1,367
Views
153
CrossRef citations to date
0
Altmetric
Reviews

In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter

, PhD, , &
Pages 1075-1089 | Published online: 04 Aug 2008

Bibliography

  • Nicod LP. Lung defenses: an overview. Eur Respir Rev 2005;95:45-50
  • Gehr P, Bachofen M, Weibel ER. The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 1978;32:121-40
  • Peters A, Wichmann HE, Tuch T, et al. Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 1997;155:1376-83
  • Wichmann HE, Spix C, Tuch T, et al. Daily mortality and fine and ultrafine particles in erfurt, germany part I: role of particle number and particle mass. Res Rep Health Eff Inst 2000;98:5-86
  • Schulz H, Harder V, Ibald-Mulli A, et al. Cardiovascular effects of fine and ultrafine particles. J Aerosol Med 2005;18:1-22
  • Pope CA III, Dockery DW, Schwartz J. Review of epidemiological evidence of health effects of particulate air pollution. Inhal Toxicol 1995;7:1-18
  • Lighty JS, Veranth JM, Sarofim AF. Combustion aerosols: factors governing their size and composition and implications to human health. J Air Waste Manag Assoc 2000;50:1565-618
  • Borm PJ, Kreyling W. Toxicological hazards of inhaled nanoparticles – potential implications for drug delivery. J Nanosci Nanotechnol 2004;4:521-31
  • Araujo JA, Barajas B, Kleinman M, et al. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ Res 2008;102:589-96
  • Mazzola L. Commercializing nanotechnology. Nat Biotechnol 2003;21:1137-43
  • Paull R, Wolfe J, Hebert P, Sinkula M. Investing in nanotechnology. Nat Biotechnol 2003;21:1144-7
  • Nemmar A, Hoet PHM, Vanquickenborne B, et al. Passage of inhaled particles into the blood circulation in humans. Circulation 2002;105:411-4
  • Geiser M, Rothen-Rutishauser B, Kapp N, et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 2005;113:1555-60
  • Wiebert P, Sanchez-Crespo A, Seitz J, et al. Negligible clearance of ultrafine particles retained in healthy and affected human lungs. Eur Respir J 2006;28:286-90
  • Kreyling WG, Semmler-Behnke M, Möller W. Ultrafine particle-lung interactions: does size matter? J Aerosol Med 2006;19:74-83
  • Elder A, Oberdörster G. Translocation and effects of ultrafine particles outside of the lung. Clin Occup Environ Med 2006;5:785-96
  • Rothen-Rutishauser BM, Schürch S, Haenni B, et al. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol 2006;40:4353-9
  • Rothen-Rutishauser, Mühlfeld C, Blank F, et al. Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part Fibre Toxicol 2007;4:9
  • Gonzalez-Flecha B. Oxidant mechanisms in response to ambient air particles. Mol Aspects Med 2004;25:169-82
  • Li N, Xia T, Nel AE. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 2008;44:1689-99
  • Muller J, Huaux F, Moreau N, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 2005;207:221-31
  • Vinzents PS, Møller P, Sørensen M, et al. Personal exposure to ultrafine particles and oxidative DNA damage. Environ Health Perspect 2005;113:1485-90
  • Schins RP, Knaapen AM. Genotoxicity of poorly soluble particles. Inhal Toxicol 2007;19:189-98
  • Ayres JG, Borm P, Cassee FR, et al. Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential – a workshop report and consensus statement. Inhal Toxicol 2008;20:75-99
  • Gehr P, Hugonnaud C, Burri PH, et al. Adaptation of the growing lung to increased V02. 3. The effect of exposure to cold environment in rats. Respir Physiol 1978;32:345-53
  • Ochs M, Weibel ER. Functional design of the human lung for gas exchange. In: Fishman AP, Elias JA, Fishman JA, et al., editors. Fishman's pulmonary diseases and disorders [in press]. 4th edition. McGraw Hill: New York; 2008
  • Gehr P. Anatomy and morphology of the respiratory tract. Human respiratory tract model for radiological protection. In: Smith H, editor. ICRP publication 66: annals of the ICRP. Pergamon; 1994
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005;113:823-39
  • Weibel ER. Principles and methods for the morphometric study of the lung and other organs. Lab Invest 1963;12:131-55
  • Horsfield K, Cumming G. Morphology of the bronchial tree in man. J Appl Physiol 1968;24:373-83
  • Crapo JD, Barry BE, Gehr P, et al. Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis 1982;126:332-7
  • Stone KC, Mercer RR, Gehr P, et al. Allometric relationships of cell numbers and size in the mammalian lung. Am J Respir Cell Mol Biol 1992;6:235-43
  • Gil J, Weibel ER. Extracellular lining of bronchioles after perfusion-fixation of rat lungs for electron microscopy. Anat Rec 1971;169:185-99
  • Gehr P, Schurch S, Berthiaume Y, et al. Particle retention in airways by surfactant. J Aerosol Med 1990;3:27-43
  • Schurch S, Gehr P, Im Hof V, et al. Surfactant displaces particles toward the epithelium in airways and alveoli. Respir Physiol 1990;80:17-32
  • Kilburn KH. A hypothesis for pulmonary clearance and its implications. Am Rev Respir Dis 1968;98:449-63
  • Brain JD. Lung macrophages: how many kinds are there? What do they do? Am Rev Respir Dis 1988;137:507-9
  • Lehnert BE. Pulmonary and thoracic macrophage subpopulations and clearance of particles from the lung. Environ Health Perspect 1992;97:17-46
  • Schneeberger EE, Lynch RD. Tight junctions. Their structure, composition, and function. Circ Res 1984;55:723-33
  • Godfrey RW. Human airway epithelial tight junctions. Microsc Res Tech 1997;38:488-99
  • Holt PG, Schon-Hegrad MA. Localization of T cells, macrophages and dendritic cells in rat respiratory tract tissue: implications for immune function studies. Immunology 1987;62:349-56
  • McWilliam AS, Holt PG, Gehr P. Dendritic cells as sentinels of immune surveillance in the airways. In: Gehr P, Heyder J, editors. Particle-lung interaction. Marcel Dekker, Inc.: New York, Basel; 2000. p. 473-89
  • Maina JN, West JB. Thin and strong! The bioengineering dilemma in the structural and functional design of the blood-gas barrier. Physiol Rev 2005;85:811-44
  • Timpl R, Dzladek M. Structure, development and molecular pathology of basement membranes. Int Rev Exp Pathol 1986;29:1-112
  • Yurchenco PD, Tsilibary EC, Charonis AS, Furthmayr H. Models for the self-assembly of basement membrane. J Histochem Cytochem 1986;34:93-102
  • Dunsmore SE, Rannels DE. Extracellular matrix biology in the lung. Am J Physiol 1996;270:L3-27
  • Schneeberger EE. Ultrastructure of intercellular junctions in the freeze fractured alveolar-capillary membrane of mouse lung. Chest 1977;71:299-300
  • Dudek SM, Garcia JG. Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 2001;91:1487-500
  • Holt PG, Schon-Hegrad MA, McMenamin PG. Dendritic cells in the respiratory tract. Int Rev Immunol 1990;6:139-49
  • Nicod LP. Function of human lung dendritic cells. Marcel Dekker, Inc.: New York; 1997. p. 311-34
  • Blank F, Rothen-Rutishauser B, Gehr P. Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens. Am J Respir Cell Mol Biol 2007;36:669-77
  • Aufderheide M. Direct exposure methods for testing native atmospheres. Exp Toxicol Pathol 2005;57:213-26
  • Sakagami M. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev 2006;58:1030-60
  • Muhlfeld C, Rothen-Rutishauser B, Blank F, et al. Interactions of nanoparticles with pulmonary structures and cellular response. Am J Physiol Lung Cell Mol Physiol 2008;294:L817-29
  • Gardner DE, Kennedy GL. Methodologies and technology for animal inhalation toxicology studies. In: Gardner DE, Crapo JD, McClellan RO, editors. Toxicology of the lung. 2nd edition. Raven Press: New York, NY; 1993
  • Pauluhn J, Mohr U. Inhalation studies in laboratory animals – current concepts and alternatives. Toxicol Pathol 2000;28:734-53
  • Pauluhn J. Overview of inhalation exposure techniques: strengths and weaknesses. Exp Toxic Pathol 2005;57:111-28
  • Steimer A, Haltner E, Lehr CM. Cell culture models of the respiratory tract relevant to pulmonary drug delivery. J Aerosol Med 2005;18:137-82
  • Nemmar A, Hamoir J, Nemery B, Gustin P. Evaluation of particle translocation across the alveolo-capillary barrier in isolated perfused rabbit lung model. Toxicology 2005;208:105-13
  • Gstraunthaler G, Hartung T. Good cell culture practice: good laboratory practice in the cell culture laboratory for the standardization and quality assurance of in vitro studies. In: Lehr C-M, editor. Cell culture models of biological barriers. In-vitro test systems for drug absorption and delivery. Taylor & Francis: London, New York; 2002;7:112-20
  • Gruber FP, Hartung T. Alternatives to animal experimentation in basic research. ALTEX 2004;21:3-31
  • Forbes B, Ehrhardt C. Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm 2005;60:193-205
  • Mullin JM, Agostino N, Rendon-Huerta E, Thornton JJ. Keynote review: epithelial and endothelial barriers in human disease. Drug Discov Today 2005;10:395-408
  • Liu Y, Nusrat A, Schnell FJ, et al. Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 2000;113:2363-74
  • Mitic LL, Van Itallie CM, Anderson JM. Molecular physiology and pathophysiology of tight junctions I. Tight junction structure and function: lessons from mutant animals and proteins. Am J Physiol Gastrointest Liver Physiol 2000;279:G250-4
  • Tsukita S, Furuse M. Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J Cell Biol 2000;149:13-6
  • Kwang-Jin K. Bioelectrical characterization of epithelial cell (mono)layers and tissues. In: Lehr C-M, editor. Cell culture models of biological barriers. In-vitro test systems for drug absorption and delivery. Taylor & Francis: London, New York; 2002;3:41-51
  • Elbert KJ, Schafer UF, Schafers HJ, et al. Monolayers of human alveolar epithelial cells in primary culture for pulmonary absorption and transport studies. Pharm Res 1999;16:601-8
  • Forbes B. Human airway epithelial cell lines for in vitro drug transport and metabolism studies. Pharm Sci Technol Today 2000;3:18-27
  • Audus KL, Bartel RL, Hidalgo IJ, Borchardt RT. The use of cultured epithelial and endothelial cells for drug transport and metabolism studies. Pharm Res 1990;7:435-51
  • Grass GM, Sweetana SA. In vitro measurement of gastrointestinal tissue permeability using a new diffusion cell. Pharm Res 1988;5:372-6
  • Imanidis G, Waldner C, Mettler C, Leuenberger H. An improved diffusion cell design for determining drug transport parameters across cultured cell monolayers. J Pharm Sci 1996;85:1196-203
  • Rothen-Rutishauser B, Kramer SD, Braun A, et al. MDCK cell cultures as an epithelial in vitro model: cytoskeleton and tight junctions as indicators for the definition of age-related stages by confocal microscopy. Pharm Res 1998;15:964-71
  • Rothen-Rutishauser B, Messerli MJ, van der Voort H, et al. Deconvolution combined with digital colocalisation analysis to study the spatial distribution of tight and adherens junction proteins. J Comput Assist Microsc 1998;3:103-11
  • Gruenert DC, Finkbeiner WE, Widdicombe JH. Culture and transformation of human airway epithelial cells. Am J Physiol 1995;268:L347-60
  • Mathias NR, Kim KJ, Robison TW, Lee VH. Development and characterization of rabbit tracheal epithelial cell monolayer models for drug transport studies. Pharm Res 1995;12:1499-505
  • Forrest IA, Murphy DM, Ward C, et al. Primary airway epithelial cell culture from lung transplant recipients. Eur Respir J 2005;26:1080-5
  • Cozens AL, Yezzi MJ, Kunzelmann K, et al. CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 1994;10:38-47
  • Reddel RR, Ke Y, Gerwin BI, et al. Transformation of human bronchial epithelial cells by infection with SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes. Cancer Res 1988;48:1904-9
  • Penn A, Murphy G, Barker S, et al. Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells. Environ Health Perspect 2005;113:956-63
  • Gurr JR, Wang AS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in the absence of phopactivation can induce oxidative DNA damage to human bronchial epithelial cells. Toxicol 2005;15:66-73
  • Herzog E, Casey A, Lyng FM, et al. A new approach to the toxicity testing of carbon-based nanomaterials – the clonogenic assay. Toxicol Lett 2007;174:49-60
  • Veranth JM, Kaser EG, Veranth MM, et al. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol 2007;4:2
  • Fuchs S, Gumbleton M, Schäfer UF, Lehr CM. Models of the alveolar epithelium. In: Lehr CM, editor. Cell culture models of biological barriers: in vitro test systems for drug absorption and delivery. Taylor & Francis: London and New York; 2002
  • Lieber M, Smith B, Szakal A, et al. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer 1976;17:62-70
  • Foster KA, Oster CG, Mayer MM, et al. Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 1998;243:359-66
  • Shapiro DL, Nardone LL, Rooney SA, et al. Phospholipid biosynthesis and secretion by a cell line (A549) which resembles type II aleveolar epithelial cells. Biochim Biophys Acta 1978;530:197-207
  • Stearns RC, Paulauskis JD, Godleski JJ. Endocytosis of ultrafine particles by A549 cells. Am J Respir Cell Mol Biol 2001;24:108-15
  • Rothen-Rutishauser BM, Kiama SG, Gehr P. A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol 2005;32:281-9
  • Blank F, Rothen-Rutishauser B, Schurch S, Gehr P. An optimized in vitro model of the respiratory tract wall to study particle cell interactions. J Aerosol Med 2006;19:392-405
  • Mazzarella G, Ferraraccio F, Prati MV, et al. Effects of diesel exhaust particles on human lung epithelial cells: an in vitro study. Respir Med 2007;101:1155-62
  • Duffin R, Tran L, Brown D, et al. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 2007;19:849-56
  • Park S, Lee YK, Jung M, et al. Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhal Toxicol 2007;19:59-65
  • Tippe A, Heinzmann U, Roth C. Deposition of fine and ultrafine aerosol particles during exposure at the air/cell interface. Aerosol Sci 2002;33:207-18
  • Aufderheide M, Mohr U. CULTEX – an alternative technique for cultivation and exposure of cells of the respiratory tract to airborne pollutants at the air/liquid interface. Exp Toxicol Pathol 2000;52:265-70
  • Handler JS, Green N, Steele RE. Cultures as epithelial models: porous-bottom culture dishes for studying transport and differentiation. Methods Enzymol 1989;171:736-44
  • Voisin C, Aerts C, Jakubczak E, et al. Effects of nitrogen dioxide on alveolar macrophages surviving in the gas phase. A new experimental model for the study of in vitro cytotoxicity of toxic gases. Bull Eur Physiopathol Respir 1977;13:137-44
  • Voisin C, Aerts C, Jakubczak E, Tonnel TB. Cell culture in the gas phase. A new experimental model for the in vitro study of alveolar macrophages. Bull Eur Physiopathol Respir 1977;13:69-82
  • Adler KB, Cheng PW, Kim KC. Characterization of guinea pig tracheal epithelial cells maintained in biphasic organotypic culture:cellular composition and biochemical analysis of released clycoconjugates. Am J Respir Cell Mol Biol 1990;2:145-54
  • Wolz L, Krause G, Scherer M, et al. In vitro genotoxicity assay of sidestream smoke using a human bronchial epithelial cell line. Food Chem Toxicol 2002;40:845-50
  • Mathia NR, Timoszyk J, Stetsko PI, et al. Permeability characteristics of calu-3 human bronchial epithelial cells: in vitro-in vivo correlation to predict lung absorption in rats. J Drug Target 2002;10:31-40
  • Ehrhardt C, Fiegel J, Fuchs S, et al. Drug absorption by the respiratory mucosa: cell culture models and particulate drug carriers. J Aerosol Med 2002;15:131-9
  • Ritter D, Knebel J, Aufderheide M. Comparative assessment of toxicities of mainstream smoke from commercial cigarettes. Inhal Toxicol 2004;16:691-700
  • Gehr P, Green FH, Geiser M, et al. Airway surfactant, a primary defense barrier: mechanical and immunological aspects. J Aerosol Med 1996;9:163-81
  • Aufderheide M, Knebel JW, Ritter D. An improved in vitro model for testing the pulmonary toxicity of complex mixtures such as cigarette smoke. Exp Toxic Pathol 2003;55:51-7
  • Krug HF, Diabaté S, Kern K, et al. Development and application of a 3-dimensional alveolar cell model for testing aerosols direct at the liquid/air-interface [abstract]. J Aerosol Med 2005;18:134
  • Radyuk SN, Mericko PA, Popova TG, et al. In vitro-generated respiratory mucosa: a new tool to study inhalational anthrax. Biochem Biophys Res Commun 2003;305:624-32
  • Ehrhardt C, Kneuer C, Fiegel J, et al. Influence of apical fluid volume on the development of functional intercellular junctions in the human epithelial cell line 16HBE14o-: implications for the use of this cell line as an in vitro model for bronchial drug absorption studies. Cell Tissue Res 2002;308:391-400
  • Yamaya M, Finkbeiner WE, Chun SY, Widdicombe JH. Differentiated structure and function of cultures from human tracheal epithelium. Am J Physiol 1992;262:L713-24
  • Shapiro DL, Nardone LL, Rooney SA, et al. Phospholipid biosynthesis and secretion by a cell line (A549) which resembles type II aleveolar epithelial cells. Biochim Biophys Acta 1978;530:197-207
  • Im Hof V, Gehr P, Gerber V, et al. In vivo determination of surface tension in the horse and in vitro model studies. Respir Physiol 1997;109:81-93
  • Schurch S, Goerke J, Clements A. Direct determination of surface tension in the lung. Proc Natl Acad Sci USA 1976;73:4698-702
  • Carterson AJ, Höner zu Bentrup K, Ott CM, et al. A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis. Infect Immun 2005;73:1129-40
  • Roggen EL, Soni NK, Verheyen GR, et al. Respiratory immunotoxicity: an in vitro assessment. Toxicol In Vitro 2006;20:1240-64
  • Rescigno M, Urbano M, Valzasina B, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2001;2:361-7
  • Forbes B, Lansey AB. Transport characteristics of formoterol and salbutamol across a bronchial epithelial drug absorption model. Eur J Pharm Sci 1998;6:S24
  • Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994;179:1109-18
  • Blank F, von Garnier CH, Obregon C, et al. The role of dendritic cells in the lung: what do we know from in vitro models, animal models and human studies. Exp Rev Resp Med 2008;2:215-33

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.