99
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Implications of endoplasmic reticulum stress, the unfolded protein response and apoptosis for molecular cancer therapy. Part II: targeting cell cycle events, caspases, NF-κB and the proteasome

, MSc (Med) PhD (Med) & , MSc (Med)
Pages 907-921 | Published online: 25 Jun 2009

Bibliography

  • Nowis D, McConnell EJ, Dierlam L, et al. TNF potentiates anticancer activity of bortezomib (Velcade) through reduced expression of proteasome subunits and dysregulation of unfolded protein response. Int J Cancer 2007;121(2):431-41
  • Milano A, Iaffaioli RV, Caponigro F. The proteasome: a worthwhile target for the treatment of solid tumours? Eur J Cancer 2007;43(7):1125-33
  • Neukirchen J, Meier A, Rohrbeck A, et al. The proteasome inhibitor bortezomib acts differently in combination with p53 gene transfer or cytotoxic chemotherapy on NSCLC cells. Cancer Gene Ther 2007;14(4):431-9
  • Goldberg AL. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 2007;35(Pt 1):12-7
  • Sterz J, Metzler IV, Hahne J-C, et al. The potential of proteasome inhibitors in cancer therapy. Exp Opin Invest Drugs 2008;17(6):879-95
  • Crawford LJ, Walker B, Irvine AE. Proteasome inhibitors: a therapeutic strategy for haematological malignancy. Front Biosci 2008;13:4285-96
  • Daviet L, Colland F. Targeting ubiquitin specific proteases for drug discovery. Biochimie 2008;90(2):270-83
  • Burger AM. Highlights in experimental therapeutics. Cancer Lett 2007;245(1-2):11-21
  • Strasser A, Puthalakath H. Fold up or perish: unfolded protein response and chemotherapy. Cell Death Differ 2008;15(2):223-5
  • Smith L, Lind MJ, Drew PJ, Cawkwell L. The putative roles of the ubiquitin/proteasome pathway in resistance to anticancer therapy. Eur J Cancer 2007;43(16):2330-8
  • Moran E, Nencioni A. The role of proteasome in malignant diseases. J Buon 2007;12(Suppl 1):S95-S99
  • Thorpe JA, Christian PA, Schwarze SR. Proteasome inhibition blocks caspase-8 degradation and sensitizes prostate cancer cells to death receptor-mediated apoptosis. Prostate 2008;68(2):200-9
  • Hallett WH, Ames E, Motarjemi M, et al. Sensitization of tumor cells to NK cell-mediated killing by proteasome inhibition. J Immunol 2008;180(1):163-70
  • Rosa DD, Ismael G, Lago LD, Awada A. Molecular-targeted therapies: lessons from years of clinical development. Cancer Treat Rev 2008;34(1):61-80
  • Hampton RY. ER stress response: getting the UPR hand on misfolded proteins. Curr Biol 2000;10:R518-R21
  • Nalepa G, Harper W. Therapeutic anti-cancer targets upstream of the proteasome. Cancer Treat Rev 2003;29:49-57
  • Nalepa G, Rolfe M, Harper JW. Drug discovery in the ubiquitin–proteasome system. Nat Rev Drug Discov 2006;5:596-613
  • Zavrski I, Jakob C, Kaiser M, et al. Molecular and clinical aspects of proteasome inhibition in the treatment of cancer. Recent Results Cancer Res 2007;176:165-76
  • Vink J, Cloos J, Kaspers GJL. Proteasome inhibition as novel treatment strategy in leukaemia. Br J Haematol 2006;134:253-62
  • Voorhees PM, Orlowski RZ. The proteasome and proteasome inhibitors in cancer therapy. Annu Rev Pharmacol Toxicol 2006;46(1):189-213
  • Kuhn DJ, Zeger EL, Orlowski RZ. Proteasome inhibitors and modulators of heat shock protein function. Update Cancer Ther 2006;1(2):91-116
  • Nencioni A, Grünebach F, Patrone F, et al. Proteasome inhibitors: Antitumor effects and beyond. Leukemia 2007;21:30-6
  • Ovaa H. Active-site directed probes to report enzymatic action in the ubiquitin proteasome system. Nat Rev Cancer 2007;7(8):613-20
  • Farras R, Bossis G, Andermarcher E, et al. Mechanisms of delivery of ubiquitylated proteins to the proteasome: new target for anti-cancer therapy? Crit Rev Oncol Hematol 2005;54(1):31-51
  • Li B, Jia N, Waning DL, et al. Cul4A is required for hematopoietic stem-cell engraftment and self-renewal. Blood 2007;110(7):2704-7
  • Waning DL, Li B, Jia N, et al. Cul4A is required for hematopoietic cell viability and its deficiency leads to apoptosis. Blood 2008;112(2):320-9
  • Heuzé ML, Lamsoul I, Moog-Lutz C, Lutz PG. Ubiquitin-mediated proteasomal degradation in normal and malignant hematopoiesis. Blood Cells Mol Dis 2008;40(2):200-10
  • Brewer JW, Diehl JA. PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci USA 2000;97(23):12625-30
  • Brewer JW, Hendershot LM, Sherr CJ, Diehl JA. Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression. Proc Natl Acad Sci USA 1999;96(15):8505-10
  • Zhang F, Hamanaka RB, Bobrovnikova-Marjon E, et al. Ribosomal stress couples the unfolded protein response to p53-dependent cell cycle arrest. J Biol Chem 2006;281(40):30036-45
  • Hamanaka RB, Bennett BS, Cullinan SB, Diehl JA. PERK and GCN2 contribute to eIF2alpha phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway. Mol Biol Cell 2005;16(12):5493-501
  • Bicknell AA, Babour A, Federovitch CM, Niwa M. A novel role in cytokinesis reveals a housekeeping function for the unfolded protein response. J Cell Biol 2007;177(6):1017-27
  • Aggarwal BB, Banerjee S, Bharadwaj U, et al. Curcumin induces the degradation of cyclin E expression through ubiquitin-dependent pathway and up-regulates cyclin-dependent kinase inhibitors p21 and p27 in multiple human tumor cell lines. Biochem Pharmacol 2007;73(7):1024-32
  • Akatsu Y, Saikawa Y, Kubota T, et al. Predictive value of GADD153, p21 and c-Jun for chemotherapy response in gastric cancer. Cancer Sci 2007;98(5):707-15
  • Avkin S, Sevilya Z, Toube L, et al. p53 and p21 regulate error-prone DNA repair to yield a lower mutation load. Mol Cell 2006;22(3):407-13
  • Bai M, Tsanou E, Skyrlas A, et al. Alterations of the p53, Rb and p27 tumor suppressor pathways in diffuse large B-cell lymphomas. Anticancer Res 2007;27(4B):2345-52
  • Cao W, Chi W-H, Wang J, et al. TNF-[alpha] promotes doxorubicin-induced cell apoptosis and anti-cancer effect through downregulation of p21 in p53-deficient tumor cells. Biochem Biophys Res Commun 2005;330(4):1034-40
  • Chen C-Y, Hsu Y-L, Chen Y-Y, et al. Isokotomolide A, a new butanolide extracted from the leaves of Cinnamomum kotoense, arrests cell cycle progression and induces apoptosis through the induction of p53/p21 and the initiation of mitochondrial system in human non-small cell lung cancer A549 cells. Eur J Pharmacol 2007;574(2-3):94-102
  • Ding H, Duan W, Zhu W-G, et al. p21 response to DNA damage induced by genistein and etoposide in human lung cancer cells. Biochem Biophys Res Commun 2003;305(4):950-6
  • Huang TG, Ip SM, Yeung WSB, Ngan HYS. Changes in p21WAF1, pRb, Mdm-2, Bax and Bcl-2 expression in cervical cancer cell lines transfected with a p53 expressing adenovirus. Eur J Cancer 2000;36(2):249-56
  • Kolomeichuk SN, Bene A, Upreti M, et al. Induction of apoptosis by vinblastine via c-Jun autoamplification and p53-independent down-regulation of p21WAF1/CIP1. Mol Pharmacol 2008;73(1):128-36
  • Lin Y-C, Wang F-F. Mechanisms underlying the pro-survival pathway of p53 in suppressing mitotic death induced by adriamycin. Cell Signal 2008;20(1):258-67
  • Maddika S, Ande SR, Panigrahi S, et al. Cell survival, cell death and cell cycle pathways are interconnected: Implications for cancer therapy. Drug Resist Updat 2007;10(1-2):13-29
  • Mathew R, Arora S, Khanna R, et al. Alterations in p53 and pRb pathways and their prognostic significance in oesophageal cancer. Eur J Cancer 2002;38(6):832-41
  • Matta H, Chaudhary PM. The proteasome inhibitor bortezomib (PS-341) inhibits growth and induces apoptosis in primary effusion lymphoma cells. Cancer Biol Ther 2005;4(1):77-82
  • Nam EJ, Kim YT. Alteration of cell-cycle regulation in epithelial ovarian cancer. Int J Gynecol Cancer 2008;18(6):1169-82
  • Rakitina TV, Vasilevskaya IA, O'Dwyer PJ. Inhibition of G1/S transition potentiates oxaliplatin-induced cell death in colon cancer cell lines. Biochem Pharmacol 2007;73(11):1715-26
  • Dai L, Wang X, Yao X, et al. Antisense oligonucleotide targeting p53 increased apoptosis of MCF-7 cells induced by ionizing radiation. Acta Pharmacol Sin 2006;27(11):1453-8
  • Nakayama K, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 2006;6:369-81
  • Menon S, Goswami P. A redox cycle within the cell cycle: ring in the old with the new. Oncogene 2007;26:1101-9
  • Weinberg R. The retinoblastoma protein and cell cycle control. Cell 1995;81:323
  • Haberichter T, Madge B, Christopher RA, et al. A systems biology dynamical model of mammalian G1 cell cycle progression. Mol Syst Biol 2007;3:1-8
  • Sanz L, Cuesta ÁM, Compte M, Álvarez-Vallina L. Antibody engineering: facing new challenges in cancer therapy. Acta Pharmacol Sin 2005;26(6):641-8
  • Broxterman HJ, Georgopapadakou NH. Anticancer therapeutics: “Addictive” targets, multi-targeted drugs, new drug combinations. Drug Resist Update 2005;8:183-97
  • Siemeister G, Briem H, Brumby T. ZK 304709: the oral multi-target tumor growth inhibitor™ (MTGI™) acts via inhibition of cell cycle progression and tumor-induced neoangiogenesis [abstract # 5842]. Am Assoc Cancer Res 2005;46
  • Bogenrieder T, Herlyn M. Axis of evil: molecular mechanisms of cancer metastasis. Oncogene 2003;22:6524-36
  • Matsumoto M, Furihata M, Ishikawa T. Comparison of deregulated expression of cyclin D1 and cyclin E with that of cyclin-dependent kinase 4 (CDK4) and CDK2 in human oesophageal squamous cell carcinoma. Br J Cancer 1999;80:256
  • Akli S, Keyomarsi K. Cyclin E and its low molecular weight forms in human cancer and as targets for cancer therapy. Cancer Biol Ther 2003;2(4(Suppl 1)):S38-47
  • Strasser S, Maier S, Leisser C, et al. 5-FdUrd–araC heterodinucleoside re-establishes sensitivity in 5-FdUrd and AraC-resistant MCF-7 breast cancer cells overexpressing ErbB2. Differentiation 2006;74:488-98
  • Grant S, Roberts J. The use of cyclin-dependent kinase inhibitors alone or in combination with established cytotoxic drugs in cancer chemotherapy. Drug Resist Updat 2003;6:15-26
  • Shapiro G. Preclinical and clinical development of the cyclindependent kinase inhibitor flavopiridol. Clin Cancer Res 2004;10:4270s-5s
  • Motwani M, Rizzo C, Sirotnak F, et al. Flavopiridol enhances the effect of docetaxel in vitro and in vivo in human gastric cancer cells. Mol Cancer Ther 2003;2:549-55
  • Osoegawa A, Yoshino I, Tanaka S, et al. Regulation of p27 by S-phase kinase-associated protein 2 is associated with aggressiveness in non-small-cell lung cancer. J Clin Oncol 2004;22:4165-73
  • Ben-Izhak O, Lahav-Baratz S, Meretyk S, et al. Inverse relationship between Skp2 ubiquitin ligase and the cyclin dependent kinase inhibitor p27Kip1 in prostate cancer. J Urol 2003;170:241-5
  • Nickeleit I, Zender S, Sasse F, et al. Argyrin A reveals a critical role for the tumor suppressor protein p27kip1 in mediating antitumor activities in response to proteasome inhibition. Cancer Cell 2008;14(1):23-35
  • Flemming A. Anticancer Drugs: proteasome inhibitor unleashes three-pronged attack. Nat Rev Drug Discov 2008;7(9):730-1
  • McConkey DJ. A novel role for a familiar protein in apoptosis induced by proteasome inhibition. Cancer Cell 2008;14(1):1-2
  • Devoy A, Soane T, Welchman R, Mayer RJ. The ubiquitin-proteasome system and cancer. Essays Biochem 2005;41:187-203
  • Boelens J, Lust S, Offner F, et al. Review. The endoplasmic reticulum: a target for new anticancer drugs. In Vivo 2007;21(2):215-26
  • Lamkanfi M, Festjens N, Declercq W, et al. Caspases in cell survival, proliferation and differentiation. Cell Death Differ 2007;14:44-55
  • Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biol Ther 2005;4(2):e50-74
  • Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 2008;9(3):231-41
  • Kumar S. Caspase function in programmed cell death. Cell Death Differ 2007;14:32-43
  • Guerrero AD, Chen M, Wang J. Delineation of the caspase-9 signaling cascade. Apoptosis 2008;13(1):177-86
  • Hetfeld BK, Peth A, Sun XM, et al. The COP9 signalosome-mediated deneddylation is stimulated by caspases during apoptosis. Apoptosis 2008;13(2):187-95
  • Schroder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005;569(1-2):29-63
  • Biagioli M, Pifferi S, Ragghianti M, et al. Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium 2008;43(2):184-95
  • Chiang PC, Chien CL, Pan SL, et al. Induction of endoplasmic reticulum stress and apoptosis by a marine prostanoid in human hepatocellular carcinoma. J Hepatol 2005;43(4):679-86
  • Yeh TC, Chiang PC, Li TK, et al. Genistein induces apoptosis in human hepatocellular carcinomas via interaction of endoplasmic reticulum stress and mitochondrial insult. Biochem Pharmacol 2007;73(6):782-92
  • Lien YC, Kung HN, Lu KS, et al. Involvement of endoplasmic reticulum stress and activation of MAP kinases in beta-lapachone-induced human prostate cancer cell apoptosis. Histol Histopathol 2008;23(11):1299-308
  • Rao RV, Poksay KS, Castro-Obregon S, et al. Molecular components of a cell death pathway activated by endoplasmic reticulum stress. J Biol Chem 2004;279(1):177-87
  • Rao RV, Niazi K, Mollahan P, et al. Coupling endoplasmic reticulum stress to the cell-death program: A novel HSP90-independent role for the small chaperone protein p23. Cell Death Differ 2006;13(3):415-25
  • Deniaud A, Sharaf el dein O, Maillier E, et al. Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 2008;27(3):285-99
  • Ehrhardt H, Hacker S, Wittmann S, et al. Cytotoxic drug-induced, p53-mediated upregulation of caspase-8 in tumor cells. Oncogene 2008;27(6):783-93
  • Abdelrahim M, Newman K, Vanderlaag K, et al. 3,3′-diindolylmethane (DIM) and its derivatives induce apoptosis in pancreatic cancer cells through endoplasmic reticulum stress-dependent upregulation of DR5. Carcinogenesis 2006;27(4):717-28
  • Alkhalaf M, El-Mowafy A, Renno W, et al. Resveratrol-induced apoptosis in human breast cancer cells is mediated primarily through the caspase-3-dependent pathway. Arch Med Res 2008;39(2):162-8
  • Barbour KW, Berger FG. Cell death in response to antimetabolites directed at thymidylate synthase. Cancer Chemother Pharmacol 2008;61(2):189-201
  • Anding AL, Chapman JS, Barnett DW, et al. The unhydrolyzable fenretinide analogue 4-hydroxybenzylretinone induces the proapoptotic genes GADD153 (CHOP) and Bcl-2-binding component 3 (PUMA) and apoptosis that is caspase-dependent and independent of the retinoic acid receptor. Cancer Res 2007;67(13):6270-7
  • Bokelmann I, Mahlknecht U. Valproic acid sensitizes chronic lymphocytic leukemia cells to apoptosis and restores the balance between pro- and antiapoptotic proteins. Mol Med 2008;14(1-2):20-7
  • Can I, Tahara-Hanaoka S, Hitomi K, et al. Caspase-independent cell death by CD300LF (MAIR-V), an inhibitory immunoglobulin-like receptor on myeloid cells. J Immunol 2008;180(1):207-13
  • Galbán S, Brady GF, Duckett CS. Caspases and IAPs: a dance of death ensures cell survival. Mol Cell 2008;32(4):462-3
  • Grozio A, Paleari L, Catassi A, et al. Natural agents targeting the alpha7-nicotinic-receptor in NSCLC: A promising prospective in anti-cancer drug development. Int J Cancer 2008;122(8):1911-5
  • Klampfer L. The role of signal transducers and activators of transcription in colon cancer. Front Biosci 2008;13:2888-99
  • Ondrouskova E, Soucek K, Horvath V, Smarda J. Alternative pathways of programmed cell death are activated in cells with defective caspase-dependent apoptosis. Leuk Res 2008;32(4):599-609
  • Callus B, Vaux D. Caspase inhibitors: viral, cellular and chemical. Cell Death Differ 2007;14:73-8
  • Reed JC. Drug Insight: cancer therapy strategies based on restoration of endogenous cell death mechanisms. Nat Clin Pract Oncol 2006;3(7):388-98
  • Xu L, Zhu J, Hu X, et al. c-IAP1 cooperates with Myc by acting as a ubiquitin ligase for Mad1. Mol Cell 2007;28(5):914-22
  • Hjerpe R, Rodríguez MS. Alternative UPS drug targets upstream the 26S proteasome. Int J Biochem Cell Biol 2008;40(6-7):1126-40
  • Mayer RJ, Fujita J. Gankyrin, the 26 S proteasome, the cell cycle and cancer. Biochem Soc Trans 2006;34(5):746-8
  • Cillessen SA, Reed JC, Welsh K, et al. Small-molecule XIAP antagonist restores caspase-9 mediated apoptosis in XIAP-positive diffuse large B-cell lymphoma cells. Blood 2008;111(1):369-75
  • Dasmahapatra G, Lembersky D, Rahmani M, et al. Bcl-2 antagonists interact synergistically with bortezomib in DLBCL cells in association with JNK activation and induction of ER stress. Cancer Biol Ther 2009;8(9):820-2
  • Caraglia M, Marra M, Budillon A, et al. Chemotherapy regimen GOLF induces apoptosis in colon cancer cells through multi-chaperone complex inactivation and increased Raf-1 ubiquitin-dependent degradation. Cancer Biol Ther 2005;4(10):1159-67
  • Hoffarth S, Zitzer A, Wiewrodt R, et al. pp32/PHAPI determines the apoptosis response of non-small-cell lung cancer. Cell Death Differ 2008;15(1):161-70
  • Meyer LH, Queudeville M, Eckhoff SM, et al. Intact apoptosis signaling in myeloid leukemia cells determines treatment outcome in childhood AML. Blood 2008;111(5):2899-903
  • Kang DW, Choi CH, Park JY, et al. Ciglitazone induces caspase-independent apoptosis through down-regulation of XIAP and survivin in human glioma cells. Neurochem Res 2008;33(3):551-61
  • McLean L, Soto U, Agama K, et al. Aminoflavone induces oxidative DNA damage and reactive oxidative species-mediated apoptosis in breast cancer cells. Int J Cancer 2008;122(7):1665-74
  • Song H, Hollstein M, Xu Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 2007;9(5):573-80
  • Fuster JJ, Sanz-González SM, Moll UM, Andrés V. Classic and novel roles of p53: Prospects for anticancer therapy. Trends Mol Med 2007;13(5):192-9
  • Collins I, Workman P. New approaches to molecular cancer therapeutics. Nat Chem Biol 2006;2(12):689-700
  • Eastman A, Perez RP. New targets and challenges in the molecular therapeutics of cancer. Br J Clin Pharmacol 2006;62(1):5-14
  • Zinszner H, Kuroda M, Wang X, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998;12:982-95
  • Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 2005;115(10):2656-64
  • Tabruyn SP, Griffioen AW. A new role for NF-κB in angiogenesis inhibition. Cell Death Differ 2007;14:1393-7
  • Karin M, Greten FR. NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005;5:749-59
  • Leclerc D, Rozen R. Endoplasmic reticulum stress increases the expression of methylenetetrahydrofolate reductase through the IRE1 transducer. J Biol Chem 2008;283(6):3151-60
  • Kaneko M, Niinuma Y, Nomura Y. Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull 2003;26(7):931-5
  • Yoshimura A. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci 2006;97(6):439-47
  • Fribley A, Wang C-Y. Proteasome inhibitor induces apoptosis through induction of endoplasmic reticulum stress. Cancer Biol Ther 2006;5(7):745-8
  • Heyninck K, Beyaert R. A20 inhibits NF-kappaB activation by dual ubiquitin-editing functions. Trends Biochem Sci 2005;30(1):1-4
  • Zhang HG, Wang J, Yang X, et al. Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 2004;23(11):2009-15
  • Wang C, Mayo M, Baldwin A. TNF- and cancer therapy-induced apoptosis: Potentiation by inhibition of NF-kappaB. Science 1996;274:784-7
  • Wang C, Cusack J, Liu R, Baldwin A. Control of inducible chemoresistance: Enhanced anti-tumor therapy via increased apoptosis through inhibition of NF-kB. Nat Med 1999;5:412-7
  • Wang C, Guttridge D, Mayo M, Baldwin A. NF-kappaB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol 1999;19:5923-9
  • Hideshima T, Richardson P, Chauhan D, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001;61:3071-6
  • Ondrey F, Dong G, Sunwoo J, et al. Constitutive activation of transcription factors NF-(kappa)B, AP-1, and NF-IL6 in human head and neck squamous cell carcinoma cell lines that express pro-inflammatory and pro-angiogenic cytokines. Mol Carcinog 1999;26:119-29
  • Nencioni A, Grunebach F, Patrone F, et al. Proteasome inhibitors: Antitumor effects and beyond. Leukemia 2007;21(1):30-6
  • Fahy BN, Schlieman MG, Mortenson MM, et al. Targeting BCL-2 overexpression in various human malignancies through NF-kappaB inhibition by the proteasome inhibitor bortezomib. Cancer Chemother Pharmacol 2005;56(1):46-54
  • Jourdan M, Moreaux J, Vos JD, et al. Targeting NF-kB pathway with an IKK2 inhibitor induces inhibition of multiple myeloma cell growth. Br J Haematol 2007;138:160-8
  • Heider U, von Metzler I, Kaiser M, et al. Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in mantle cell lymphoma. Eur J Haematol 2008;80(2):133-42
  • Mi J, Zhang X, Rabbani ZN, et al. RNA aptamer-targeted inhibition of NF-kappaB suppresses non-small cell lung cancer resistance to doxorubicin. Mol Ther 2008;16(1):66-73
  • Frelin C, Imbert V, Bottero V, et al. Inhibition of the NF-kappaB survival pathway via caspase-dependent cleavage of the IKK complex scaffold protein and NF-kappaB essential modulator NEMO. Cell Death Differ 2008;15(1):152-60
  • Olivier S, Robe P, Bours V. Can NF-kappaB be a target for novel and efficient anti-cancer agents? Biochem Pharmacol 2006;72(9):1054-68
  • Ostrowska H. The ubiquitin-proteasome system: a novel target for anticancer and anti-inflammatory drug research. Cell Mol Biol Lett 2008;13(3):353-65
  • Zavrski I, Kleeberg L, Kaiser M, et al. Proteasome as an emerging therapeutic target in cancer. Curr Pharm Des 2007;13(5):471-85
  • Zavrski I, Jakob C, Schmid P, et al. Proteasome: an emerging target for cancer therapy. Anticancer Drugs 2005;16(5):475-81
  • Taneja P, Mallakin A, Matise LA, et al. Repression of Dmp1 and Arf transcription by anthracyclins: critical roles of the NF-kappaB subunit p65. Oncogene 2007;26(53):7457-66
  • Concannon C, Koehler B, Reimertz C, et al. Apoptosis induced by proteasome inhibition in cancer cells: Predominant role of the p53/PUMA pathway. Oncogene 2007;26:1681-92
  • Nakamura T, Tanaka K, Matsunobu T, et al. The mechanism of cross-resistance to proteasome inhibitor bortezomib and overcoming resistance in Ewing's family tumor cells. Int J Oncol 2007;31(4):803-11
  • Ishii Y, Waxman S, Germain D. Targeting the ubiquitin-proteasome pathway in cancer therapy. Anticancer Agents Med Chem 2007;7(3):359-65
  • Meng L, Mohan R, Kwok B, et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci USA 1999;96:10403-8
  • Lass A, McConnell E, Nowis D, et al. A novel function of VCP (valosin-containing protein; p97) in the control of N-glycosylation of proteins in the endoplasmic reticulum. Arch Biochem Biophys 2007;462(1):62-73
  • Richardson PG. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003;348:2609-17
  • Richardson PG. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005;352:2487-98
  • Richardson PG, Mitsiades C. Bortezomib: proteasome inhibition as an effective anticancer therapy. Future Oncol 2005;1(2):161-71
  • Richardson PG, Mitsiades C, Hideshima T, Anderson KC. Bortezomib: proteasome inhibition as an effective anticancer therapy. Annu Rev Med 2006;57:33-47
  • Richardson PG, Mitsiades C, Schlossman R, et al. New drugs for myeloma. Oncologist 2007;12(6):664-89
  • Fujita T, Doihara H, Washio K, et al. Antitumor effects and drug interactions of the proteasome inhibitor bortezomib (PS341) in gastric cancer cells. Anticancer Drugs 2007;18(6):677-86
  • Boccadoro M, Morgan G, Cavenagh J. Preclinical evaluation of the proteasome inhibitor bortezomib in cancer therapy. Cancer Cell Int 2005;5(1):18
  • Roccaro AM, Hideshima T, Richardson PG, et al. Bortezomib as an antitumor agent. Curr Pharm Biotechnol 2006;7(6):441-8
  • Kardosh A, Golden EB, Pyrko P, et al. Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2,5-dimethyl-celecoxib. Cancer Res 2008;68(3):843-51
  • Nikrad M, Johnson T, Puthalalath H, et al. The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim. Mol Cancer Ther 2005;4(3):443-9
  • Fennell DA, Chacko A, Mutti L. BCL-2 family regulation by the 20S proteasome inhibitor bortezomib. Oncogene 2008;27(9):1189-97
  • Fribley AM, Evenchik B, Zeng Q, et al. Proteasome inhibitor PS-341 induces apoptosis in cisplatin-resistant squamous cell carcinoma cells by induction of Noxa. J Biol Chem 2006;281(42):31440-7
  • Li J, Lee B, Lee AS. Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 2006;281(11):7260-70
  • Nikiforov MA, Riblett M, Tang WH, et al. Tumor cell-selective regulation of NOXA by c-MYC in response to proteasome inhibition. Proc Natl Acad Sci USA 2007;104(49):19488-93
  • Chauhan D, Hideshima T, Anderson K. Proteasome inhibition in multiple myeloma: therapeutic implication. Annu Rev Pharmacol Toxicol 2005;45:465-76
  • Chauhan D, Singh A, Brahmandam M, et al. Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood 2008;111(3):1654-64
  • Miasari M, Puthalakath H, Silke J. Ubiquitylation and cancer development. Curr Cancer Drug Targets 2008;8(2):118-23
  • Chen C, Kouroukis CT, White D, et al. Bortezomib in relapsed or refractory Waldenstrom's cacroglobulinemia. Clin Lymphoma Myeloma 2009;9(1):74-6
  • Frankel SR. Oblimersen sodium (G3139 Bcl-2 antisense oligonucleotide) therapy in Waldenstrom's macroglobulinemia: a targeted approach to enhance apoptosis. Semin Oncol 2003;30(2):300-4
  • Gertz MA, Geyer SM, Badros A, et al. Early results of a phase I trial of oblimersen sodium for relapsed or refractory Waldenstrom's macroglobulinemia. Clin Lymphoma 2005;5(4):282-4
  • Mitsiades CS, Mitsiades N, Richardson PG, et al. Novel biologically based therapies for Waldenstrom's macroglobulinemia. Semin Oncol 2003;30(2):309-12
  • Roccaro AM, Leleu X, Sacco A, et al. Resveratrol exerts antiproliferative activity and induces apoptosis in Waldenstrom's macroglobulinemia. Clin Cancer Res 2008;14(6):1849-58
  • Roccaro AM, Vacca A, Ribatti D. Bortezomib in the treatment of cancer. Recent Patents Anticancer Drug Discov 2006;1(3):397-403
  • Zeldis JB, Schafer PH, Bennett BL, et al. Potential new therapeutics for Waldenstrom's macroglobulinemia. Semin Oncol 2003;30(2):275-81
  • Hatjiharissi E, Ngo H, Leontovich AA, et al. Proteomic analysis of waldenstrom macroglobulinemia. Cancer Res 2007;67(8):3777-84
  • Leleu X, Xu L, Jia X, et al. Endoplasmic reticulum stress is a target for therapy in Waldenstrom macroglobulinemia. Blood 2009;113(3):626-34
  • Aloy MT, Hadchity E, Bionda C, et al. Protective role of Hsp27 protein against gamma radiation-induced apoptosis and radiosensitization effects of Hsp27 gene silencing in different human tumor cells. Int J Radiat Oncol Biol Phys 2008;70(2):543-53
  • Yaglom JA, Gabai VL, Sherman MY. High levels of heat shock protein Hsp72 in cancer cells suppress default senescence pathways. Cancer Res 2007;67(5):2373-81
  • O'Callaghan-Sunol C, Gabai VL, Sherman MY. Hsp27 modulates p53 signaling and suppresses cellular senescence. Cancer Res 2007;67(24):11779-88
  • Schmitt E, Gehrmann M, Brunet M, et al. Intracellular and extracellular functions of heat shock proteins: Repercussions in cancer therapy. J Leukoc Biol 2007;81(1):15-27
  • Hiss DC, Gabriels GA, Folb PI. Combination of tunicamycin with anticancer drugs synergistically enhances their toxicity in multidrug-resistant human ovarian cystadenocarcinoma cells. Cancer Cell Int 2007;7(1):5
  • Loo T, Clarke D. The human multidrugresistance P-glycoprotein is inactive when its maturation is inhibited: potential for a role in cancer chemotherapy. FASEB J 1999;13(13):1724-32
  • Zhang Z, Wu J-Y, Hait WN, Yang J-M. Regulation of the stability of P-glycoprotein by ubiquitination. Mol Pharmacol 2004;66(3):395-403
  • Wawrzynczak E. Prognostic proteasome. Nat Rev Cancer 2007;7(1):6-7
  • Kropff M, Bisping G, Schuck E, et al. Bortezomib in combination with intermediate-dose dexamethasone and continuous low-dose oral cyclophosphamide for relapsed multiple myeloma. Br J Haematol 2007;138(3):330-7
  • Podar K, Gouill SL, Zhang J, et al. A pivotal role for Mcl-1 in Bortezomib-induced apoptosis. Oncogene 2008;27(6):721-31
  • Wang M, Han XH, Zhang L, et al. Bortezomib is synergistic with rituximab and cyclophosphamide in inducing apoptosis of mantle cell lymphoma cells in vitro and in vivo. Leukemia 2008;22(1):179-85
  • Xu H, Ju D, Jarois T, Xie Y. Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cells. Breast Cancer Res Treat 2008;107(2):267-74
  • Fuchs D, Berges C, Opelz G, et al. Increased expression and altered subunit composition of proteasomes induced by continuous proteasome inhibition establish apoptosis resistance and hyperproliferation of Burkitt lymphoma cells. J Cell Biochem 2008;103(1):270-83
  • Jakob C, Egerer K, Liebisch P, et al. Circulating proteasome levels are an independent prognostic factor for survival in multiple myeloma. Blood 2007;109(5):2100-5
  • Golab J, Bauer TM, Daniel V, Naujokat C. Role of the ubiquitin-proteasome pathway in the diagnosis of human diseases. Clin Chim Acta 2004;340(1-2):27-40
  • Yang Y, Kitagaki J, Wang H, et al. Targeting the ubiquitin-proteasome system for cancer therapy. Cancer Sci 2009;100(1):24-8
  • Kraus M, Malenke E, Gogel J, et al. Ritonavir induces endoplasmic reticulum stress and sensitizes sarcoma cells toward bortezomib-induced apoptosis. Mol Cancer Ther 2008;7(7):1940-8
  • Yang CH, Gonzalez-Angulo AM, Reuben JM, et al. Bortezomib (VELCADE®) in metastatic breast cancer: Pharmacodynamics, biological effects, and prediction of clinical benefits. Ann Oncol 2006;17(5):813-7
  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004;3:711-5
  • Secchiero P, Corallini F, Gonelli A, et al. Antiangiogenic activity of the MDM2 antagonist nutlin-3. Circ Res 2007;100(1):61-9
  • Graat HC, Carette JE, Schagen FH, et al. Enhanced tumor cell kill by combined treatment with a small-molecule antagonist of mouse double minute 2 and adenoviruses encoding p53. Mol Cancer Ther 2007;6(5):1552-61
  • Secchiero P, Zerbinati C, di Iasio MG, et al. Synergistic cytotoxic activity of recombinant TRAIL plus the non-genotoxic activator of the p53 pathway nutlin-3 in acute myeloid leukemia cells. Curr Drug Metab 2007;8(4):395-403
  • Secchiero P, Zerbinati C, Melloni E, et al. The MDM-2 antagonist nutlin-3 promotes the maturation of acute myeloid leukemic blasts. Neoplasia 2007;9(10):853-61
  • Stuhmer T, Chatterjee M, Hildebrandt M, et al. Nongenotoxic activation of the p53 pathway as a therapeutic strategy for multiple myeloma. Blood 2005;106(10):3609-17
  • Kojima K, Konopleva M, Samudio IJ, et al. Concomitant inhibition of MDM2 and Bcl-2 protein function synergistically induce mitochondrial apoptosis in AML. Cell Cycle 2006;5(23):2778-86
  • Korcsmáros T, Szalay M, Böde C, et al. How to design multi-target drugs: search options in cellular networks. Expert Opin Drug Discov 2007;2(6):799-808
  • Elliott PJ, Soucy TA, Pien CS, et al. Assays for proteasome inhibition. Methods Mol Med 2003;85:163-72
  • Lagoja I, Herdewijn P. Use of RNA in drug design. Expert Opin Drug Discov 2007;2(6):889-903
  • Woo KJ, Lee TJ, Lee SH, et al. Elevated gadd153/chop expression during resveratrol-induced apoptosis in human colon cancer cells. Biochem Pharmacol 2007;73(1):68-76
  • Sanges D, Marigo V. Cross-talk between two apoptotic pathways activated by endoplasmic reticulum stress: Differential contribution of caspase-12 and AIF. Apoptosis 2006;11(9):1629-41

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.