Noninvasive in vivo detection of glutathione metabolism in tumors. Cancer Res 2005;65:10149-53
  • Tew KD, Townsend DM. Redox platforms in cancer drug discovery and development. Curr Opin Chem Biol 2011;15:156-61

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.