316
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Influence of protein–protein interactions on the cellular localization of cytochrome P450

, PhD & , PhD
Pages 123-136 | Published online: 05 Feb 2008

Bibliography

  • Gonzalez FJ. Molecular genetics of the P-450 superfamily. Pharmacol Ther 1990;45:1-38
  • Nelson DR, Zeldin DC, Hoffman SM, et al. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 2004;14:1-18
  • Omura T, Sanders E, Estabrook RW, et al. Isolation from adrenal cortex of a non-heme iron protein and a flavoprotein function as a reduced triphosphopyridine nucleotide-cytochrome P-450 reductase. Arch Biochem Biophys 1966;117:660-73
  • Lu AYH, Coon MJ. Role of hemoprotein P-450 in fatty acid w-hydroxylation in a soluble enzyme system from liver microsomes. J Biol Chem 1968;243:1331
  • Hildebrandt A, Estabrook RW. Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidation reactions. Arch Biochem Biophys 1971;143:66-79
  • Yamazaki H, Johnson WW, Ueng Y-F, et al. Lack of electron transfer from cytochrome b5 in stimulation of catalytic activities of cytochrome P450 3A4. Characterization of a reconstituted cytochrome P450 3A4/NADPH-cytochrome P450 reductase system and studies with apo-cytochrome b5. J Biol Chem 1996;271:27438-45
  • Omura T. Mitochondrial P450s. Chem Biol Interact 2006;163:86-93
  • Bhagwat SV, Biswas G, Anandatheerthavarada HK, et al. Dual targeting property of the N-terminal signal sequence of P4501A1. Targeting of heterologous proteins to endoplasmic reticulum and mitochondria. J Biol Chem 1999;274:24014-22
  • Robin MA, Anandatheerthavarada HK, Biswas G, et al. Bimodal targeting of microsomal CYP2E1 to mitochondria through activation of an N-terminal chimeric signal by cAMP-mediated phosphorylation. J Biol Chem 2002;277:40583-93
  • Haugen DA, Armes LG, Yasunobu KT, Coon MJ. Amino-terminal sequence of phenobarbital-inducible cytochrome P-450 from rabbit liver microsomes: similarity to hydrophobic amino-terminal segments of preproteins. Biochem Biophys Res Commun 1977;77:967-73
  • Sakaguchi M, Mihara K, Sato R. Signal recognition particle is required for co-translational insertion of cytochrome P-450 into microsomal membranes. Proc Natl Acad Sci USA 1984;81:3361-4
  • Sakaguchi M, Mihara K, Sato R. A short amino-terminal segment of microsomal cytochrome P-450 functions both as an insertion signal and as a stop-transfer sequence. EMBO J 1987;6:2425-31
  • Szczesna-Skorupa E, Browne N, Mead D, Kemper B. Positive charges at the NH2 terminus convert the membrane-anchor signal peptide of cytochrome P-450 to a secretory signal peptide. Proc Natl Acad Sci USA 1988;85:738-42
  • De Lemos-Chiarandini C, Frey AB, Sabatini DD, Kreibich G. Determination of the membrane topology of the phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4 using site-specific antibodies. J Cell Biol 1987;104:209-19
  • Brown CA, Black SD. Membrane topology of mammalian cytochromes P-450 from liver endoplasmic reticulum. Determination by trypsinolysis of phenobarbital-treated microsomes. J Biol Chem 1989;264:4442-9
  • Szczesna-Skorupa E, Kemper B. An N-terminal glycosylation signal on cytochrome P450 is restricted to the endoplasmic reticulum in a luminal orientation. J Biol Chem 1993;268:1757-62
  • Shimozawa O, Sakaguchi M, Ogawa H, et al. Core glycosylation of cytochrome P-450(arom). Evidence for localization of N terminus of microsomal cytochrome P-450 in the lumen. J Biol Chem 1993;268:21339-402
  • von Heijne G. Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 1989;341:456-8
  • High S, Dobberstein B. The signal sequence interacts with the methionine-rich domain of the 54-kD protein of signal recognition particle. J Cell Biol 1991;113:229-33
  • Oliver J, Jungnickel B, Gorlich D, et al. The Sec61 complex is essential for the insertion of proteins into the membrane of the endoplasmic reticulum. FEBS Lett 1995;362:126-30
  • Do H, Falcone D, Lin J, et al. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 1996;85:369-78
  • Sauri A, McCormick PJ, Johnson AE, Mingarro I. Sec61alpha and TRAM are sequentially adjacent to a nascent viral membrane protein during its ER integration. J Mol Biol 2007;366:366-74
  • Meyer RP, Podvinec M, Meyer UA. Cytochrome P450 CYP1A1 accumulates in the cytosol of kidney and brain and is activated by heme. Mol Pharmacol 2002;62:1061-7
  • Mancias JD, Goldberg J. Exiting the endoplasmic reticulum. Traffic 2005;6:278-85
  • Pfeffer SR, Rothman JE. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Ann Rev Biochem 1987;56:829-52
  • Rothman JE, Wieland FT. Protein sorting by transport vesicles. Science 1996;272:227-34
  • Hsu VW, Yuan LC, Nuchtern JG, et al. A recycling pathway between the endplasmic reticulum and the Golgi apparatus for retention of unassembled MHC class I molecules. Nature (London) 1991;352:441-4
  • Munro S, Pelham HRB. A C-terminal signal prevents secretion of luminal ER proteins. Cell 1987;48:899-907
  • Jackson MR, Nilsson T, Peterson PA. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J 1990;9:3153-62
  • Schutze MP, Peterson PA, Jackson MR. An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum. EMBO J 1994;13:1696-705
  • Seliskar M, Rozman D. Mammalian cytochromes P450 – importance of tissue specificity. Biochim Biophys Acta 2007;1770:458-66
  • Murakami K, Mihara K, Omura T. The transmembrane region of microsomal cytochrome P450 identified as the endoplasmic reticulum retention signal. J Biochem (Tokyo) 1994;116:164-75
  • Szczesna-Skorupa E, Chen C, Kemper B. Cytochromes P450 2C1/2 and P450 2E1 are retained in the endoplasmic reticulum membrane by different mechanisms. Arch Biochem Biophys 2000;374:128-36
  • Neve EP, Ingelman-Sundberg M. Molecular basis for the transport of cytochrome P450 2E1 to the plasma membrane. J Biol Chem 2000;275:17130-5
  • Homma K, Yoshida Y, Nakano A. Evidence for recycling of cytochrome P450 sterol 14-demethylase from the cis-Golgi compartment to the endoplasmic reticulum (ER) upon saturation of the ER-retention mechanism. J Biochem (Tokyo) 2000;127:747-54
  • Cotman M, Jezek D, Fon Tacer K, et al. A functional cytochrome P450 lanosterol 14 alpha-demethylase CYP51 enzyme in the acrosome: transport through the Golgi and synthesis of meiosis-activating sterols. Endocrinology 2004;145:1419-26
  • Loeper J, Descatoire V, Maurice M, et al. Cytochromes P-450 in human hepatocyte plasma membrane: recognition by several autoantibodies. Gastroenterology 1993;104:203-16
  • Neve EPA, Eliasson E, Pronzato MA, et al. Enzyme-specific transort of rat liver cytochrome P450 to the Golgi apparatus. Arch Biochem Biophys 1996;333:459-65
  • Robin MA, Le Roy M, Descatoire V, Pessayre D. Plasma membrane cytochromes P450 as neoantigens and autoimmune targets in drug-induced hepatitis. J Hepatol 1997;26(Suppl 1):23-30
  • Szczesna-Skorupa E, Ahn K, Chen C-D, et al. The cytoplasmic and N-terminal transmembrane domains of cytochrome P450 contain independant signals for retention in the endoplasmic reticulum. J Biol Chem 1995;270:24327-33
  • Szczesna-Skorupa E, Kemper B. Endoplasmic reticulum retention determinants in the transmembrane and linker domains of cytochrome P450 2C1. J Biol Chem 2000;275:19409-15
  • Szczesna-Skorupa E, Kemper B. The juxtamembrane sequence of cytochrome P-450 2C1 contains an endoplasmic reticulum retention signal. J Biol Chem 2001;276:45009-14
  • Fu J, Kreibich G. Retention of subunits of the oligosaccharyltransferase complex in the endoplasmic reticulum. J Biol Chem 2000;275:3984-90
  • Zhang F, Crise B, Su B, et al. Lateral diffusion of membrane-spanning and glycosylphosphatidylinositol-linked proteins: toward establishing rules governing the lateral mobility of membrane proteins. J Cell Biol 1991;115:75-84
  • Szczesna-Skorupa E, Chen C, Rogers S, Kemper B. Mobility of cytochrome P450 in the endoplasmic reticulum membrane. Proc Natl Acad Sci USA 1998;95:14793-8
  • Myasoedova KN, Tsuprun VL. Cytochrome P450: hexameric structure of the purified LM4 form. FEBS Lett 1993;325:251-4
  • Schwarz D, Pirrwitz J, Meyer HW, et al. Membrane topology of microsomal cytochrome P-450: saturation transfer EPR and freeze-fracture electron microscopy studies. Biochem Biophys Res Commun 1990;171:175-81
  • Kanaeva IP, Nikityuk OV, Davydov DR, et al. Comparative study of monomeric reconstituted and membrane microsomal monooxygenase systems of the rabbit liver. II. Kinetic parameters of reductase and monooxygenase reactions. Arch Biochem Biophys 1992;298:403-12
  • Tsien RY. The green fluorescent protein. Ann Rev Biochem 1998;67:509-44
  • Truong K, Ikura M. The use of FRET imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo. Curr Opin Struct Biol 2001;11:573-8
  • Szczesna-Skorupa E, Mallah B, Kemper B. Fluorescence resonance energy transfer analysis of cytochromes P450 2C2 and 2E1 molecular interactions in living cells. J Biol Chem 2003;278:31269-76
  • Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 2002;9:789-98
  • Ozalp C, Szczesna-Skorupa E, Kemper B. Bimolecular fluorescence complementation analysis of cytochrome P450 2C2, 2E1 and NADPH-cytochrome P450 reductase molecular interactions in living cells. Drug Metab Dispos 2005;33:1382-90
  • Shyu YJ, Liu H, Deng X, Hu CD. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques 2006;40:61-6
  • Bridges A, Gruenke L, Chang YT, et al. Identification of the binding site on cytochrome P450 2B4 for cytochrome b5 and cytochrome P450 reductase. J Biol Chem 1998;273:17036-49
  • Omata Y, Dai R, Smith SV, et al. Synthetic peptide mimics of a predicted topographical interaction surface: the cytochrome P450 2B1 recognition domain for NADPH-cytochrome P450 reductase. J Protein Chem 2000;19:23-32
  • Alston K, Robinson RC, Park SS, et al. Interactions among cytochromes P-450 in the endoplasmic reticulum. Detection of chemically cross-linked complexes with monoclonal antibodies. J Biol Chem 1991;266:735-9
  • Backes WL, Kelley RW. Organization of multiple cytochrome P450s with NADPH-cytochrome P450 reductase in membranes. Pharmacol Ther 2003;98:221-33
  • Adachi T, Schamel WW, Kim KM, et al. The specificity of association of the IgD molecule with the accessory proteins BAP31/BAP29 lies in the IgD transmembrane sequence. EMBO J 1996;15:1534-41
  • Schamel WW, Kuppig S, Becker B, et al. A high-molecular-weight complex of membrane proteins BAP29/BAP31 is involved in the retention of membrane-bound IgD in the endoplasmic reticulum. Proc Natl Acad Sci USA 2003;100:9861-6
  • Lambert G, Becker B, Schreiber R, et al. Control of cystic fibrosis transmembrane conductance regulator expression by BAP31. J Biol Chem 2001;276:20340-5
  • Paquet ME, Cohen-Doyle M, Shore GC, Williams DB. Bap29/31 influences the intracellular traffic of MHC class I molecules. J Immunol 2004;172:7548-55
  • Annaert WG, Becker B, Kistner U, et al. Export of cellubrevin from the endoplasmic reticulum is controlled by BAP31. J Cell Biol 1997;139:1397-410
  • Stojanovic M, Germain M, Nguyen M, Shore GC. BAP31 and its caspase cleavage product regulate cell surface expression of tetraspanins and integrin-mediated cell survival. J Biol Chem 2005;280:30018-24
  • Szczesna-Skorupa E, Kemper B. BAP31 is involved in the retention of cytochrome P450 2C2 in the endoplasmic reticulum. J Biol Chem 2006;281:4142-8
  • Hughes AL, Powell DW, Bard M, et al. Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes. Cell Metab 2007;5:143-9
  • Falkenstein E, Meyer C, Eisen C, et al. Full-length cDNA sequence of a progesterone membrane-binding protein from porcine vascular smooth muscle cells. Biochem Biophys Res Commun 1996;229:86-9
  • Hand RA, Jia N, Bard M, Craven RJ. Saccharomyces cerevisiae Dap1p, a novel DNA damage response protein related to the mammalian membrane-associated progesterone receptor. Eukaryot Cell 2003;2:306-17
  • Ghosh K, Thompson AM, Goldbeck RA, et al. Spectroscopic and biochemical characterization of heme binding to yeast Dap1p and mouse PGRMC1p. Biochemistry 2005;44:16729-36
  • Cahill MA. Progesterone receptor membrane component 1: an integrative review. J Steroid Biochem Mol Biol 2007;105:16-36
  • Selmin O, Lucier GW, Clark GC, et al. Isolation and characterization of a novel gene induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver. Carcinogenesis 1996;17:2609-15
  • Min L, Strushkevich NV, Harnastai IN, et al. Molecular identification of adrenal inner zone antigen as a heme-binding protein. FEBS J 2005;272:5832-43
  • Laird SM, Vinson GP, Whitehouse BJ. Monoclonal antibodies against rat adrenocortical cell antigens. Acta Endocrinol (Copenh) 1988;119:420-6
  • Marks MS, Ohno H, Kirchnausen T, Bonifacino JS. Protein sorting by tyrosine-based signals: adapting to the Ys and wherefores. Trends Cell Biol 1997;7:124-8
  • Bramley TA, Menzies GS, Rae MT, Scobie G. Non-genomic steroid receptors in the bovine ovary. Domest Anim Endocrinol 2002;23:3-12
  • Runko E, Wideman C, Kaprielian Z. Cloning and expression of VEMA: a novel ventral midline antigen in the rat CNS. Mol Cell Neurosci 1999;14:428-43
  • Suchanek M, Radzikowska A, Thiele C. Photo-leucine and photo-methionine allow identification of protein–protein interactions in living cells. Nat Methods 2005;2:261-7
  • Yang T, Espenshade PJ, Wright ME, et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 2002;110:489-500
  • Morishima Y, Peng HM, Lin HL, et al. Regulation of cytochrome P450 2E1 by heat shock protein 90-dependent stabilization and CHIP-dependent proteasomal degradation. Biochemistry 2005;44:16333-40
  • Correia MA, Liao M. Cellular proteolytic systems in P450 degradation: evolutionary conservation from Saccharomyces cerevisiae to mammalian liver. Expert Opin Drug Metab Toxicol 2007;3:33-49
  • Weissman AM. Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2001;2:169-78
  • Liao M, Faouzi S, Karyakin A, Correia MA. Endoplasmic reticulum-associated degradation of cytochrome P450 CYP3A4 in Saccharomyces cerevisiae: further characterization of cellular participants and structural determinants. Mol Pharmacol 2006;69:1897-904
  • Murray BP, Correia MA. Ubiquitin-dependent 26S proteasomal pathway: a role in the degradation of native human liver CYP3A4 expressed in Saccharomyces cerevisiae? Arch Biochem Biophys 2001;393:106-16
  • Rabinovich E, Kerem A, Frohlich KU, et al. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 2002;22:626-34
  • Faouzi S, Medzihradszky KF, Hefner C, et al. Characterization of the physiological turnover of native and inactivated cytochromes P450 3A in cultured rat hepatocytes: a role for the cytosolic AAA ATPase p97? Biochemistry 2007;46:7793-803
  • Huan JY, Streicher JM, Bleyle LA, Koop DR. Proteasome-dependent degradation of cytochromes P450 2E1 and 2B1 expressed in tetracycline-regulated HeLa cells. Toxicol Appl Pharmacol 2004;199:332-43
  • Kaether C, Scheuermann J, Fassler M, et al. Endoplasmic reticulum retention of the gamma-secretase complex component Pen2 by Rer1. EMBO Rep 2007;8:743-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.