360
Views
19
CrossRef citations to date
0
Altmetric
Review

Metabolic and redox barriers in the skin exposed to drugs and xenobiotics

Pages 377-388 | Received 21 Sep 2015, Accepted 29 Jan 2016, Published online: 17 Feb 2016

References

  • Korkina L, Pastore S. The role of redox regulation in the normal physiology and inflammatory diseases of skin. Front Biosci. 2009;1:123–141.
  • Kaplan DH, Igyarto BZ, Gaspari AA. Early immune events in the induction of allergic contact dermatitis. Nat Rev Immunol. 2012;12:114–24.
  • Cross CE, van der Vliet A, Louie S, et al. Oxidative stress and antioxidants at biosurfaces: plants, skin, and respiratory tract surfaces. Environ Health Perspect. 1998;106(suppl. 5):1241–1251.
  • Wondrak GT, Jacobson MK, Jacobson EL. Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photo protection. Photochem Photobiol Sci. 2006;5:215–237.
  • Park SL, Justiniano R, Williams JD, et al. The tryptophan-derived endogenous Aryl hydrocarbon receptor ligand 6-Formylindolo[3,2-b]Carbazole Is a Nanomolar UVA photosensitizer in epidermal keratinocytes. J Invest Dermatol. 2015;135:1649–1658.
  • Hibbert SA, Watson REB, Gibbs NK, et al. A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues. Redox Biol. 2015;5:101–13.
  • Kawanishi S, Hiraku Y. Oxidants and antioxidants in cutaneous biology. Curr Probl Dermatol. 2001;29:74–82.
  • Korkina L, De Luca C, Pastore S. Plant polyphenols and human skin: friends or foes. Ann NY Acad Sci. 2012;1259:77–86.
  • Kwon MJ, Han J, Kim BH, et al. Superoxide dismutase 3 suppresses hyaluronic acid fragments mediated skin inflammation by inhibition of toll-like receptor 4 signaling pathway: superoxide dismutase 3 inhibits reactive oxygen species-induced trafficking of toll-like receptor 4 to lipid rafts. Antioxid Redox Signal. 2012;16:297–313.
  • Packer L, Valacchi G. Antioxidants and the response of skin to oxidative stress: vitamin E as a key indicator. Skin Pharmacol Appl Skin Physiol. 2002;15:282–290.
  • Holley AK, Xu Y, Noel T, et al. Manganese superoxide dismutase-mediated inside-out signaling in HaCaT human keratinocytes and SKH-1 mouse skin. Antioxid Redox Signal. 2014;20:2347–2360.
  • Thiele J, Barland CO, Ghadially R, et al. Permeability and antioxidant barriers in aged skin. In: Gilchrest B, Krutmann J, Eds. Skin aging. Berlin, Germany: Springer; 2006.
  • Slominski AT, Zmijewski MA, Semak I, et al. Cytochromes P450 and skin cancer: role of local endocrine pathways. Anticancer Agents Med Chem. 2014;14:77–96.
  • Slominski AT, Kleszczynski K, Semak I, et al. Local melatoninergic system as the protector of skin integrity. Int J Mol Sci. 2014;15:17705–17732.
  • Kim TK, Kleszczynski K, Janjetovic Z, et al. Metabolism of melatonin and biological activity of intermediates of melatoninergic pathway in human skin cells. Faseb J. 2013;27:2742–2755.
  • Lee JS, Surh YJ. Nrf2 as a novel molecular target for chemoprevention. Cancer Lett. 2005;224:171–184.
  • Pelle E, Mammone T, Maes D, et al. Keratinocytes act as a source of reactive oxygen species by transferring hydrogen peroxide to melanocytes. J Invest Dermatol. 2005;124:793–797.
  • Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signalling. Am J Physiol Lung Cell Mol Physiol. 2000;279:L1005- L28.
  • Wu D, Cederbaum AI. Oxidative stress mediated toxicity exerted by ethanol-inducible CYP2E1. Toxicol Appl Pharmacol. 2005;207(2 Suppl):70–76.
  • Soneja A, Drewes M, Malinski T. Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol Rep. 2005;57 Suppl:108–119.
  • De Luca C, Valacchi G. Surface lipids as multifunctional mediators of skin responses to environmental stimuli. Mediators Inflamm. 2010;2010:321494.
  • Niki E. Do antioxidants impair signaling by reactive oxigen sepcies and lipid oxidation products? FEBS Lett. 2012;586:3767–70.
  • Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med. 2009;47:469–484.
  • Ambudkar SV, Dey S, Hrycyna CA, et al. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Ann Rev Pharmacol Toxicol. 1999;39:361–398.
  • Cole SPC. Deeley RG Multidrug resistance mediated by the ATP-binding cassette transporter protein MRP. BioEssays. 1998;20:931–940.
  • Baron JM, Holler D, Schiffer R, et al. Expression of multiple cytochrome P450 enzymes and multidrug resistance-associated transport proteins in human skin keratinocytes. J Invest Dermatol. 2001;116:541–80.
  • Sarkadi B, Ozvegy-Laszka C, Nemet K, et al. ABCG2- A transporter for all seasons. FEBS Lett. 2004;567:116–120.
  • Cort A, Ozben T, Saso L, et al. Redox control of multi-drug resistance and its possible modulation by antioxidants. Oxid Med Cell Longevity. 2016;2016:Article ID 4251912, 17 pages doi:10.1155/2016/4251912.
  • Gundert-Remy U, Bernauer U, Blomeke B, et al. Extrahepatic metabolism at the body’s internal-external interfaces. Drug Metab Rev. 2014;46:291–324.
  • Oesch F, Fabian E, Guth K, et al. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea, and in human skin models. Arch Toxicol. 2014;88:2135–9031.
  • Dammak I, Boudaya S, Ben Abdallah F, et al. Antioxidant enzymes and lipid peroxidation at the tissue level in patients with stable and active vitiligo. International Journal of Dermatology. 2009;48:476–480.
  • Neis MM, Wendel A, Wiederholt T, et al. Expression and induction of cytochrome p450 isoenzymes in human skin equivalents. Skin Pharmacol Physiol. 2010;23:29–39.
  • Wiegand C, Hewitt NJ, Merk HF, et al. Dermal xenobiotic metabolism: a comparison between native human skin, four in vitro skin test systems and a liver system. Skin Pharmacol Physiol. 2014;27:263–275.
  • Modi BG, Neustadter J, Binda E, et al. Langerhans cells facilitate epithelial DNA damagr and squamous cell carcinoma. Science. 2012;335:104–108.
  • van Eijl S, Zhu Z, Cupitt J, et al. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling. PLoS One. 2012;7:e4172136.
  • Seidegård J, Ekström G. The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics. Environ. Health Perspect. 1997;105(Suppl 4):791–799.
  • Götz C, Pfeiffer R, Tigges J, et al. Xenobiotic metabolism capacities of human skin in comparison with a 3D epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: activating enzymes (Phase I). Exp Dermatol. 2012;21:358–363.
  • Swanson HI. Cytochrome P450 expression in human keratinocytes: an aryl hydrocarbon receptor perspective. Chem Biol Interact. 2004;149:69–79.
  • Katiyar SK, Matsui MS, Mukhtar H. Ultraviolet-B exposure of human skin induces cytochromes P450 1A1 and 1B1. J Invest Dermatol. 2000;114:328–333.
  • Pavek P, Dvorak Z. Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues. Curr Drug Metab. 2008;9:129–143.
  • Rannug A, Fritsche E. The aryl hydrocarbon receptor and light. Biol Chem. 2006;387:1149–1157.
  • Wincent E, Amini N, Luecke S, et al The suggested physiologic aryl hydrocarbon receptor activator and cytochrome P450I substrate 6-formylindolo[3,2-b]carbazole is present in humans. J Biol Chem. 2009;284:2690–2696.
  • Potapovich AI, Lulli D, Fidanza P, et al. Plant polyphenols differentially modulate inflammatory responses of human keratinocytes by interfering with activation of transcription factors NFκB and AhR and EGFR–ERK pathway. Toxicol Appl Pharmacol. 2011;255:138–149.
  • Pastore S, Lulli D, Fidanza P, et al. Plant polyphenols regulate chemokine expression and tissue repair in human keratinocytes through interaction with cytoplasmic and nuclear components of epidermal growth factor receptor system. Antioxid Redox Signal. 2012;16:314–328.
  • De Luca C, Scordo MG, Cesareo E, et al. Biological definition of multiple chemical sensitivity from redox state and cytokine profiling and not from polymorphisms of xenobiotic-metabolizing enzymes. Toxicol Appl Pharmacol. 2010;248:285–292.
  • Chiaro CR, Patel RD, Perdew GH. 12(R)-hydroxy-5(Z),8(Z),10(E),14(Z)-eicosatetraenoic acid [12(R)-HETE], an arachidonic acid derivative, is an activator of the aryl hydrocarbon receptor. Mol Pharmacol. 2008;74:1649–1656.
  • Bergstrom MA, Ott H, Carlsson A, et al. A skin-like cytochrome P450 coctail activates prohaptens to contact allergenic metabolites. J Invest Dermatol. 2007;127:1145–1153.
  • Svensson CK. Biotransformation of drugs in human skin. Drug Metab Dispos. 2009;37:247–53.
  • Roychowdhury S, Vyas PM, Svensson CK. Formation and uptake of arylhydroxylamine-haptenated proteins in human dendritic cells. Drug Metab Dispos. 2007;35:676–681.
  • Vyas PM, Roychowdhury S, Woster PM, et al. Reactive oxygen species generation and its role in the differential toxicity of the arylhydroxylamine metabolites of sulfamethoxazole and dapsone in normal human epidermal keratinocytes. Biochem Pharmacol. 2005;70:275–286.
  • Hewitt NJ, Edwards RJ, Fritsche E, et al. Use of human in vitro skin models for accurate and ethical risk assessment: metabolic considerations. Toxicol Sci. 2013;133:209–217.
  • Mena S, Ortega A, Estrela JM. Oxidative stress in environmental-induced carcinogenesis. Mut Res Gen Toxicol EnvironMutagenesis. 2009;674:36–44.
  • Valko M, Morris H, Cronin MTD. Metals, toxicity and oxidative stress. Cur Med Chem. 2005;12:1161–1208.
  • Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev. 2004;56:331–349.
  • Liu XX, Sun CB, Yang TT, et al. Decreased skin-mediated detoxification contributes to oxidative stress and insulin resistance. Exp Diabetes. 2012;2012:128694.
  • Surh YJ, Kundu JK, Na HK, et al. Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemical. J Nutr. 2005;135:2993S–3001S.
  • Pal M, Levin S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors. Acta Physiol Sinica. 2015;67:1–18.
  • Zhou Q, Mrowietz U, Rostami-Yazdi M. Oxidative stress in the pathogenesis of psoriasis. Free Rad Biol Med. 2009;47:891–905.
  • Briganti S, Picardo M. Antioxidant activity, lipid peroxidation and skin diseases. What’s new? J Eur Acad Dermatol Vener. 2003;17:663–669.
  • Klotz LO, Holbrook NJ, Sies H. UVA and singlet oxygen as inducers of cutaneous signaling events. Cur Probl Dermatol. 2001;29:95–113.
  • Okayama Y. Oxidative stress in allergic and inflammatory skin diseases. Cur Drug Target-Inflamm Allergy. 2005;4:517–519.
  • Köhle C, Bock KW. Coordinate regulation of Phase I and II xenobiotic metabolisms by the Ah receptor and Nrf2. Biochem Pharmacol. 2007;73:1853–1862.
  • Higgins LG, Hayes JD. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev. 2011;43:92–137.
  • Ikuta T, Namiki T, Fujii-Kuriyama Y, et al. AhR protein trafficking and function in the skin. Biochem Pharmacol. 2009;77:588–596.
  • Nguyen LP, Bradfield CA. The search for endogenous activators of aryl hydrocarbon receptor. Chem Res Toxicol. 2008;21:102–116.
  • Stejskalova L, Dvorak Z, Pavek P. Endogenous and exogenous ligands of aryl hydrocarbon receptor: current state of art. Curr Drug Metab. 2011;12:198–212.
  • Kostyuk V, Potapovich A, Stancato A, et al. Photo-oxidation products of skin surface squalene mediate metabolic and inflammatory responses to solar UV in human keratinocytes. PLoS One. 2012;7:e44472.
  • Kalthoff S, Ehmer U, Freiberg N, et al. Interaction between oxidative stress sensor Nrf2 and xenobiotic-activated aryl hydrocarbon receptor in the regulation of the human phase II detoxifying UDP-glucuronosyltransferase 1A10. JBiol Chem. 2010;285:5993–6002.
  • Yeager RL, Reisman SA, Aleksunes LM, et al. Introducing the TCDD-inducible AhR-Nrf2 gene battery. Toxicol Sci. 2009;111:238–246.
  • Haarmann-Stemmann Bothe TH, Abel J. Growth factors, cytokines and their receptors as downstream targets of arylhydrocarbon receptor (AhR) signaling pathways. Biochem Pharmacol. 2009;77:508–520.
  • Ma Q. Influence of light on aryl hydrocarbon receptor signaling and consequences in drug metabolism, physiology and disease. Exp Opin Drug Metab Toxicol. 2011;7:1267–93.
  • Puga A, Ma C, Marlowe JL. The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. Biochem Pharmacol. 1999;77:13–22.
  • Ohtake F, Takeyama K, Matsumoto T, et al. Modulation of estrogen receptor signaling by association with the activated dioxin receptor. Nature. 2003;423:545–550.
  • Nebert DW, Dalton TP, Okey AB, et al. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem. 2004;279:23847–23850.
  • Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer. 2006;6:947–960.
  • Guyot E, Chevallier A, Barouki R, et al. The AhR twist: ligand-dependent AhR signaling and pharmaco- toxicological implications. Drug Discovery Today. 2013;18:479–486.
  • Busbee PB, Busbee M, Rouse M, et al. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutr Rev. 2013;71:353–369.
  • Kim SH, Henry EC, Kim DK, et al. Novel compound 2-methyl-2H-pyrazole-3- carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191) prevents 2,3,7,8- TCDD-induced toxicity by antagonizing the aryl hydrocarbon receptor. Mol Pharmacol. 2006;69:1871–1875.
  • Murray IA, Flaveny CA, DiNatale BC, et al. Antagonism of aryl hydrocarbon receptor signaling by 6,2ʹ,4ʹ-trimethoxyflavone. J Pharm Exper Ther. 2010;332:135–144.
  • Pastore S, Lulli D, Pascarella A, et al. Resveratrol enhances solar UV-induced responses in normal human epidermal keratinocytes. Photochem Photobiol. 2012;88:1522–1530.
  • Nosbaum A, Vocanson M, Rozieres A, et al. Allergic and irritant contact dermatitis. Eur J Dermatol. 2009;19:325–332.
  • Albanesi C, Pastore S. Pathobiology of chronic inflammatory skin diseases: interplay between keratinocytes and immune cells as a target for anti-inflammatory drugs. Cur Drug Metab. 2010;11:210–227.
  • Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol. 2006;126:2565–2575.
  • Trenam CW, Darbagh AJ, Morris CJ, et al. Skin inflammation induced by reactive oxygen species (ROS): an in vivo model. Br J Dermatol. 1991;125:325–329.
  • Fuchs J, Zollner TM, Kaufmann R, et al. Redox-modulated pathways in inflammatory skin diseases. Free Rad Biol Med. 2001;30:337–353.
  • Senaldi G, Pointaire P, Piguet PF, et al. Protective effect of N-acetylcysteine in hapten-induced irritant and contact hypersensitivity. J Invest Dermatol. 1994;102:934–937.
  • Nordberg J, Zhong L, Holmgren A, et al. Mammalian thioredoxin reductase is irreversibly inhibited by dinitrohalobenzenes by alkylation of both the redox active 22 selenocysteine and its neighboring cysteine residue. J Biol Chem. 1998;273:10835–10842.
  • Kaur S, Zilmer M, Eisen M, et al. Nickel sulphate and epoxy resin: differences in iron status and glutathione redox ration at the time of patch testing. Arch Dermatol Res. 2004;295:517–520.
  • Pickard C, Louafi F, McGuire C, et al. The cutaneous biochemical redox barrier: a component of the innate immune defenses against sensitisation by highly reactive environmental xenobiotics. J Immunol. 2009;183:7576–7584.
  • Anderson C, Hehr A, Robbins R, et al. Metabolic requirements for induction of contact hypersensitivity to immunotoxic polyaromatic hydrocarbons. J Immunol. 1995;155(3530–37):1995.
  • Aeby P, Sieber T, Beck H, et al. Sin sensitization to p-phenylenediamine: the diverging roles of oxidation and N-acetylation for dendritic cell activation and the immune response. J Invest Dermatol. 2009;129:99–109.
  • Haddad JJ. Redox regulation of pro-inflammatory cytokines and IkappaB/NF-kappaB nuclear translocation and activation. Biochem Biophys Res Commun. 2002;296:847–856.
  • Ormerod AD, Dwyer CM, Reid A, et al. Inducible nitric oxide synthase demonstrated in allergic and irritant contact dermatitis. Acta Dermatol Vener. 1997;77:436–440.
  • Teixeira MM, Williams TJ, Hellewell PG. Role of prostaglandins and nitric oxide in acute inflammatory reactions in guinea-pig skin. Br J Pharmacol. 1993;110:1515–1521.
  • Ormerod AD, Copeland P, Hay I, et al. The inflammatory and cytotoxic effects of a nitric oxide releasing cream on normal skin. J Invest Dermatol. 1999;113:392–397.
  • Morita H, Hori M, Kitano Y. Modulation of picryl chloride-induced contact hypersensitivity reaction in mice by nitric oxide. J Invest Dermatol. 1996;107:549–552.
  • Ross R, Gillitzer C, Klein TR, et al. Involvement of NO in contact hypersensitivity. Inter Immunol. 1998;10:61–69.
  • Korkina L, Scordo MG, Deeva I, et al. The chemical defensive system in the pathobiology of idiopatic environment-associated diseases. Curr Drug Metab. 2009;10:914–931.
  • Sarzi-Puttini P, Atzeni F, Capsoni F, et al. Drug-induced lupus erythematosus. Autoimmunity. 2005;38:507–518.
  • Karlson EW, Watts J, Signorovitch J, et al. Effect of glutathione S-transferase polymorphisms and proximity to hazardous waste sites on time to systemic lupus erythematosus diagnosis: results from the Roxbury lupus project. Arthritis Rheum. 2007;56:244–254.
  • Kang TY, El-Sohemy A, Comelis MC, et al. Glutathione S-transferase genotype and risk of systemic lupus erythematosus in Koreans. Lupus. 2005;14:381–384.
  • Schallreuter KU, Bahadoran P, Picardo M, et al. Vitiligo pathogenesis: autoimmune disease, genetic defect, excessive reactive oxygen species, calcium imbalance, or what else? Exp Dermatol. 2008;17:139–160.
  • Dammak I, Boudaya S, Ben Abdullah F, et al. Antioxidant enzymes and lipid peroxidation at the tissue level in patients with stable and active vitiligo. Int J Dermatol. 2009;48:476–80. Dell’Anna ML.
  • Dell’Anna F, Urbanelli S, Mastrofrancesco A, et al. Alterations of mitochondria in peripheral blood mononuclear cells of vitiligo patients. Pigment Cell Res. 2003;16:553–559.
  • Kostyuk VA, Potapovich AI, Cesareo E, et al. Dysfunction of glutathione S-transferase leads to excess 4-hydroxy-2-nonenal and H(2)O(2) and impaired cytokine pattern in cultured keratinocytes and blood of vitiligo patients. Antioxid Redox Signal. 2010;13:607–620.
  • Uhm YK, Yoon SH, Kang IJ, et al. Association of glutathione S-transferase gene polymorphisms (GSTM1 and GSTT1) of vitiligo in Korean population. Life Sci. 2007;81:223–227.
  • Korkina LG, Pastore S, De Luca C, et al. Metabolism of plant polyphenols in the skin: beneficial versus deleterious effects. Curr Drug Metab. 2008;9:710–29.
  • Le Poole IC, van den Wijngaard RM, Smit NP, et al. Catechol-O-methyltransferase in vitiligo. Arch Dermatol Res. 1994;286:81–86.
  • Bolt HM, Their R. Relevance of the deletion polymorphisms of the glutathione S-transferases GSTT1 and GSTM1 in pharmacology and toxicology. Curr Drug Metab. 2006;7:613–628.
  • Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2002;45:51–88.
  • Uchida K, Shiraishi M, Naito Y, et al. Activation of stress signaling pathways by the end product of lipid peroxidation. J Biol Chem. 1999;274:2234–2242.
  • Yang Y, Yang Y, Xu Y, et al. Endothelial glutathione- S-transferase A4-4 protects against oxidative stress and modulates iNOS expression through NF-kappa B translocation. Toxicol Appl Pharmacol. 2008;230:187–196.
  • Cho SG, Lee YH, Park HS, et al. Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J Bio Chem. 2001;276:12749–12755.
  • Cesareo E, Parker LJ, Pedersen JZ, et al. Nitrosylation of human glutathione transferase P1-1 with dinitrosyl diglutathionyl iron complex in vitro and in vivo. J Biol Chem. 2005;280:42172–42180.
  • Townsend DM, Findlay VL, Tew KD. Glutathione S-transferases as regulators of kinase pathways and anticancer drug targets. Methods Enzymol. 2005;401:287–307.
  • D’souza A, Kurien BT, Rodgers R, et al. Detection of catalase as a major protein target of the lipid peroxidation product 4-HNE and the lack of its genetic association as a risk factor in SLE. BMC Med Gen. 2008;9:62.
  • Kurien BT, Hensley K, Bachmann M, et al. Oxidatively modified autoantigens in autoimmune diseases. Free Rad Biol Med. 2006;15:549–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.