353
Views
12
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetics and breast cancer management: current status and perspectives

, , &

Bibliography

  • AGucalp, GPGupta, MLPilewskie, et al. Advances in managing breast cancer: a clinical update. F1000Prime Rep 2014;6:66
  • NKGillis, JNPatel, FInnocenti. Clinical implementation of germ line cancer pharmacogenetic variants during the next-generation sequencing era. Clin Pharmacol Ther 2014;95(3):269–80
  • FAndré, JCiccolini, JPSpano, et al. Personalized medicine in oncology: where have we come from and where are we going? Pharmacogenomics 2013;14(8):931–9
  • BGao, SYeap, AClements, et al. Evidence for therapeutic drug monitoring of targeted anticancer therapies. J Clin Oncol 2012;30(32):4017–25
  • CMercier, JCiccolini. Profiling dihydropyrimidine dehydrogenase deficiency in patients with cancer undergoing 5-fluorouracil/capecitabine therapy. Clin Colorectal Cancer 2006;6(4):288–96
  • CSerdjebi, JFSeitz, JCiccolini, et al. Rapid deaminator status is associated with poor clinical outcome in pancreatic cancer patients treated with a gemcitabine-based regimen. Pharmacogenomics 2013;14(9):1047–51
  • NAzzopardi, TLecomte, DTernant, et al. Cetuximab pharmacokinetics influences progression-free survival of metastatic colorectal cancer patients. Clin Cancer Res 2011;17(19):6329–37
  • JPapewalis, Nikitin AYu MFRajewsky. G to A polymorphism at amino acid codon 655 of the human erbB-2/HER2 gene. Nucleic Acids Res 1991;19(19):5452
  • XHan, LDiao, YXu, et al. Association between the HER2 Ile655Val polymorphism and response to trastuzumab in women with operable primary breast cancer. Ann Oncol 2014;25(6):1158–64
  • SENelson, MNGould, JMHampton, et al. A case-control study of the HER2 Ile655Val polymorphism in relation to risk of invasive breast cancer. Breast Cancer Res 2005;7(3):R357–64
  • OSegatto, CRKing, JHPierce, et al. Different structural alterations upregulate in vitro tyrosine kinase activity and transforming potency of the erbB-2 gene. Mol Cell Biol 1988;8(12):5570–4
  • DXie, XOShu, ZDeng, et al. Population-based, case-control study of HER2 genetic polymorphism and breast cancer risk. J Natl Cancer Inst 2000;92(5):412–17
  • SBeauclair, PFormento, JLFischel, et al. Role of the HER2 [Ile655Val] genetic polymorphism in tumorogenesis and in the risk of trastuzumab-related cardiotoxicity. Ann Oncol 2007;18(8):1335–41
  • LRoca, VDiéras, HRoché, et al. Correlation of HER2, FCGR2A, and FCGR3A gene polymorphisms with trastuzumab related cardiac toxicity and efficacy in a subgroup of patients from UNICANCER-PACS 04 trial. Breast Cancer Res Treat 2013;139(3):789–800
  • GAMilano, ESerres, JMFerrero, et al. Trastuzumab-Induced Cardiotoxicity: is it a Personalized Risk? Curr Drug Targets 2014;15(13):1200–4
  • IKümler, OGChristiansen, DLNielsen. A systematic review of bevacizumab efficacy in breast cancer. Cancer Treat Rev 2014;40(8):960–73
  • JLFormento, MCEtienne-Grimaldi, MFrancoual, et al. Influence of the VEGF-A 936C>T germinal polymorphism on tumoral VEGF expression in head and neck cancer. Pharmacogenomics 2009;10(8):1277–83
  • MIKoukourakis, DPapazoglou, AGiatromanolaki, et al. VEGF gene sequence variation defines VEGF gene expression status and angiogenic activity in non-small cell lung cancer. Lung Cancer 2004;46(3):293–8
  • PKrippl, ULangsenlehner, WRenner, et al. A common 936 C/T gene polymorphism of vascular endothelial growth factor is associated with decreased breast cancer risk. Int J Cancer 2003;106(4):468–71
  • KTKu, LWan, HCPeng, et al. Vascular endothelial growth factor gene-460 C/T polymorphism is a biomarker for oral cancer. Oral Oncol 2005;41(5):497–502
  • SJLee, SYLee, HSJeon, et al. Vascular endothelial growth factor gene polymorphisms and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev 2005;14(3):571–5
  • LJain, CAVargo, RDanesi, et al. The role of vascular endothelial growth factor SNPs as predictive and prognostic markers for major solid tumors. Mol Cancer Ther 2009;8(9):2496–508
  • MCEtienne-Grimaldi, PFormento, ADegeorges, et al. Prospective analysis of the impact of VEGF-A gene polymorphisms on the pharmacodynamics of bevacizumab-based therapy in metastatic breast cancer patients. Br J Clin Pharmacol 2011;71(6):921–8
  • FLoupakis, CCremolini, DYang, et al. Prospective validation of candidate SNPs of VEGF/VEGFR pathway in metastatic colorectal cancer patients treated with first-line FOLFIRI plus bevacizumab. PLoS ONE 2013;8(7):e66774
  • MHTan, CSTan, WYLim. Race to report: are vascular endothelial growth factor genetic polymorphisms associated with outcome in advanced breast cancer patients treated with Paclitaxel plus bevacizumab? J Clin Oncol 2009;27(8):1342–3
  • GBocci, FLoupakis. Bevacizumab pharmacogenetics in tumor treatment: still looking for the right pieces of the puzzle. Pharmacogenomics 2011;12(8):1077–80
  • DWMiles, SLde Haas, LYDirix, et al. Biomarker results from the AVADO phase 3 trial of first-line bevacizumab plus docetaxel for HER2-negative metastatic breast cancer. Br J Cancer 2013;108(5):1052–60
  • FLoupakis, CCremolini, AFioravanti, et al. Pharmacodynamic and pharmacogenetic angiogenesis-related markers of first-line FOLFOXIRI plus bevacizumab schedule in metastatic colorectal cancer. Br J Cancer 2011;104(8):1262–9
  • GPasqualetti, RDanesi, MDel Tacca, et al. Vascular endothelial growth factor pharmacogenetics: a new perspective for anti-angiogenic therapy. Pharmacogenomics 2007;8(1):49–66
  • NBVolz, SStintzing, WZhang, et al. Genes involved in pericyte-driven tumor maturation predict treatment benefit of first-line FOLFIRI plus bevacizumab in patients with metastatic colorectal cancer. Pharmacogenomics J 2014. [ Epub ahead of print]
  • ABacken, AGRenehan, ARClamp, et al. The combination of circulating Ang1 and Tie2 levels predicts progression-free survival advantage in bevacizumab-treated patients with ovarian cancer. Clin Cancer Res 2014;20(17):4549–58
  • JBarrière, JLFormento, GMilano, et al. [CYP2D6 polymorphisms and tamoxifen: therapeutic perspectives in the management of hormonodependent breast cancer patients]. Bull Cancer 2010;97(3):311–20
  • MPGoetz, SKKnox, VJSuman, et al. The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat 2007;101(1):113–21
  • WSchroth, MPGoetz, UHamann, et al. Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA 2009;302(13):1429–36
  • WSchroth, UHamann, PAFasching, et al. CYP2D6 polymorphisms as predictors of outcome in breast cancer patients treated with tamoxifen: expanded polymorphism coverage improves risk stratification. Clin Cancer Res 2010;16(17):4468–77
  • MPGoetz, VJSuman, TLHoskin, et al. CYP2D6 Metabolism and Patient Outcome in the Austrian Breast and Colorectal Cancer Study Group Trial (ABCSG) 8. Clin Cancer Res 2013;19(2):500–7
  • PWegman, SElingarami, JCarstensen, et al. Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer. Breast Cancer Res 2007;9(1):R7
  • JMRae, SDrury, DFHayes, et al. CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J Natl Cancer Inst 2012;104(6):452–60
  • MMRegan, BLeyland-Jones, MBouzyk, et al. CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1-98 trial. J Natl Cancer Inst 2012;104(6):441–51
  • MAProvince, MPGoetz, HBrauch, et al. CYP2D6 genotype and adjuvant tamoxifen: meta-analysis of heterogeneous study populations. Clin Pharmacol Ther 2014;95(2):216–27
  • KBeelen, MOpdam, TMSeverson, et al. CYP2C19 2 predicts substantial tamoxifen benefit in postmenopausal breast cancer patients randomized between adjuvant tamoxifen and no systemic treatment. Breast Cancer Res Treat 2013;139(3):649–55
  • AMarkiewicz, MWełnicka-Jaśkiewicz, JSkokowski, et al. Prognostic significance of ESR1 amplification and ESR1 PvuII, CYP2C19*2, UGT2B15*2 polymorphisms in breast cancer patients. PLoS One 2013;8(8):e72219
  • RRuiter, MJBijl, RHvan Schaik, et al. CYP2C19*2 polymorphism is associated with increased survival in breast cancer patients using tamoxifen. Pharmacogenomics 2010;11(10):1367–75
  • MTsalic, GBar-Sela, ABeny, et al. Severe toxicity related to the 5-fluorouracil/leucovorin combination (the Mayo Clinic regimen): a prospective study in colorectal cancer patients. Am J Clin Oncol 2003;26(1):103–6
  • JCiccolini, EGross, LDahan, et al. Routine dihydropyrimidine dehydrogenase testing for anticipating 5-fluorouracil-related severe toxicities: hype or hope? Clin Colorectal Cancer 2010;9(4):224–8
  • AMorel, MBoisdron-Celle, LFey, et al. Clinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance. Mol Cancer Ther 2006;5(11):2895–904
  • JCiccolini, CMercier, AEvrard, et al. A rapid and inexpensive method for anticipating severe toxicity to fluorouracil and fluorouracil-based chemotherapy. Ther Drug Monit 2006;28(5):678–85
  • EGamelin, MBoisdron-Celle, VGuérin-Meyer, et al. Correlation between uracil and dihydrouracil plasma ratio, fluorouracil (5-FU) pharmacokinetic parameters, and tolerance in patients with advanced colorectal cancer: a potential interest for predicting 5-FU toxicity and determining optimal 5-FU dosage. J Clin Oncol 1999;17(4):1105
  • GCarlsson, EOdin, BGustavsson, et al. Pretherapeutic uracil and dihydrouracil levels in saliva of colorectal cancer patients are associated with toxicity during adjuvant 5-fluorouracil-based chemotherapy. Cancer Chemother Pharmacol 2014;74(4):757–63
  • RLargillier, MCEtienne-Grimaldi, JLFormento, et al. Pharmacogenetics of capecitabine in advanced breast cancer patients. Clin Cancer Res 2006;12(18):5496–502
  • JCiccolini, CMercier, LDahan, et al. Toxic death-case after capecitabine + oxaliplatin (XELOX) administration: probable implication of dihydropyrimidine deshydrogenase deficiency. Cancer Chemother Pharmacol 2006;58(2):272–5
  • CMercier, JCiccolini. Severe or lethal toxicities upon capecitabine intake: is DPYD genetic polymorphism the ideal culprit? Trends Pharmacol Sci 2007;28(12):597–8
  • MCvan Staveren, HJGuchelaar, ABvan Kuilenburg, et al. Evaluation of predictive tests for screening for dihydropyrimidine dehydrogenase deficiency. Pharmacogenomics J 2013;13(5):389–95
  • CMercier, CRaynal, LDahan, et al. Toxic death case in a patient undergoing gemcitabine-based chemotherapy in relation with cytidine deaminase downregulation. Pharmacogenet Genomics 2007;17(10):841–4
  • JCiccolini, LDahan, NAndré, et al. Cytidine deaminase residual activity in serum is a predictive marker of early severe toxicities in adults after gemcitabine-based chemotherapies. J Clin Oncol 2010;28(1):160–5
  • JCiccolini, CMercier, LDahan, et al. Integrating pharmacogenetics into gemcitabine dosing-time for a change? Nat Rev Clin Oncol 2011;8(7):439–44
  • CTibaldi, EGiovannetti, EVasile, et al. Correlation of CDA, ERCC1, and XPD polymorphisms with response and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin Cancer Res 2008;14(6):1797–803
  • EGiovannetti, CTibaldi, AFalcone, et al. Impact of cytidine deaminase polymorphisms on toxicity after gemcitabine: the question is still ongoing. J Clin Oncol 2010;28(14):e221–2
  • CMercier, AEvrard, JCiccolini. Genotype-based methods for anticipating gemcitabine-related severe toxicities may lead to false-negative results. J Clin Oncol 2007;25(30):4855
  • RDanesi, GAltavilla, EGiovannetti, et al. Pharmacogenomics of gemcitabine in non-small-cell lung cancer and other solid tumors. Pharmacogenomics 2009;10(1):69–80
  • NRibelles, JLópez-Siles, ASánchez, et al. A carboxylesterase 2 gene polymorphism as predictor of capecitabine on response and time to progression. Curr Drug Metab 2008;9(4):336–43
  • CMercier, CDupuis, ABlesius, et al. Early severe toxicities after capecitabine intake: possible implication of a cytidine deaminase extensive metabolizer profile. Cancer Chemother Pharmacol 2009;63(6):1177–80
  • LDahan, JCiccolini, AEvrard, et al. Sudden death related to toxicity in a patient on capecitabine and irinotecan plus bevacizumab intake: pharmacogenetic implications. J Clin Oncol 2012;30(4):e41–4
  • DCaronia, MMartin, JSastre, et al. A polymorphism in the cytidine deaminase promoter predicts severe capecitabine-induced hand-foot syndrome. Clin Cancer Res 2011;17(7):2006–13
  • KWestbrook, VStearns. Pharmacogenomics of breast cancer therapy: an update. Pharmacol Ther 2013;139(1):1–11
  • MNakajima, SKomagata, YFujiki, et al. Genetic polymorphisms of CYP2B6 affect the pharmacokinetics/pharmacodynamics of cyclophosphamide in Japanese cancer patients. Pharmacogenet Genomics 2007;17(6):431–45
  • WPPetros, PJHopkins, SSpruill, et al. Associations between drug metabolism genotype, chemotherapy pharmacokinetics, and overall survival in patients with breast cancer. J Clin Oncol 2005;23(25):6117–25
  • CEkhart, VDDoodeman, SRodenhuis, et al. Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet Genomics 2008;18(6):515–23
  • DJamieson, JLee, NCresti, et al. Pharmacogenetics of adjuvant breast cancer treatment with cyclophosphamide, epirubicin and 5-fluorouracil. Cancer Chemother Pharmacol 2014;74(4):667–74
  • STulsyan, GAgarwal, PLal, et al. Significant role of CYP450 genetic variants in cyclophosphamide based breast cancer treatment outcomes: a multi-analytical strategy. Clin Chim Acta 2014;434:21–8
  • TMiyake, TNakayama, YNaoi, et al. GSTP1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in ER-negative breast cancer. Cancer Sci 2012;103(5):913–20
  • SYao, WEBarlow, KSAlbain, et al. Gene polymorphisms in cyclophosphamide metabolism pathway,treatment-related toxicity, and disease-free survival in SWOG 8897 clinical trial for breast cancer. Clin Cancer Res 2010;16(24):6169–76
  • SKLow, KKiyotani, TMushiroda, et al. Association study of genetic polymorphism in ABCC4 with cyclophosphamide-induced adverse drug reactions in breast cancer patients. J Hum Genet 2009;54(10):564–71
  • RSJabir, RNaidu, MAAnnuar, et al. Pharmacogenetics of taxanes: impact of gene polymorphisms of drug transporters on pharmacokinetics and toxicity. Pharmacogenomics 2012;13(16):1979–88
  • RRizzo, FSpaggiari, MIndelli, et al. Association of CYP1B1 with hypersensitivity induced by taxane therapy in breast cancer patients. Breast Cancer Res Treat 2010;124(2):593–8
  • DLHertz, AAMotsinger-Reif, ADrobish, et al. CYP2C8*3 predicts benefit/risk profile in breast cancer patients receiving neoadjuvant paclitaxel. Breast Cancer Res Treat 2012;134(1):401–10
  • SMarsh, GSomlo, XLi, et al. Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer. Pharmacogenomics J 2007;7(5):362–5
  • KKiyotani, TMushiroda, MKubo, et al. Association of genetic polymorphisms in SLCO1B3 and ABCC2 with docetaxel-induced leukopenia. Cancer Sci 2008;99(5):967–72
  • SDBaker, JVerweij, GACusatis, et al. Pharmacogenetic pathway analysis of docetaxel elimination. Clin Pharmacol Ther 2009;85(2):155–63
  • STulsyan, PChaturvedi, GAgarwal, et al. Pharmacogenetic influence of GST polymorphisms on anthracycline-based chemotherapy responses and toxicity in breast cancer patients: a multi-analytical approach. Mol Diagn Ther 2013;17(6):371–9
  • YToyoda, TIshikawa. Pharmacogenomics of human ABC transporter ABCC11 (MRP8): potential risk of breast cancer and chemotherapy failure. Anticancer Agents Med Chem 2010;10(8):617–24
  • TUemura, TOguri, HOzasa, et al. ABCC11/MRP8 confers pemetrexed resistance in lung cancer. Cancer Sci 2010;101(11):2404–10
  • IIeiri. Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab Pharmacokinet 2012;27(1):85–105
  • KNoguchi, KKatayama, YSugimoto. Human ABC transporter ABCG2/BCRP expression in chemoresistance: basic and clinical perspectives for molecular cancer therapeutics. Pharmgenomics Pers Med 2014;7:53–64
  • JDBrooks, SNTeraoka, LBernstein, et al. Common variants in genes coding for chemotherapy metabolizing enzymes, transporters, and targets: a case-control study of contralateral breast cancer risk in the WECARE Study. Cancer Causes Control 2013;24(8):1605–14
  • PChaturvedi, STulsyan, GAgarwal, et al. Influence of ABCB1 genetic variants in breast cancer treatment outcomes. Cancer Epidemiol 2013;37(5):754–61
  • VLDamaraju, TScriver, DMowles, et al. Erlotinib, gefitinib, and vandetanib inhibit human nucleoside transporters and protect cancer cells from gemcitabine cytotoxicity. Clin Cancer Res 2014;20(1):176–86
  • RMaréchal, JRMackey, RLai, et al. Human equilibrative nucleoside transporter 1 and human concentrative nucleoside transporter 3 predict survival after adjuvant gemcitabine therapy in resected pancreatic adenocarcinoma. Clin Cancer Res 2009;15(8):2913–19
  • ABacken, AGRenehan, ARClamp, et al. The combination of circulating Ang1 and Tie2 levels predicts progression-free survival advantage in bevacizumab-treated patients with ovarian cancer-Letter. Clin Cancer Res 2014;20(17):4549–58
  • RHMathijssen, HGurney. Irinogenetics: how many stars are there in the sky? J Clin Oncol 2009;27(16):2578–9
  • Available from: http://www.pharmgkb.org 2014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.