87
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Zebrafish muscular disease models towards drug discovery

Pages 507-513 | Published online: 07 May 2009

Bibliography

  • Pourquié O. Vertebrate somitogenesis. Annu Rev Cell Dev Biol 2001;17:311-50
  • Saga Y, Takeda H. The making of the somite: molecular events in vertebrate segmentation. Nat Rev Genet 2001;2:835-45
  • Currie PD, Ingham PW. Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish. Nature 1996;382:452-5
  • Blagden CS, Currie PD, Ingham PW, Hughes SM. Notochord induction of zebrafish slow muscle mediated by sonic hedgehog. Genes Dev 1997;11:2163-75
  • Devoto SH, Melançon E, Eisen JS, Westerfield M. Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 1996;122:3371-80
  • Stellabotte F, Dobbs-McAuliffe B, Fernández DA, et al. Dynamic somite cell rearrangements lead to distinct waves of myotome growth. Development 2007;134:1253-7
  • Ochi H, Westerfield M. Signaling networks that regulate muscle development: lessons from zebrafish. Dev Growth Differ 2007;49:1-11
  • Nguyen PV, Aniksztejn L, Catarsi S, Drapeau P. Maturation of neuromuscular transmission during early development in zebrafish. J Neurophysiol 1999;81:2852-61
  • Buss RR, Drapeau P. Synaptic drive to motoneurons during fictive swimming in the developing zebrafish. J Neurophysiol 2001;86:197-210
  • Luna VM, Brehm P. An electrically coupled network of skeletal muscle in zebrafish distributes synaptic current. J Gen Physiol 2006;128:89-102
  • Saint-Amant L, Drapeau P. Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol 1998;37:622-32
  • Downes GB, Granato M. Supraspinal input is dispensable to generate glycine-mediated locomotive behaviors in the zebrafish embryo. J Neurobiol 2006;66:437-51
  • Metcalfe WK, Myers PZ, Trevarrow B, et al. Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish. Development 1990;110:491-504
  • Drapeau P, Saint-Amant L, Buss RR, et al. Development of the locomotor network in zebrafish. Prog Neurobiol 2002;68:85-111
  • Svoboda KR, Linares AE, Ribera AB. Activity regulates programmed cell death of zebrafish Rohon-Beard neurons. Development 2001;128:3511-20
  • Fetcho JR, Higashijima S, McLean DL. Zebrafish and motor control over the last decade. Brain Res Rev 2008;57:86-93
  • Buss RR, Drapeau P. Activation of embryonic red and white muscle fibers during fictive swimming in the developing zebrafish. J Neurophysiol 2002;87:1244-51
  • Li W, Ono F, Brehm P. Optical measurements of presynaptic release in mutant zebrafish lacking postsynaptic receptors. J Neurosci 2003;23:10467-74
  • Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 2000;16:521-55
  • Franzini-Armstrong C, Jorgensen AO. Structure and development of E-C coupling units in skeletal muscle. Annu Rev Physiol 1994;56:509-34
  • Gordon AM, Homsher E, Regnier M. Regulation of contraction in striated muscle. Physiol Rev 2000;80:853-924
  • MacLennan DH. Ca2+ signaling and muscle disease. Eur J Biochem 2000;267:5291-7
  • Streisinger G, Walker C, Dower N, et al. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 1981;291:293-6
  • Chakrabarti S, Streisinger G, Singer F, Walker C. Frequency of gamma-ray induced specific locus and recessive lethal mutations in mature germ cells of the zebrafish, BRACHYDANIO RERIO. Genetics 1983;103:109-23
  • Walker C, Streisinger G. Induction of mutations by gamma-rays in pregonial germ cells of zebrafish embryos. Genetics 1983;103:125-36
  • Grunwald DJ, Streisinger G. Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet Res 1992;59:103-16
  • Grunwald DJ, Eisen JS. Headwaters of the zebrafish–emergence of a new model vertebrate. Nat Rev Genet 2002;3:717-24
  • Haffter P, Granato M, Brand M, et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 1996;123:1-36
  • Driever W, Solnica-Krezel L, Schier AF, et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 1996;123:37-46
  • Granato M, van Eeden FJ, Schach U, et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 1996;123:399-413
  • Bassett DI, Bryson-Richardson RJ, Daggett DF, et al. Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Development 2003;130:5851-60
  • Guyon JR, Goswami J, Jun SJ, et al. Genetic isolation and characterization of a splicing mutant of zebrafish dystrophin. Hum Mol Genet 2009;18:202-11
  • Hall TE, Bryson-Richardson RJ, Berger S, et al. The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin α2-deficient congenital muscular dystrophy. Proc Natl Acad Sci USA 2007;104:7092-7
  • Xu X, Meiler SE, Zhong TP, et al. Cardiomyopathy in zebrafish due to mutation in an alternatively spliced exon of titin. Nat Genet 2002;30:205-9
  • Steffen LS, Guyon JR, Vogel ED, et al. The zebrafish runzel muscular dystrophy is linked to the titin gene. Dev Biol 2007;309:180-92
  • Bassett DI, Currie PD. The zebrafish as a model for muscular dystrophy and congenital myopathy. Hum Mol Genet 2003;15:R265-270
  • Kunkel LM, Bachrach E, Bennett RR, et al. Diagnosis and cell-based therapy for Duchenne muscular dystrophy in humans, mice, and zebrafish. J Hum Genet 2006;51:397-406
  • Steffen LS, Guyon JR, Vogel ED, et al. Zebrafish orthologs of human muscular dystrophy genes. BMC Genomics 2007;8:79
  • Hawkins TA, Haramis AP, Etard C, et al. The ATPase-dependent chaperoning activity of Hsp90a regulates thick filament formation and integration during skeletal muscle myofibrillogenesis. Development 2008;135:1147-56
  • Etard C, Behra M, Fischer N, et al. The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90a during myofibrillogenesis. Dev Biol 2007;308:133-43
  • Wohlgemuth SL, Crawford BD, Pilgrim DB. The myosin co-chaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafish. Dev Biol 2007;303:483-92
  • Du SJ, Li H, Bian Y, Zhong Y. Heat-shock protein 90α1 is required for organized myofibril assembly in skeletal muscles of zebrafish embryos. Proc Natl Acad Sci USA 2008;105:554-9
  • Etard C, Roostalu U, Strähle U. Shuttling of the chaperones Unc45b and Hsp90a between the A band and the Z line of the myofibril. J Cell Biol 2008;180:1163-75
  • Felsenfeld AL, Walker C, Westerfield M, et al. Mutations affecting skeletal muscle myofibril structure in the zebrafish. Development 1990;108:443-59
  • Felsenfeld AL, Curry M, Kimmel CB. The fub-1 mutation blocks initial myofibril formation in zebrafish muscle pioneer cells. Dev Biol 1991;148:23-30
  • Ono F, Higashijima S, Shcherbatko A, et al. Paralytic zebrafish lacking acetylcholine receptors fail to localize rapsyn clusters to the synapse. J Neurosci 2001;21:5439-48
  • Schredelseker J, Di Biase V, Obermair GJ, et al. The b 1a subunit is essential for the assembly of dihydropyridine-receptor arrays in skeletal muscle. Proc Natl Acad Sci USA 2005;102:17219-24
  • Zhou W, Saint-Amant L, Hirata H, et al. Non-sense mutations in the dihydropyridine receptor b1 gene, CACNB1, paralyze zebrafish relaxed mutants. Cell Calcium 2006;39:227-36
  • Schredelseker J, Dayal A, Schwerte T, et al. Proper restoration of excitation-contraction coupling in the dihydropyridine receptor b 1-null zebrafish relaxed is an exclusive function of the b 1a subunit. J Biol Chem 2008;284:1242-51
  • Ptácˇek LJ, Tawil R, Griggs RC, et al. Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. Cell 1994;77:863-8
  • Hirata H, Watanabe T, Hatakeyama J, et al. Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease. Development 2007;134:2771-81
  • Zhang Y, Chen HS, Khanna VK, et al. A mutation in the human ryanodine receptor gene associated with central core disease. Nat Genet 1993;5:46-50
  • Jungbluth H, Beggs A, Bönnemann C, et al. 111th ENMC international workshop on multi-minicore disease. 2nd international MmD workshop, 9-11 November 2002, Naarden, The Netherlands. Neuromuscul Disord 2004;14:754-66
  • Monnier N, Ferreiro A, Marty I, et al. A homozygous splicing mutation causing a depletion of skeletal muscle RYR1 is associated with multi-minicore disease congenital myopathy with ophthalmoplegia. Hum Mol Genet 2003;12:1171-8
  • Hirata H, Saint-Amant L, Waterbury J, et al. accordion, a zebrafish behavioral mutant, has a muscle relaxation defect due to a mutation in the ATPase Ca2+ pump SERCA1. Development 2004;131:5457-68
  • Gleason MR, Armisen R, Verdecia MA, et al. A mutation in serca underlies motility dysfunction in accordion zebrafish. Dev Biol 2004;276:441-51
  • Odermatt A, Taschner PE, Khanna VK, et al. Mutations in the gene-encoding SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease. Nat Genet 1996;14:191-4
  • Sanes JR, Lichtman JW. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2001;2:791-805
  • Kim N, Stiegler AL, Cameron TO, et al. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell 2008;135:334-42
  • Zhang B, Luo S, Wang Q, et al. LRP4 serves as a coreceptor of agrin. Neuron 2008;60:285-97
  • Westerfield M, Liu DW, Kimmel CB, Walker C. Pathfinding and synapse formation in a zebrafish mutant lacking functional acetylcholine receptors. Neuron 1990;4:867-74
  • Sepich DS, Ho RK, Westerfield M. Autonomous expression of the nic1 acetylcholine receptor mutation in zebrafish muscle cells. Dev Biol 1994;161:84-90
  • Sepich DS, Wegner J, O'Shea S, Westerfield M. An altered intron inhibits synthesis of the acetylcholine receptor a-subunit in the paralyzed zebrafish mutant nic1. Genetics 1998;148:361-72
  • Ono F, Mandel G, Brehm P. Acetylcholine receptors direct rapsyn clusters to the neuromuscular synapse in zebrafish. J Neurosci 2004;24:5475-81
  • Panzer JA, Song Y, Balice-Gordon RJ. In vivo imaging of preferential motor axon outgrowth to and synaptogenesis at prepatterned acetylcholine receptor clusters in embryonic zebrafish skeletal muscle. J Neurosci 2006;26:934-47
  • Epley KE, Urban JM, Ikenaga T, Ono F. A modified acetylcholine receptor d-subunit enables a null mutant to survive beyond sexual maturation. J Neurosci 2008;28:13223-31
  • Lefebvre JL, Ono F, Puglielli C, et al. Increased neuromuscular activity causes axonal defects and muscular degeneration. Development 2004;131:2605-18
  • Ono F, Shcherbatko A, Higashijima S, et al. The zebrafish motility mutant twitch once reveals new roles for rapsyn in synaptic function. J Neurosci 2002;22:6491-8
  • Saint-Amant L, Sprague SM, Hirata H, et al. The zebrafish ennui behavioral mutation disrupts acetylcholine receptor localization and motor axon stability. Dev Neurobiol 2008;68:45-61
  • Zhang J, Lefebvre JL, Zhao S, Granato M. Zebrafish unplugged reveals a role for muscle-specific kinase homologs in axonal pathway choice. Nat Neurosci 2004;7:1303-9
  • Zhang J, Granato M. The zebrafish unplugged gene controls motor axon pathway selection. Development 2000;127:2099-111
  • Zhang J, Malayaman S, Davis C, Granato M. A dual role for the zebrafish unplugged gene in motor axon pathfinding and pharyngeal development. Dev Biol 2001;240:560-73
  • Lefebvre JL, Jing L, Becaficco S, et al. Differential requirement for MuSK and dystroglycan in generating patterns of neuromuscular innervation. Proc Natl Acad Sci USA 2007;104:2483-8
  • Wang M, Wen H, Brehm P. Function of neuromuscular synapses in the zebrafish choline-acetyltransferase mutant bajan. J Neurophysiol 2008;100:1995-2004
  • Behra M, Cousin X, Bertrand C, et al. Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat Neurosci 2002;5:111-8
  • Downes GB, Granato M. Acetylcholinesterase function is dispensable for sensory neurite growth but is critical for neuromuscular synapse stability. Dev Biol 2004;270:232-45
  • Amsterdam A, Lin S, Hopkins N. The aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Dev Biol 1995;171:123-9
  • Higashijima S, Okamoto H, Ueno N, et al. High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Dev Biol 1997;192:289-99
  • Long Q, Meng A, Wang H, et al. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 1997;124:4105-11
  • Scheer N, Campos-Ortega JA. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech Dev 1999;80:153-8
  • Halloran MC, Sato-Maeda M, Warren JT, et al. Laser-induced gene expression in specific cells of transgenic zebrafish. Development 2000;127:1953-60
  • Lin S, Gaiano N, Culp P, et al. Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science 1994;265:666-9
  • Gaiano N, Amsterdam A, Kawakami K, et al. Insertional mutagenesis and rapid cloning of essential genes in zebrafish. Nature 1996;383:829-32
  • Kawakami K, Shima A, Kawakami N. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA 2000;97:11403-8
  • Kawakami K, Takeda H, Kawakami N, et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 2004;7:133-44
  • Sivasubbu S, Balciunas D, Davidson AE, et al. Gene-breaking transposon mutagenesis reveals an essential role for histone H2afza in zebrafish larval development. Mech Dev 2006;123:513-29
  • Wienholds E, Schulte-Merker S, Walderich B, Plasterk RH. Target-selected inactivation of the zebrafish rag1 gene. Science 2002;297:99-102
  • Meng X, Noyes MB, Zhu LJ, et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 2008;26:695-701
  • Doyon Y, McCammon JM, Miller JC, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 2008;26:702-8
  • Nasevicius A, Ekker SC. Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 2000;26:216-20
  • Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 2005;4:35-44
  • Peterson RT, Link BA, Dowling JE, Schreiber SL. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad Sci USA 2000;97:12965-9
  • Owens KN, Santos F, Roberts B, et al. Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLoS Genet 2008;4:e1000020
  • Sachidanandan C, Yeh JR, Peterson QP, Peterson RT. Identification of a novel retinoid by small molecule screening with zebrafish embryos. PLoS ONE 2008;3:e1947
  • Zhong TP, Rosenberg M, Mohideen MA, et al. gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 2000;287:1820-4
  • Zhong TP, Childs S, Leu JP, Fishman MC. Gridlock signalling pathway fashions the first embryonic artery. Nature 2001;414:216-20
  • Peterson RT, Shaw SY, Peterson TA, et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol 2004;22:595-9
  • Stern HM, Murphey RD, Shepard JL, et al. Small molecules that delay S phase suppress a zebrafish bmyb mutant. Nat Chem Biol 2005;1:366-70

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.