621
Views
52
CrossRef citations to date
0
Altmetric
Review

Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism

, PhD, , BSc, , PhD & , PhD

Bibliography

  • JPGillet, MMGottesman. Mechanisms of multidrug resistance in cancer. Methods Mol Biol 2010;596:47-76
  • MClynes. Multiple drug resistance in cancer 2: molecular, cellular and clinical aspects. Springer; Netherlands: 2010
  • MHeenan, LO’Driscoll, ICleary, et al. Isolation from a human MDR lung cell line of multiple clonal subpopulations which exhibit significantly different drug resistance. Int J Cancer 1997;71(5):907-15
  • YLiang, LO’Driscoll, SMcDonnell, et al. Enhanced in vitro invasiveness and drug resistance with altered gene expression patterns in a human lung carcinoma cell line after pulse selection with anticancer drugs. Int J Cancer 2004;111(4):484-93
  • KMGiacomini, SMHuang, DJTweedie, et al. Membrane transporters in drug development. Nat Rev Drug Discov 2010;9(3):215-36
  • MAHediger, MFRomero, JBPeng, et al. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch 2004;447(5):465-8
  • SShugarts, LZBenet. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res 2009;26(9):2039-54
  • RKVadlapatla, ADVadlapudi, DPal, AKMitra. Mechanisms of drug resistance in cancer chemotherapy: coordinated role and regulation of efflux transporters and metabolizing enzymes. Curr Pharm Des 2013;19(40):7126-40
  • BLUrquhart, RGTirona, RBKim. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J Clin Pharmacol 2007;47(5):566-78
  • YChen, YTang, CGuo, et al. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem Pharmacol 2012;83(8):1112-26
  • RACairns, ISHarris, TWMak. Regulation of cancer cell metabolism. Nat Rev Cancer 2011;11(2):85-95
  • PSWard, CBThompson. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012;21(3):297-308
  • YZhao, EBButler, MTan. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 2013;4:e532
  • PDDobson, DBKell. Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule? Nat Rev Drug Discov 2008;7(3):205-20
  • JASprowl, TSMikkelsen, HGiovinazzo, ASparreboom. Contribution of tumoral and host solute carriers to clinical drug response. Drug Resist Updat 2012;15(1-2):5-20
  • YGAssaraf. Molecular basis of antifolate resistance. Cancer Metastasis Rev 2007;26(1):153-81
  • JJFarrell, HElsaleh, MGarcia, et al. Human equilibrative nucleoside transporter 1 levels predict response to gemcitabine in patients with pancreatic cancer. Gastroenterology 2009;136(1):187-95
  • MOkabe, GSzakacs, MAReimers, et al. Profiling SLCO and SLC22 genes in the NCI-60 cancer cell lines to identify drug uptake transporters. Mol Cancer Ther 2008;7(9):3081-91
  • CCordon-Cardo, JPO’Brien, JBoccia, et al. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem 1990;38(9):1277-87
  • MMGottesman, JLudwig, DXia, GSzakacs. Defeating drug resistance in cancer. Discov Med 2006;6(31):18-23
  • AHSchinkel, JWJonker. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2003;55(1):3-29
  • PMJones, AMGeorge. The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 2004;61(6):682-99
  • VVasiliou, KVasiliou, DWNebert. Human ATP-binding cassette (ABC) transporter family. Hum Genomics 2009;3(3):281-90
  • AHSchinkel, SKemp, MDolle, et al. N-glycosylation and deletion mutants of the human MDR1 P-glycoprotein. J Biol Chem 1993;268(10):7474-81
  • JLBiedler, HRiehm. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res 1970;30(4):1174-84
  • RLJuliano, VLing. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976;455(1):152-62
  • HRiehm, JLBiedler. Cellular resistance to daunomycin in Chinese hamster cells in vitro. Cancer Res 1971;31(4):409-12
  • KDano. Cross resistance between vinca alkaloids and anthracyclines in Ehrlich ascites tumor in vivo. Cancer Chemother Rep 1972;56(6):701-8
  • KDano. Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim Biophys Acta 1973;323(3):466-83
  • MMGottesman, IPastan. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993;62:385-427
  • WTBellamy. P-glycoproteins and multidrug resistance. Annu Rev Pharmacol Toxicol 1996;36:161-83
  • ZWang, YChen, HLiang, et al. P-glycoprotein substrate models using support vector machines based on a comprehensive data set. J Chem Inf Model 2011;51(6):1447-56
  • LChen, YLi, HYu, et al. Computational models for predicting substrates or inhibitors of P-glycoprotein. Drug Discov Today 2012;17(7-8):343-51
  • XKWang, LWFu. Interaction of tyrosine kinase inhibitors with the MDR- related ABC transporter proteins. Curr Drug Metab 2010;11(7):618-28
  • THegedus, LOrfi, ASeprodi, et al. Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1. Biochim Biophys Acta 2002;1587(2-3):318-25
  • DAGreer, SIvey. Distinct N-glycan glycosylation of P-glycoprotein isolated from the human uterine sarcoma cell line MES-SA/Dx5. Biochim Biophys Acta 2007;1770(9):1275-82
  • JDAllen, RFBrinkhuis, JWijnholds, AHSchinkel. The mouse Bcrp1/Mxr/Abcp gene: amplification and overexpression in cell lines selected for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Res 1999;59(17):4237-41
  • TWLoo, DMClarke. Quality control by proteases in the endoplasmic reticulum. Removal of a protease-sensitive site enhances expression of human P-glycoprotein. J Biol Chem 1998;273(49):32373-6
  • SVAmbudkar, SDey, CAHrycyna, et al. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 1999;39:361-98
  • ABreier, LGibalova, MSeres, et al. New insight into p-glycoprotein as a drug target. Anticancer Agents Med Chem 2013;13(1):159-70
  • SJRobertson, KDKania, SBHladky, MABarrand. P-glycoprotein expression in immortalised rat brain endothelial cells: comparisons following exogenously applied hydrogen peroxide and after hypoxia-reoxygenation. J Neurochem 2009;111(1):132-41
  • LADoyle, WYang, LVAbruzzo, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 1998;95(26):15665-70
  • RAllikmets, LMSchriml, AHutchinson, et al. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 1998;58(23):5337-9
  • KMiyake, LMickley, TLitman, et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res 1999;59(1):8-13
  • KKage, STsukahara, TSugiyama, et al. Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. Int J Cancer 2002;97(5):626-30
  • COzvegy, TLitman, GSzakacs, et al. Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem Biophys Res Commun 2001;285(1):111-17
  • WMo, JTZhang. Human ABCG2: structure, function, and its role in multidrug resistance. Int J Biochem Mol Biol 2012;3(1):1-27
  • KNatarajan, YXie, MRBaer, DDRoss. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol 2012;83(8):1084-103
  • BEbert, ASeidel, ALampen. Identification of BCRP as transporter of benzo[a]pyrene conjugates metabolically formed in Caco-2 cells and its induction by Ah-receptor agonists. Carcinogenesis 2005;26(10):1754-63
  • JGTurner, JLGump, CZhang, et al. ABCG2 expression, function, and promoter methylation in human multiple myeloma. Blood 2006;108(12):3881-9
  • XQWang, WMOngkeko, LChen, et al. Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology 2010;52(2):528-39
  • ZBenderra, AMFaussat, LSayada, et al. Breast cancer resistance protein and P-glycoprotein in 149 adult acute myeloid leukemias. Clin Cancer Res 2004;10(23):7896-902
  • PKrishnamurthy, DDRoss, TNakanishi, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 2004;279(23):24218-25
  • KJBailey-Dell, BHassel, LADoyle, DDRoss. Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene. Biochim Biophys Acta 2001;1520(3):234-41
  • YHonjo, KMorisaki, LMHuff, et al. Single-nucleotide polymorphism (SNP) analysis in the ABC half-transporter ABCG2 (MXR/BCRP/ABCP1). Cancer Biol Ther 2002;1(6):696-702
  • TNakanishi, JEKarp, MTan, et al. Quantitative analysis of breast cancer resistance protein and cellular resistance to flavopiridol in acute leukemia patients. Clin Cancer Res 2003;9(9):3320-8
  • ASuvannasankha, HMinderman, KLO’Loughlin, et al. Breast cancer resistance protein (BCRP/MXR/ABCG2) in adult acute lymphoblastic leukaemia: frequent expression and possible correlation with shorter disease-free survival. Br J Haematol 2004;127(4):392-8
  • ASuvannasankha, HMinderman, KLO’Loughlin, et al. Breast cancer resistance protein (BCRP/MXR/ABCG2) in acute myeloid leukemia: discordance between expression and function. Leukemia 2004;18(7):1252-7
  • COzvegy, AVaradi, BSarkadi. Characterization of drug transport, ATP hydrolysis, and nucleotide trapping by the human ABCG2 multidrug transporter. Modulation of substrate specificity by a point mutation. J Biol Chem 2002;277(50):47980-90
  • ELVolk, KRohde, MRhee, et al. Methotrexate cross-resistance in a mitoxantrone-selected multidrug-resistant MCF7 breast cancer cell line is attributable to enhanced energy-dependent drug efflux. Cancer Res 2000;60(13):3514-21
  • ELVolk, KMFarley, YWu, et al. Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res 2002;62(17):5035-40
  • SPCole, RGDeeley. Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci 2006;27(8):438-46
  • EMLeslie, RGDeeley, SPCole. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 2005;204(3):216-37
  • MKool, Mde Haas, GLScheffer, et al. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res 1997;57(16):3537-47
  • MWada, SToh, KTaniguchi, et al. Mutations in the canilicular multispecific organic anion transporter (cMOAT) gene, a novel ABC transporter, in patients with hyperbilirubinemia II/Dubin-Johnson syndrome. Hum Mol Genet 1998;7(2):203-7
  • MAvan Kuijck, MKool, GFMerkx, et al. Assignment of the canalicular multispecific organic anion transporter gene (CMOAT) to human chromosome 10q24 and mouse chromosome 19D2 by fluorescent in situ hybridization. Cytogenet Cell Genet 1997;77(3-4):285-7
  • PBorst, NZelcer, Kvan de Wetering. MRP2 and 3 in health and disease. Cancer Lett 2006;234(1):51-61
  • GJedlitschky, UHoffmann, HKKroemer. Structure and function of the MRP2 (ABCC2) protein and its role in drug disposition. Expert Opin Drug Metab Toxicol 2006;2(3):351-66
  • MTrauner, JLBoyer. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 2003;83(2):633-71
  • REvers, MKool, Lvan Deemter, et al. Drug export activity of the human canalicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA. J Clin Invest 1998;101(7):1310-19
  • YCui, JKonig, JKBuchholz, et al. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol Pharmacol 1999;55(5):929-37
  • DKeppler, JKonig. Hepatic canalicular membrane 5: expression and localization of the conjugate export pump encoded by the MRP2 (cMRP/cMOAT) gene in liver. Faseb J 1997;11(7):509-16
  • PBorst, REvers, MKool, JWijnholds. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 2000;92(16):1295-302
  • ZSChen, TKawabe, MOno, et al. Effect of multidrug resistance-reversing agents on transporting activity of human canalicular multispecific organic anion transporter. Mol Pharmacol 1999;56(6):1219-28
  • VMaterna, BLiedert, JThomale, HLage. Protection of platinum-DNA adduct formation and reversal of cisplatin resistance by anti-MRP2 hammerhead ribozymes in human cancer cells. Int J Cancer 2005;115(3):393-402
  • BLiedert, VMaterna, DSchadendorf, et al. Overexpression of cMOAT (MRP2/ABCC2) is associated with decreased formation of platinum-DNA adducts and decreased G2-arrest in melanoma cells resistant to cisplatin. J Invest Dermatol 2003;121(1):172-6
  • KTaniguchi, MWada, KKohno, et al. A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Res 1996;56(18):4124-9
  • KKoike, TKawabe, TTanaka, et al. A canalicular multispecific organic anion transporter (cMOAT) antisense cDNA enhances drug sensitivity in human hepatic cancer cells. Cancer Res 1997;57(24):5475-9
  • VMaterna, AStege, PSurowiak, et al. RNA interference-triggered reversal of ABCC2-dependent cisplatin resistance in human cancer cells. Biochem Biophys Res Commun 2006;348(1):153-7
  • JJMa, BLChen, XYXin. Inhibition of multi-drug resistance of ovarian carcinoma by small interfering RNA targeting to MRP2 gene. Arch Gynecol Obstet 2009;279(2):149-57
  • KKobayashi, KIto, TTakada, et al. Functional analysis of nonsynonymous single nucleotide polymorphism type ATP-binding cassette transmembrane transporter subfamily C member 3. Pharmacogenet Genomics 2008;18(9):823-33
  • SFZhou, LLWang, YMDi, et al. Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 2008;15(20):1981-2039
  • MKool, Mvan der Linden, Mde Haas, et al. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc Natl Acad Sci USA 1999;96(12):6914-19
  • NZelcer, TSaeki, GReid, et al. Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3). J Biol Chem 2001;276(49):46400-7
  • LPartanen, JStaaf, MTanner, et al. Amplification and overexpression of the ABCC3 (MRP3) gene in primary breast cancer. Genes Chromosomes Cancer 2012;51(9):832-40
  • YZhao, HLu, AYan, et al. ABCC3 as a marker for multidrug resistance in non-small cell lung cancer. Sci Rep 2013;3:3120
  • FPGuengerich. Cytochrome P450s and other enzymes in drug metabolism and toxicity. Aaps J 2006;8(1):E101-11
  • AEvan Herwaarden, RAvan Waterschoot, AHSchinkel. How important is intestinal cytochrome P450 3A metabolism? Trends Pharmacol Sci 2009;30(5):223-7
  • MCMcFadyen, WTMelvin, GIMurray. Cytochrome P450 enzymes: novel options for cancer therapeutics. Mol Cancer Ther 2004;3(3):363-71
  • SCSim, MIngelman-Sundberg. The Human Cytochrome P450 (CYP) Allele Nomenclature website: a peer-reviewed database of CYP variants and their associated effects. Hum Genomics 2010;4(4):278-81
  • CRodriguez-Antona, MIngelman-Sundberg. Cytochrome P450 pharmacogenetics and cancer. Oncogene 2006;25(11):1679-91
  • FKEngels, AJTen Tije, SDBaker, et al. Effect of cytochrome P450 3A4 inhibition on the pharmacokinetics of docetaxel. Clin Pharmacol Ther 2004;75(5):448-54
  • ZDesta, BAWard, NVSoukhova, DAFlockhart. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 2004;310(3):1062-75
  • JHSchellens, MMMalingre, CMKruijtzer, et al. Modulation of oral bioavailability of anticancer drugs: from mouse to man. Eur J Pharm Sci 2000;12(2):103-10
  • AAzzariti, LPorcelli, AEQuatrale, et al. The coordinated role of CYP450 enzymes and P-gp in determining cancer resistance to chemotherapy. Curr Drug Metab 2011;12(8):713-21
  • RAvan Waterschoot, AHSchinkel. A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice. Pharmacol Rev 2011;63(2):390-410
  • JJHendrikx, JSLagas, HRosing, et al. P-glycoprotein and cytochrome P450 3A act together in restricting the oral bioavailability of paclitaxel. Int J Cancer 2013;132(10):2439-47
  • RAJibodh, JSLagas, BNuijen, et al. Taxanes: old drugs, new oral formulations. Eur J Pharmacol 2013;717(1-3):40-6
  • MJoerger. Metabolism of the taxanes including nab-paclitaxel. Expert Opin Drug Metab Toxicol 2014;14:1-12
  • JGligorov, JPLotz. Preclinical pharmacology of the taxanes: implications of the differences. Oncologist 2004;9(Suppl 2):3-8
  • JSLagas, MLVlaming, Ovan Tellingen, et al. Multidrug resistance protein 2 is an important determinant of paclitaxel pharmacokinetics. Clin Cancer Res 2006;12(20 Pt 1):6125-32
  • ASparreboom, Jvan Asperen, UMayer, et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA 1997;94(5):2031-5
  • EAHopper-Borge, TChurchill, CPaulose, et al. Contribution of Abcc10 (Mrp7) to in vivo paclitaxel resistance as assessed in Abcc10(-/-) mice. Cancer Res 2011;71(10):3649-57
  • IMeijerman, JHBeijnen, JHSchellens. Combined action and regulation of phase II enzymes and multidrug resistance proteins in multidrug resistance in cancer. Cancer Treat Rev 2008;34(6):505-20
  • SHarmsen, IMeijerman, JHBeijnen, JHSchellens. The role of nuclear receptors in pharmacokinetic drug-drug interactions in oncology. Cancer Treat Rev 2007;33(4):369-80
  • LCerveny, LSvecova, EAnzenbacherova, et al. Valproic acid induces CYP3A4 and MDR1 gene expression by activation of constitutive androstane receptor and pregnane X receptor pathways. Drug Metab Dispos 2007;35(7):1032-41
  • CHandschin, UAMeyer. Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev 2003;55(4):649-73
  • AHTolson, HWang. Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev 2010;62(13):1238-49
  • NBallatori, SMKrance, SNotenboom, et al. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 2009;390(3):191-214
  • MValko, DLeibfritz, JMoncol, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39(1):44-84
  • MShanker, DWillcutts, JARoth, RRamesh. Drug resistance in lung cancer. Lung Cancer: Targets and Therapy 2010;1:23-6
  • DMTownsend, KDTew. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 2003;22(47):7369-75
  • DBurg, GJMulder. Glutathione conjugates and their synthetic derivatives as inhibitors of glutathione-dependent enzymes involved in cancer and drug resistance. Drug Metab Rev 2002;34(4):821-63
  • LHomolya, AVaradi, BSarkadi. Multidrug resistance-associated proteins: export pumps for conjugates with glutathione, glucuronate or sulfate. Biofactors 2003;17(1-4):103-14
  • EMLeslie, AHaimeur, MPWaalkes. Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1). Evidence that a tri-glutathione conjugate is required. J Biol Chem 2004;279(31):32700-8
  • ABodo, EBakos, FSzeri, et al. The role of multidrug transporters in drug availability, metabolism and toxicity. Toxicol Lett 2003;140-141:133-43
  • DWLoe, RGDeeley, SPCole. Characterization of vincristine transport by the M(r) 190,000 multidrug resistance protein (MRP): evidence for cotransport with reduced glutathione. Cancer Res 1998;58(22):5130-6
  • GRappa, ALorico, RAFlavell, ACSartorelli. Evidence that the multidrug resistance protein (MRP) functions as a co-transporter of glutathione and natural product toxins. Cancer Res 1997;57(23):5232-7
  • PJCiaccio, HShen, GDKruh, KDTew. Effects of chronic ethacrynic acid exposure on glutathione conjugation and MRP expression in human colon tumor cells. Biochem Biophys Res Commun 1996;222(1):111-15
  • YTaguchi, AYoshida, YTakada, et al. Anti-cancer drugs and glutathione stimulate vanadate-induced trapping of nucleotide in multidrug resistance-associated protein (MRP). FEBS Lett 1997;401(1):11-14
  • CSMorrow, PKSmitherman, SKDiah, et al. Coordinated action of glutathione S-transferases (GSTs) and multidrug resistance protein 1 (MRP1) in antineoplastic drug detoxification. Mechanism of GST A1-1- and MRP1-associated resistance to chlorambucil in MCF7 breast carcinoma cells. J Biol Chem 1998;273(32):20114-20
  • KBarnouin, ILeier, GJedlitschky, et al. Multidrug resistance protein-mediated transport of chlorambucil and melphalan conjugated to glutathione. Br J Cancer 1998;77(2):201-9
  • MYamasaki, TMakino, TMasuzawa, et al. Role of multidrug resistance protein 2 (MRP2) in chemoresistance and clinical outcome in oesophageal squamous cell carcinoma. Br J Cancer 2011;104(4):707-13
  • RFOzols. Pharmacologic reversal of drug resistance in ovarian cancer. Semin Oncol 1985;12(3 Suppl 4):7-11
  • NTraverso, RRicciarelli, MNitti, et al. Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev 2013;2013:10
  • TOguri, YFujiwara, TIsobe, et al. Expression of gamma-glutamylcysteine synthetase (gamma-GCS) and multidrug resistance-associated protein (MRP), but not human canalicular multispecific organic anion transporter (cMOAT), genes correlates with exposure of human lung cancers to platinum drugs. Br J Cancer 1998;77(7):1089-96
  • NGonen, YGAssaraf. Antifolates in cancer therapy: structure, activity and mechanisms of drug resistance. Drug Resist Updat 2012;15(4):183-210
  • MFPicciano, ELRStokstad, JFGregory, et al. Contemporary Issues in Clinical Nutrition, vol 13, Folic Acid Metabolism in Health and Disease. New York: Wiley-Liss, 1990:1-12
  • YGAssaraf. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist Updat 2006;9(4-5):227-46
  • MMasuda, YI’Izuka, MYamazaki, et al. Methotrexate is excreted into the bile by canalicular multispecific organic anion transporter in rats. Cancer Res 1997;57(16):3506-10
  • JHHooijberg, HJBroxterman, MKool, et al. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res 1999;59(11):2532-5
  • HZeng, ZSChen, MGBelinsky, et al. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res 2001;61(19):7225-32
  • ZSChen, KLee, SWalther, et al. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res 2002;62(11):3144-50
  • AShafran, IIfergan, EBram, et al. ABCG2 harboring the Gly482 mutation confers high-level resistance to various hydrophilic antifolates. Cancer Res 2005;65(18):8414-22
  • HKusuhara, YHHan, MShimoda, et al. Reduced folate derivatives are endogenous substrates for cMOAT in rats. Am J Physiol 1998;275(4 Pt 1):G789-96
  • PIMackenzie, KWBock, BBurchell, et al. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 2005;15(10):677-85
  • RHTukey, CPStrassburg. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 2000;40:581-616
  • SNagar, RPRemmel. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. Oncogene 2006;25(11):1659-72
  • PLazarus, DSun. Potential role of UGT pharmacogenetics in cancer treatment and prevention: focus on tamoxifen and aromatase inhibitors. Drug Metab Rev 2010;42(1):182-94
  • AStarlard-Davenport, BLyn-Cook, FABeland, IPPogribny. The role of UDP-glucuronosyltransferases and drug transporters in breast cancer drug resistance. Exp Oncol 2010;32(3):172-80
  • JLi, MHBluth. Pharmacogenomics of drug metabolizing enzymes and transporters: implications for cancer therapy. Pharmgenomics Pers Med 2011;4:11-33
  • LPRivory, JFRiou, MCHaaz, et al. Identification and properties of a major plasma metabolite of irinotecan (CPT-11) isolated from the plasma of patients. Cancer Res 1996;56(16):3689-94
  • HMDodds, MCHaaz, JFRiou, et al. Identification of a new metabolite of CPT-11 (irinotecan): pharmacological properties and activation to SN-38. J Pharmacol Exp Ther 1998;286(1):578-83
  • YSugiyama, YKato, XChu. Multiplicity of biliary excretion mechanisms for the camptothecin derivative irinotecan (CPT-11), its metabolite SN-38, and its glucuronide: role of canalicular multispecific organic anion transporter and P-glycoprotein. Cancer Chemother Pharmacol 1998;42(Suppl):S44-9
  • XYChu, YKato, KUeda, et al. Biliary excretion mechanism of CPT-11 and its metabolites in humans: involvement of primary active transporters. Cancer Res 1998;58(22):5137-43
  • LIyer, SDas, LJanisch, et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J 2002;2(1):43-7
  • RFredriksson, KJNordstrom, OStephansson, et al. The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. FEBS Lett 2008;582(27):3811-16
  • FMRussel. Transporters: importance in drug absorption, distribution, and removal. In: KSPang, ADRodrigues, RMPeter, editos Enzyme- and transporter-based drug-drug interactions. Springer; New York: 2010. p. 27-49
  • RMasereeuw, FGRussel. Therapeutic implications of renal anionic drug transporters. Pharmacol Ther 2010;126(2):200-16
  • CMGalmarini, JRMackey, CDumontet. Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia 2001;15(6):875-90
  • JRMackey, SABaldwin, JDYoung, CECass. Nucleoside transport and its significance for anticancer drug resistance. Drug Resist Updat 1998;1(5):310-24
  • ICascorbi. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther 2006;112(2):457-73
  • CPWu, CHHsieh, YSWu. The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. Mol Pharm 2011;8(6):1996-2011
  • FJSharom. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 2008;9(1):105-27
  • MMGottesman, TFojo, SEBates. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002;2(1):48-58
  • JPGillet, TEfferth, JRemacle. Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta 2007;1775(2):237-62
  • GDKruh, MGBelinsky. The MRP family of drug efflux pumps. Oncogene 2003;22(47):7537-52
  • AHaimeur, GConseil, RGDeeley, SPCole. The MRP-related and BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation. Curr Drug Metab 2004;5(1):21-53
  • JKonig, ATNies, YCui, et al. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta 1999;1461(2):377-94
  • QMao, JDUnadkat. Role of the breast cancer resistance protein (ABCG2) in drug transport. Aaps J 2005;7(1):E118-33
  • KTakara, TSakaeda, KOkumura. An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy. Curr Pharm Des 2006;12(3):273-86

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.