808
Views
69
CrossRef citations to date
0
Altmetric
Reviews

The contribution of oxidative stress to drug-induced organ toxicity and its detection in vitro and in vivo

, , & , PhD
Pages 219-237 | Published online: 17 Jan 2012

Bibliography

  • Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 2003;91:179-94
  • Blokhina O, Fagerstedt KV. Oxidative metabolism, ROS and NO under oxygen deprivation. Plant Physiol Biochem 2010;48(2):359-73
  • Mannery YO, Ziegler TR, Park Y, Oxidation of plasma cysteine/cystine and GSH/GSSG redox potentials by acetaminophen and sulfur amino acid insufficiency in humans. J Pharmacol Exp Ther 2010;333(3):939-47
  • Jones DP, Go YM. Redox compartmentalization and cellular stress. Diabetes Obes Metab 2010;12(Suppl 2):116-25
  • Raffaello A, Rizzuto R. Mitochondrial longevity pathways. Biochim Biophys Acta 2011;1813(1):260-8
  • Hansen JM, Go YM, Jones DP. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol 2006;46:215-34
  • Hamanaka RB, Chandel NS. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 2010;35(9):505-13
  • Murphy E, Bers D, Rizzuto R. Mitochondria: from basic biology to cardiovascular disease. J Mol Cell Cardiol 2009;46(6):765-6
  • D'Alessandro A, Rinalducci S, Zolla L. Redox proteomics and drug development. J Proteomics 2011;74(12):2575-95
  • Koga K, Kenessey A, Powell SR, Macrophage migration inhibitory factor provides cardioprotection during ischemia/reperfusion by reducing oxidative stress. Antioxid Redox Signal 2011;14(7):1191-202
  • Chang JC, Kou SJ, Lin WT, Regulatory role of mitochondria in oxidative stress and atherosclerosis. World J Cardiol 2010;2(6):150-9
  • Seth R, Yang S, Choi S, In vitro assessment of copper-induced toxicity in the human hepatoma line, Hep G2. Toxicol In Vitro 2004;18(4):501-9
  • Masuda T, Iwashita Y, Hagiwara S, Dihydrolipoyl histidinate zinc complex, a new antioxidant, attenuates hepatic ischemia-reperfusion injury in rats. J Gastroenterol Hepatol 2011;26(11):1652-8
  • Sugimoto K, Takei Y. Clinicopathological features of non-alcoholic fatty liver disease. Hepatol Res 2011;41(10):911-20
  • Schapira AH. Mitochondrial pathology in Parkinson's disease. Mt Sinai J Med 2011;78(6):872-81
  • Mecocci P, Polidori MC. Antioxidant clinical trials in mild cognitive impairment and Alzheimer's disease. Biochim Biophys Acta 2011 [Epub ahead of print]
  • Pereira CV, Moreira AC, Pereira SP, Investigating drug-induced mitochondrial toxicity: a biosensor to increase drug safety? Curr Drug Saf 2009;4(1):34-54
  • Perez JD, Colucci JA, Sakata MM, Proteomic approaches in understanding a detected relationship between chemotherapy-induced nephrotoxicity and cell respiration in HK-2 cells. Nephron Physiol 2011;119(1):1-10
  • Aniya Y, Imaizumi N. Mitochondrial glutathione transferases involving a new function for membrane permeability transition pore regulation. Drug Metab Rev 2011;43(2):292-9
  • Miwa S, St-Pierre J, Partridge L, Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radic Biol Med 2003;35(8):938-48
  • Indo HP, Davidson M, Yen HC, Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion 2007;7(1-2):106-18
  • Jezek P, Hlavata L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 2005;37(12):2478-503
  • Marzetti E, Calvani R, Bernabei R, Apoptosis in skeletal myocytes: a potential target for interventions against sarcopenia and physical frailty - a mini-review. Gerontology 23 Sep 2011 [Epub ahead of print]
  • Viola HM, Hool LC. Qo site of mitochondrial complex III is the source of increased superoxide after transient exposure to hydrogen peroxide. J Mol Cell Cardiol 2010;49(5):875-85
  • Yen HC, Chen FY, Chen SW, Effect of mitochondrial dysfunction and oxidative stress on endogenous levels of coenzyme Q(10) in human cells. J Biochem Mol Toxicol 2011;25(5):280-9
  • Inoue M, Sato EF, Nishikawa M, Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem 2003;10(23):2495-505
  • Azzolin L, von Stockum S, Basso E, The mitochondrial permeability transition from yeast to mammals. FEBS Lett 2010;584(12):2504-9
  • Koch OR, Pani G, Borrello S, Oxidative stress and antioxidant defenses in ethanol-induced cell injury. Mol Aspects Med 2004;25(1-2):191-8
  • Koehler CM, Beverly KN, Leverich EP. Redox pathways of the mitochondrion. Antioxid Redox Signal 2006;8(5-6):813-22
  • Abba S, Khouja HR, Martino E, SOD1-targeted gene disruption in the ericoid mycorrhizal fungus Oidiodendron maius reduces conidiation and the capacity for mycorrhization. Mol Plant Microbe Interact 2009;22(11):1412-21
  • Nutrition Foundation. Mutations in the copper- and zinc-containing superoxide dismutase gene are associated with “Lou Gehrig's disease”. Nutr Rev 1993;51(8):243-5
  • Achilli F, Boyle S, Kieran D, The SOD1 transgene in the G93A mouse model of amyotrophic lateral sclerosis lies on distal mouse chromosome 12. Amyotroph Lateral Scler Other Motor Neuron Disord 2005;6(2):111-14
  • Asimakis GK, Lick S, Patterson C. Postischemic recovery of contractile function is impaired in SOD2(+/-) but not SOD1(+/-) mouse hearts. Circulation 2002;105(8):981-6
  • Antonyuk SV, Strange RW, Marklund SL, The structure of human extracellular copper-zinc superoxide dismutase at 1.7 A resolution: insights into heparin and collagen binding. J Mol Biol 2009;388(2):310-26
  • Jung I, Kim TY, Kim-Ha J. Identification of Drosophila SOD3 and its protective role against phototoxic damage to cells. FEBS Lett 2011;585(12):1973-8
  • Andreassen OA, Ferrante RJ, Klivenyi P, Partial deficiency of manganese superoxide dismutase exacerbates a transgenic mouse model of amyotrophic lateral sclerosis. Ann Neurol 2000;47(4):447-55
  • Araujo J, Breuer P, Dieringer S, FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3. Hum Mol Genet 2011;20(15):2928-41
  • Meredith MJ, Reed DJ. Status of the mitochondrial pool of glutathione in the isolated hepatocyte. J Biol Chem 1982;257(7):3747-53
  • Meredith MJ, Reed DJ. Depletion in vitro of mitochondrial glutathione in rat hepatocytes and enhancement of lipid peroxidation by adriamycin and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). Biochem Pharmacol 1983;32(8):1383-8
  • Mari M, Morales A, Colell A, Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 2009;11(11):2685-700
  • Al Hadithy AF, Ivanova SA, Pechlivanoglou P, Missense polymorphisms in three oxidative-stress enzymes (GSTP1, SOD2, and GPX1) and dyskinesias in Russian psychiatric inpatients from Siberia. Hum Psychopharmacol 2010;25(1):84-91
  • Fernandes PN, Mannarino SC, Silva CG, Oxidative stress response in eukaryotes: effect of glutathione, superoxide dismutase and catalase on adaptation to peroxide and menadione stresses in Saccharomyces cerevisiae. Redox Rep 2007;12(5):236-44
  • de Haan JB, Bladier C, Lotfi-Miri M, Fibroblasts derived from Gpx1 knockout mice display senescent-like features and are susceptible to H2O2-mediated cell death. Free Radic Biol Med 2004;36(1):53-64
  • Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 2000;267(20):6102-9
  • Inarrea P, Moini H, Han D, Mitochondrial respiratory chain and thioredoxin reductase regulate intermembrane Cu,Zn-superoxide dismutase activity: implications for mitochondrial energy metabolism and apoptosis. Biochem J 2007;405(1):173-9
  • Cha MK, Suh KH, Kim IH. Overexpression of peroxiredoxin I and thioredoxin1 in human breast carcinoma. J Exp Clin Cancer Res 2009;28:93
  • Sanchez-Font MF, Sebastia J, Sanfeliu C, Peroxiredoxin 2 (PRDX2), an antioxidant enzyme, is under-expressed in Down syndrome fetal brains. Cell Mol Life Sci 2003;60(7):1513-23
  • Chan SH, Tai MH, Li CY, Reduction in molecular synthesis or enzyme activity of superoxide dismutases and catalase contributes to oxidative stress and neurogenic hypertension in spontaneously hypertensive rats. Free Radic Biol Med 2006;40(11):2028-39
  • Schriner SE, Ogburn CE, Smith AC, Levels of DNA damage are unaltered in mice overexpressing human catalase in nuclei. Free Radic Biol Med 2000;29(7):664-73
  • Salvi M, Battaglia V, Brunati AM, Catalase takes part in rat liver mitochondria oxidative stress defense. J Biol Chem 2007;282(33):24407-15
  • Siraki AG, Pourahmad J, Chan TS, Endogenous and endobiotic induced reactive oxygen species formation by isolated hepatocytes. Free Radic Biol Med 2002;32(1):2-10
  • Boelsterli UA. Mechanisms of NSAID-induced hepatotoxicity: focus on nimesulide. Drug Saf 2002;25(9):633-48
  • Tafazoli S, Spehar DD, O'Brien PJ. Oxidative stress mediated idiosyncratic drug toxicity. Drug Metab Rev 2005;37(2):311-25
  • Stirnimann G, Kessebohm K, Lauterburg B. Liver injury caused by drugs: an update. Swiss Med Wkly 2010;140:w13080
  • Jaeschke H, Bajt ML. Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci 2006;89(1):31-41
  • Jaeschke H, McGill MR, Williams CD, Current issues with acetaminophen hepatotoxicity–a clinically relevant model to test the efficacy of natural products. Life Sci 2011;88(17-18):737-45
  • Singh BK, Tripathi M, Pandey PK, Nimesulide aggravates redox imbalance and calcium dependent mitochondrial permeability transition leading to dysfunction in vitro. Toxicology 2010;275(1-3):1-9
  • Chang TK, Abbott FS. Oxidative stress as a mechanism of valproic acid-associated hepatotoxicity. Drug Metab Rev 2006;38(4):627-39
  • El-Awadyel SE, Moustafa YM, Abo-Elmatty DM, Cisplatin-induced cardiotoxicity: Mechanisms and cardioprotective strategies. Eur J Pharmacol 2011;650(1):335-41
  • de la Asuncion JG, Del Olmo ML, Gomez-Cambronero LG, AZT induces oxidative damage to cardiac mitochondria: protective effect of vitamins C and E. Life Sci 2004;76(1):47-56
  • de la Asuncion JG, del Olmo ML, Sastre J, AZT treatment induces molecular and ultrastructural oxidative damage to muscle mitochondria. Prevention by antioxidant vitamins. J Clin Invest 1998;102(1):4-9
  • Lefrak EA, Pitha J, Rosenheim S, A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 1973;32(2):302-14
  • Sardao VA, Oliveira PJ, Holy J, Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear, mitochondrial, and cytoskeletal targets. Cell Biol Toxicol 2009;25(3):227-43
  • Oliveira PJ, Bjork JA, Santos MS, Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicol Appl Pharmacol 2004;200(2):159-68
  • Oliveira PJ, Santos MS, Wallace KB. Doxorubicin-induced thiol-dependent alteration of cardiac mitochondrial permeability transition and respiration. Biochemistry (Mosc) 2006;71(2):194-9
  • Betton GR, Kenne K, Somers R, Protein biomarkers of nephrotoxicity; a review and findings with cyclosporin A, a signal transduction kinase inhibitor and N-phenylanthranilic acid. Cancer Biomark 2005;1(1):59-67
  • Naughton CA. Drug-induced nephrotoxicity. Am Fam Physician 2008;78(6):743-50
  • Cummings BS, Schnellmann RG. Cisplatin-induced renal cell apoptosis: caspase 3-dependent and -independent pathways. J Pharmacol Exp Ther 2002;302(1):8-17
  • Santos NA, Catao CS, Martins NM, Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Arch Toxicol 2007;81(7):495-504
  • Zhang JG, Lindup WE. Cisplatin nephrotoxicity: decreases in mitochondrial protein sulphydryl concentration and calcium uptake by mitochondria from rat renal cortical slices. Biochem Pharmacol 1994;47(7):1127-35
  • Zhang JG, Lindup WE. Role of mitochondria in cisplatin-induced oxidative damage exhibited by rat renal cortical slices. Biochem Pharmacol 1993;45(11):2215-22
  • Cuzzocrea S, Mazzon E, Dugo L, A role for superoxide in gentamicin-mediated nephropathy in rats. Eur J Pharmacol 2002;450(1):67-76
  • Walker PD, Barri Y, Shah SV. Oxidant mechanisms in gentamicin nephrotoxicity. Ren Fail 1999;21(3-4):433-42
  • Walker PD, Shah SV. Gentamicin enhanced production of hydrogen peroxide by renal cortical mitochondria. Am J Physiol 1987;253(4 Pt 1):C495-9
  • Ueda N, Guidet B, Shah SV. Gentamicin-induced mobilization of iron from renal cortical mitochondria. Am J Physiol 1993;265(3 Pt 2):F435-9
  • Holzmacher R, Kendziorski C, Michael Hofman R, Low serum magnesium is associated with decreased graft survival in patients with chronic cyclosporin nephrotoxicity. Nephrol Dial Transplant 2005;20(7):1456-62
  • Tariq M, Morais C, Sobki S, N-acetylcysteine attenuates cyclosporin-induced nephrotoxicity in rats. Nephrol Dial Transplant 1999;14(4):923-9
  • Simon N, Morin C, Bruguerolle B, Effects of trimetazidine on altered functions of rat kidney induced by cyclosporine. Therapie 2001;56(5):583-7
  • Hickey EJ, Raje RR, Reid VE, Diclofenac induced in vivo nephrotoxicity may involve oxidative stress-mediated massive genomic DNA fragmentation and apoptotic cell death. Free Radic Biol Med 2001;31(2):139-52
  • Oktem F, Yilmaz HR, Ozguner F, Methotrexate-induced renal oxidative stress in rats: the role of a novel antioxidant caffeic acid phenethyl ester. Toxicol Ind Health 2006;22(6):241-7
  • Jovanovic Z, Jovanovic S. Resistance of nerve cells to oxidative injury. Med Pregl 2011;64(7-8):386-91
  • Carozzi VA, Marmiroli P, Cavaletti G. The role of oxidative stress and anti-oxidant treatment in platinum-induced peripheral neurotoxicity. Curr Cancer Drug Targets 2010;10(7):670-82
  • Jang HJ, Hwang S, Cho KY, Taxol induces oxidative neuronal cell death by enhancing the activity of NADPH oxidase in mouse cortical cultures. Neurosci Lett 2008;443(1):17-22
  • Uzar E, Koyuncuoglu HR, Uz E, The activities of antioxidant enzymes and the level of malondialdehyde in cerebellum of rats subjected to methotrexate: protective effect of caffeic acid phenethyl ester. Mol Cell Biochem 2006;291(1-2):63-8
  • Giridharan VV, Thandavarayan RA, Bhilwade HN, Schisandrin B, attenuates cisplatin-induced oxidative stress genotoxicity and neurotoxicity through modulating NF-kappaB pathway in mice. Free Radic Res 7 Nov 2011 [Epub ahead of print]
  • Leonetti C, Biroccio A, Gabellini C, Alpha-tocopherol protects against cisplatin-induced toxicity without interfering with antitumor efficacy. Int J Cancer 2003;104(2):243-50
  • Vardi N, Parlakpinar H, Ates B. Beneficial effects of chlorogenic acid on methotrexate-induced cerebellar Purkinje cell damage in rats. J Chem Neuroanat 16 Sep 2011 [Epub ahead of print]
  • Chen X, Tian X, Shin I, Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 2011;40(9):4783-804
  • Kuznetsov AV, Kehrer I, Kozlov AV, Mitochondrial ROS production under cellular stress: comparison of different detection methods. Anal Bioanal Chem 2011;400(8):2383-90
  • Dickinson BC, Srikun D, Chang CJ. Mitochondrial-targeted fluorescent probes for reactive oxygen species. Curr Opin Chem Biol 2010;14(1):50-6
  • Keller A, Mohamed A, Drose S, Analysis of dichlorodihydrofluorescein and dihydrocalcein as probes for the detection of intracellular reactive oxygen species. Free Radic Res 2004;38(12):1257-67
  • Kalyanaraman B, Darley-Usmar V, Davies KJ, Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 2 Oct 2011 [Epub ahead of print]
  • Bonini MG, Rota C, Tomasi A, The oxidation of 2′,7′-dichlorofluorescin to reactive oxygen species: a self-fulfilling prophesy? Free Radic Biol Med 2006;40(6):968-75
  • O'Malley YQ, Reszka KJ, Britigan BE. Direct oxidation of 2',7'-dichlorodihydrofluorescein by pyocyanin and other redox-active compounds independent of reactive oxygen species production. Free Radic Biol Med 2004;36(1):90-100
  • Xie J, Wang BS, Yu DH, Dichloroacetate shifts the metabolism from glycolysis to glucose oxidation and exhibits synergistic growth inhibition with cisplatin in HeLa cells. Int J Oncol 2011;38(2):409-17
  • Henderson LM, Chappell J.B. Dihydrorhodamine 123: a fluorescent probe for superoxide generation? Eur J Biochem 1993;217(3):973-80
  • Zielonka J, Kalyanaraman B. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 2010;48(8):983-1001
  • Mukhopadhyay CK, Fox PL. Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived superoxide as reductant. Biochemistry 1998;37(40):14222-9
  • Chang MC, Pralle A, Isacoff EY, A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J Am Chem Soc 2004;126(47):15392-3
  • Yousif LF, Stewart KM, Horton KL, Mitochondria-penetrating peptides: sequence effects and model cargo transport. ChemBioChem 2009;10(12):2081-8
  • Koide Y, Urano Y, Kenmoku S, Design and synthesis of fluorescent probes for selective detection of highly reactive oxygen species in mitochondria of living cells. J Am Chem Soc 2007;129(34):10324-5
  • Ganea GM, Kolic PE, El-Zahab B, Ratiometric coumarin-neutral red (CONER) nanoprobe for detection of hydroxyl radicals. Anal Chem 2011;83(7):2576-81
  • Partyka ALukaszewicz E, Nizanski W, Detection of lipid peroxidation in frozen-thawed avian spermatozoa using C(11)-BODIPY(581/591). Theriogenology 2011;75(9):1623-9
  • Schibel AE, An N, Jin Q, Nanopore detection of 8-oxo-7,8-dihydro-2'-deoxyguanosine in immobilized single-stranded DNA via adduct formation to the DNA damage site. J Am Chem Soc 2010;132(51):17992-5
  • Mallis RJ, Hamann MJ, Zhao W, Irreversible thiol oxidation in carbonic anhydrase III: protection by S-glutathiolation and detection in aging rats. Biol Chem 2002;383(3-4):649-62
  • Chou PH, Kageyama S, Matsuda S, Detection of lipid peroxidation-induced DNA adducts caused by 4-oxo-2(E)-nonenal and 4-oxo-2(E)-hexenal in human autopsy tissues. Chem Res Toxicol 2010;23(9):1442-8
  • Huo X, Juergens S, Zhang X, Deoxycholic acid causes DNA damage while inducing apoptotic resistance through NF-kappaB activation in benign Barrett's epithelial cells. Am J Physiol Gastrointest Liver Physiol 2011;301(2):G278-86
  • Miller NJ, Rice-Evans C, Davies MJ, A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci (Lond) 1993;84(4):407-12
  • Cao X, Plasencia C, Kanzaki A, Elucidation of the molecular mechanisms of a salicylhydrazide class of compounds by proteomic analysis. Curr Cancer Drug Targets 2009;9(2):189-201
  • Cao Y, Guo P, Xu Y, Simultaneous detection of NO and ROS by ESR in biological systems. Methods Enzymol 2005;396:77-83
  • Sawada T, Yoshino F, Kimoto K, ESR detection of ROS generated by TiO2 coated with fluoridated apatite. J Dent Res 2010;89(8):848-53
  • Fu C, Hu J, Liu T, Quantitative analysis of redox-sensitive proteome with DIGE and ICAT. J Proteome Res 2008;7(9):3789-802
  • Wu WW, Wang G, Baek SJ, Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 2006;5(3):651-8
  • Rocha M, Esplugues JV, Hernandez-Mijares A, Mitochondrial-targeted antioxidants and oxidative stress: a proteomic prospective study. Curr Pharm Des 2009;15(26):3052-62
  • Hirotsu Y, Katsuoka F, Itoh K, Nrf2 degron-fused reporter system: a new tool for specific evaluation of Nrf2 inducers. Genes Cells 2011;16(4):406-15
  • Lautraite S, Bigot-Lasserre D, Bars R, Optimisation of cell-based assays for medium throughput screening of oxidative stress. Toxicol In Vitro 2003;17(2):207-20
  • Redegeld FA, van Opstal MA, Houdkamp E, Determination of glutathione in biological material by flow-injection analysis using an enzymatic recycling reaction. Anal Biochem 1988;174(2):489-95
  • Chen Z, Li Q, Wang X, Potent method for the simultaneous determination of glutathione and hydrogen peroxide in mitochondrial compartments of apoptotic cells with microchip electrophoresis-laser induced fluorescence. Anal Chem 2010;82(5):2006-12
  • Outten CE, Culotta VC. Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase. J Biol Chem 2004;279(9):7785-91
  • Oyanagui Y. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal Biochem 1984;142(2):290-6
  • Kowaltowski AJ, Vercesi AE, Rhee SG, Catalases and thioredoxin peroxidase protect Saccharomyces cerevisiae against Ca(2+)-induced mitochondrial membrane permeabilization and cell death. FEBS Lett 2000;473(2):177-82
  • Melov S. Animal models of oxidative stress, aging, and therapeutic antioxidant interventions. Int J Biochem Cell Biol 2002;34(11):1395-400
  • Boelsterli UA, Hsiao CJ. The heterozygous Sod2(+/-) mouse: modeling the mitochondrial role in drug toxicity. Drug Discov Today 2008;13(21-22):982-8
  • Kohler JJ, Cucoranu I, Fields E, Transgenic mitochondrial superoxide dismutase and mitochondrially targeted catalase prevent antiretroviral-induced oxidative stress and cardiomyopathy. Lab Invest 2009;89(7):782-90
  • Ho YS, Magnenat JL, Gargano M, The nature of antioxidant defense mechanisms: a lesson from transgenic studies. Environ Health Perspect 1998;106(Suppl 5):1219-28
  • Ho YS, Xiong Y, Ma W, Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem 2004;279(31):32804-12
  • de Haan JB, Bladier C, Griffiths P, Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem 1998;273(35):22528-36
  • Will Y, Fischer KA, Horton RA, Gamma-glutamyltranspeptidase-deficient knockout mice as a model to study the relationship between glutathione status, mitochondrial function, and cellular function. Hepatology 2000;32(4 Pt 1):740-9
  • Hanigan MH, Lykissa ED, Townsend DM, Gamma-glutamyl transpeptidase-deficient mice are resistant to the nephrotoxic effects of cisplatin. Am J Pathol 2001;159(5):1889-94
  • Perez VI, Lew CM, Cortez LA, Thioredoxin 2 haploinsufficiency in mice results in impaired mitochondrial function and increased oxidative stress. Free Radic Biol Med 2008;44(5):882-92
  • Devalaraja-Narashimha K, Diener AM, Padanilam BJ. Cyclophilin D deficiency prevents diet-induced obesity in mice. FEBS Lett 2011;585(4):677-82
  • Ramachandran A, Lebofsky M, Baines CP, Cyclophilin D deficiency protects against acetaminophen-induced oxidant stress and liver injury. Free Radic Res 2011;45(2):156-64
  • Vasey DB, Wolf CR, MacArtney T, p21-LacZ reporter mice reflect p53-dependent toxic insult. Toxicol Appl Pharmacol 2008;227(3):440-50
  • Young R, Wolf CR, Brown K, Spatial monitoring of toxicity in HMOX-LacZ transgenic mice. Transgenic Res 2010;19(5):897-902
  • Smith D, Turner C, Spanel P. Volatile metabolites in the exhaled breath of healthy volunteers: their levels and distributions. J Breath Res 2007;1(1):014004
  • Revelar. Available from: http://www.myrevelar.com [Accessed 14 November 2011]
  • Lee D, Khaja S, Velasquez-Castano JC, In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat Mater 2007;6(10):765-9
  • Van de Bittner GC, Dubikovskaya EA, Bertozzi CR, In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proc Natl Acad Sci USA 2010;107(50):21316-21
  • Melov S. Therapeutics against mitochondrial oxidative stress in animal models of aging. Ann NY Acad Sci 2002;959:330-40

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.