76
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Using databases and data mining in vaccinology

, , , , , , , & show all
Pages 19-35 | Published online: 16 Jan 2007

Bibliography

  • JOHNSON G, WU TT: Kabat database and its applications: 30 years after the first variability plot. Nucleic Acids Res. (2000) 28:214-218.
  • GIUDICELLI V, DUROUX P, GINESTOUX C et al.: IMGT/LIGM-DB, the IMGT comprehensive database of immunoglobulin and T cell receptor nucleotide sequences. Nucleic Acids Res. (2006) 34:D781-D784.
  • ROBINSON J, WALLER MJ, STOEHR P, MARSH SG: IPD – the Immuno Polymorphism Database. Nucleic Acids Res. (2005) 33:D523-D526.
  • RETTER I, ALTHAUS HH, MUNCH R, MULLER W: VBASE2, an integrative V gene database. Nucleic Acids Res. (2005) 33(Database issue):D671-D674.
  • NAKANO Y, SHIBATA Y, KAWADA M et al.: A searchable database for proteomes of oral microorganisms. Oral Microbiol. Immunol. (2005) 20(6):344-348.
  • CHEN T, ABBEY K, DENG WJ, CHENG MC: The bioinformatics resource for oral pathogens. Nucleic Acids Res. (2005) 33(Web Server issue):W734-W740.
  • WASSENAAR TM, GAASTRA W: Bacterial virulence: can we draw the line? FEMS Microbiol. Lett. (2001) 9995:1-7.
  • CHEN LH, YANG J, YU J et al.: VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. (2001) 33(Database issue):D325-D328.
  • GARDNER MJ, HALL N, FUNG E et al.: Genome sequence of the human malaria parasite Plasmodium falciparum. Nature (2002) 419(6906):498-511.
  • DEL PORTILLO HA, FERNANDEZ-BECERRA C, BOWMAN S et al.: A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax. Nature (2001) 410(6830):839-842.
  • TONGCHUSAK S, CHAIYAROJ SC, VEERAMANI A, KOH JL, BRUSIC V: CandiVF – Candida albicans Virulence Factor Database. Int. J. Pept. Res. Ther. (2005) 11:271-277.
  • WINNENBURG R, BALDWIN TK, URBAN M, RAWLINGS C, KOHLER J, HAMMOND-KOSACK KE: PHI-base: a new database for pathogen–host interactions. Nucleic Acids Res. (2006) 34(Database issue):D459-D464.
  • RAMMENSEE H, BACHMANN J, EMMERICH NP, BACHOR OA, STEVANOVIC S: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics (1999) 50:213-219.
  • YUSIM K, RICHARDSON R, TAO N et al.: Los alamos hepatitis C immunology database. Appl. Bioinformatics (2005) 4(4):217-225.
  • KUIKEN C, KORBER B, SHAFER RW: HIV sequence databases. AIDS Rev. (2003) 5(1):52-61.
  • BHASIN M, SINGH H, RAGHAVA GP: MHCBN: a comprehensive database of MHC binding and non-binding peptides. Bioinformatics (2003) 19(5):665-666.
  • RECHE PA, ZHANG H, GLUTTING JP, REINHERZ EL: EPIMHC: a curated database of MHC-binding peptides for customized computational vaccinology. Bioinformatics (2005) 21(9):2140-2141.
  • TONG JC, KONG L, TAN TW, RANGANATHAN S: MPID-T: database for sequence–structure–function information on T cell receptor–peptide– MHC interactions. Appl. Bioinformatics (2006) 5:111-114.
  • TOSELAND CP, CLAYTON DJ, MCSPARRON H et al.: AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical and cellular data. Immunome Res. (2005) 1(1):4.
  • SATHIAMURTHY M, PETERS B, BUI HH et al.: An ontology for immune epitopes: application to the design of a broad scope database of immune reactivities. Immunome Res. (2005) 1(1):2.
  • SAHA S, BHASIN M, RAGHAVA GP: Bcipep: a database of B-cell epitopes. BMC Genomics. (2005) 6(1):79.
  • HUANG J, HONDA W: CED: a conformational epitope database. BMC Immunol. (2006) 7:7.
  • SCHLESSINGER A, OFRAN Y, YACHDAV G, ROST B: Epitome: database of structure-inferred antigenic epitopes. Nucleic Acids Res. (2006) 34(Database issue):D777-D780.
  • LAVER WG, AIR GM, WEBSTER RG, SMITH-GILL SJ: Epitopes on protein antigens: misconceptions and realities. Cell (1990) 61(4):553-556.
  • SCHWAB C, TWARDEK A, LO TP, BRAYER GD, BOSSHARD HR: Mapping antibody binding sites on cytochrome c with synthetic peptides: are results representative of the antigenic structure of proteins? Protein Sci. (1993) 2(2):175-182.
  • VAN REGENMORTEL MH: Mapping epitope structure and activity: from one-dimensional prediction to four-dimensional description of antigenic specificity. Methods (1996) 9(3):465-472.
  • SINGH MK, SRIVASTAVA S, RAGHAVA GP, VARSHNEY GC: HaptenDB: a comprehensive database of haptens, carrier proteins and anti-hapten antibodies. Bioinformatics (2006) 22(2):253-255.
  • KING TP, HOFFMAN D, LOWENSTEIN H, MARSH DG, PLATTS-MILLS TA, THOMAS W: Allergen nomenclature. Allergy (1995) 50(9):765-774.
  • MARI A, RICCIOLI D: The allergome web site – a database of allergenic molecules. aim, structure and data of a web-based resource. 60th Annual Meeting American Academy of Allergy, Asthma & Immunology. San Francisco. J. Allergy Clin. Immunol. (2004) 113(2 Pt 2):S301.
  • IVANCIUC O, SCHEIN CH, BRAUN W: SDAP: database and computational tools for allergenic proteins. Nucleic Acids Res. (2003) 31(1):359-362.
  • MILLS EN, VALOVIRTA E, MADSEN C et al.: Information provision for allergic consumers – where are we going with food allergen labelling? Allergy (2004) 59(12):1262-1268.
  • GENDEL SM: Sequence databases for assessing the potential allergenicity of proteins used in transgenic foods. Adv. Food Nutr. Res. (1998) 42:63-92.
  • BRUSIC V, MILLOT M, PETROVSKY N, GENDEL SM, GIGONZAC O, STELMAN SJ: Allergen databases. Allergy (2003) 58:1093-1100.
  • GENDEL SM, JENKINS JA: Allergen sequence databases. Mol. Nutr. Food Res. (2006) 50:633-637.
  • FLOWER DR, MCSPARRON H, BLYTHE MJ et al.: Computational vaccinology: quantitative approaches. Novartis Found Symp. (2003) 254:102-120.
  • DONNES P, ELOFSSON A: Prediction of MHC class I binding peptides, using SVMHC. BMC Bioinformatics (2002), 3:25.
  • FLOWER DR: Towards in silico prediction of immunogenic epitopes. Trends Immunol. (2003) 24(12):667-674.
  • PARKER KC, BEDNAREK MA, COLIGAN JE: Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. (1994) 152(1):163-175.
  • VAPNIK VN: The nature of statistical learning theory. New York. Springer (1995).
  • SCHÖLKOPF B, SMOLA AJ: Learning with kernels: support vector machines, regularization, optimization and beyond. Cambridge, Mass. MIT Press (2002).
  • ZHAO Y, PINILLA C, VALMORI D, MARTIN R, SIMON R: Application of support vector machines for T cell epitopes prediction. Bioinformatics (2003) 19(15):1978-1984.
  • RIEDESEL H, KOLBECK B, SCHMETZER O, KNAPP EW: Peptide binding at class I major histocompatibility complex scored with linear functions and support vector machines. Genome Inform. (2004) 15(1):198-212.
  • BHASIN M, RAGHAVA GP: Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine (2004) 22(23-24):3195-3204.
  • BHASIN M, RAGHAVA GP: Analysis and prediction of affinity of TAP binding peptides using cascade SVM. Protein Sci. (2004) 13(3):596-607.
  • BHASIN M, RAGHAVA GP: SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence. Bioinformatics (2004) 20(3):421-423.
  • CUI J, HAN LY, LIN HH et al.: Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties. Mol. Immunol. (2007) 44(5):866-877.
  • LIU W, MENG X, XU Q, FLOWER DR, LI T: Quantitative prediction of mouse class I–MHC peptide binding affinity using support vector machine regression (SVR) models. BMC Bioinformatics (2006) 7:182.
  • ALTUVIA Y, SCHUELER O, MARGALIT H: Ranking potential binding peptides to MHC molecules by a computational threading approach. J. Mol Biol. (1995) 249:244-250.
  • SCHUELER-FURMAN O, ALTUVIA Y, SETTE A, MARGALIT H: Structure-based prediction of binding peptides to MHC class I molecules: application to a broad range of MHC alleles. Protein Sci. (2000) 9:1838-1846.
  • JOJIC N, REYES-GOMEZ M, HECKERMAN D, KADIE C, SCHUELER-FURMAN O: Learning MHC I–peptide binding. Bioinformatics (2006) 22(14):e227-e235.
  • BUI HH, SCHIEWE AJ, VON GRAFENSTEIN H, HAWORTH IS: Structural prediction of peptides binding to MHC class I molecules. Proteins (2006) 63:43-52.
  • BORDNER AJ, ABAGYAN R: Ab initio prediction of peptide–MHC binding geometry for diverse class I MHC allotypes. Proteins (2006) 63:512-526.
  • TONG JC, ZHANG GL, TAN TW, AUGUST JT, BRUSIC V, RANGANATHAN S: Prediction of HLA-DQ3.2β ligands: evidence of multiple registers in class II binding peptides. Bioinformatics (2006) 22(10):1232-1238.
  • TONG JC, BRAMSON J, KANDUC D, CHOW S, SINHA AA, RANGANATHAN S: Modeling the bound conformation of Pemphigus Vulgaris- associated peptides to MHC Class II DR and DQ alleles. Immunome Res. (2006) 2:1.
  • TONG JC, TAN TW, RANGANATHAN S: Modeling the structure of bound peptide ligands to major histocompatibility complex. Protein Sci. (2004) 13(9):2523-2532.
  • HATTOTUWAGAMA CK, DAVIES MN, FLOWER DR: Receptor–ligand binding sites and virtual screening. Curr. Med. Chem. (2006) 13(11):1283-1304.
  • FAGERBERG T, CEROTTINI JC, MICHIELIN O: Structural prediction of peptides bound to MHC class I. J. Mol. Biol. (2006) 356:521-546.
  • ZACHARIAS M, SPRINGER S: Conformational flexibility of the MHC class I α1–α2 domain in peptide bound and free states: a molecular dynamics simulation study. Biophys. J. (2004) 87(4):2203-2214.
  • PETRONE PM, GARCIA AE: MHC-peptide binding is assisted by bound water molecules. J. Mol. Biol. (2004) 338(2):419-435.
  • DAVIES MN, SANSOM CE, BEAZLEY C, MOSS DS: A novel predictive technique for the MHC class II peptide-binding interaction. Mol. Med. (2003) 9(9-12):220-225.
  • WAN S, COVENEY P, FLOWER DR: Large-scale molecular dynamics simulations of HLA-A*0201 complexed with a tumor- specific antigenic peptide: can the α3 and β2m domains be neglected? J. Comput. Chem. (2004) 25(15):1803-1813.
  • WAN S, COVENEY PV, FLOWER DR: Molecular basis of peptide recognition by the TCR: affinity differences calculated using large scale computing. J. Immunol. (2005) 175(3):1715-1723.
  • WAN S, COVENEY PV, FLOWER DR: Peptide recognition by the T cell receptor: comparison of binding free energies from thermodynamic integration, Poisson- Boltzmann and linear interaction energy approximations. Philos. Transact. A Math Phys. Eng. Sci. (2005) 363(1833):2037-2053.
  • DAVIES MN, HATTOTUWAGAMA CK, MOSS DS, DREW MG, FLOWER DR: Statistical deconvolution of enthalpic energetic contributions to MHC–peptide binding affinity. BMC Struct. Biol. (2006) 6:5.
  • SAXOVA P, BUUS S, BRUNAK S, KESMIR C: Predicting proteasomal cleavage sites: a comparison of available methods. Int. Immunol. (2003) 15(7):781-787.
  • DOYTCHINOVA I, HEMSLEY S, FLOWER DR: Transporter associated with antigen processing preselection of peptides binding to the MHC: a bioinformatic evaluation. J. Immunol. (2004) 173(11):6813-6819.
  • DOYTCHINOVA IA, GUAN P, FLOWER DR: EpiJen: a server for multistep T cell epitope prediction. BMC Bioinformatics (2006) 7:131.
  • PETERS B, SETTE A: Generating quantitative models describing the sequence specificity of biological process with the stabilized matrix method. BMC Bioinformatics (2005) 6:132.
  • LARSEN MV, LUNDEGAARD C, LAMBERTH K et al.: An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency and proteasomal cleavage predictions. Eur. J. Immunol. (2005) 35:2295-2303.
  • DÖNNES P, KOHLBACHER O: Integrated modeling of the major events in the MHC class I antigen processing pathway. Protein Sci. (2005) 14:2132-2140.
  • HATTOTUWAGAMA CK, TOSELAND CP, GUAN P et al.: Toward prediction of class II mouse major histocompatibility complex peptide binding affinity: in silico bioinformatic evaluation using partial least squares, a robust multivariate statistical technique. J. Chem. Inf. Model (2006) 46(3):1491-1502.
  • DOYTCHINOVA IA, FLOWER DR. Modeling the peptide–T cell receptor interaction by the comparative molecular similarity indices analysis-soft independent modeling of class analogy technique. J. Med Chem. (2006) 49(7):2193-2199.
  • CARSON RT, VIGNALI KM, WOODLAND DL, VIGNALI DA: T cell receptor recognition of MHC class II-bound peptide flanking residues enhances immunogenicity and results in altered TCR V region usage. Immunity (1997) 7(3):387-399.
  • GODKIN AJ, SMITH KJ, WILLIS A et al.: Naturally processed HLA class II peptides reveal highly conserved immunogenic flanking region sequence preferences that reflect antigen processing rather than peptide–MHC interactions. J. Immunol. (2001) 166(11):6720-6727.
  • NOGUCHI H, HANAI T, HONDA H, HARRISON LC, KOBAYASHI T: Fuzzy neural network-based prediction of the motif for MHC class II binding peptides. J. Biosci. Bioeng. (2001) 92(3):227-231.
  • BURDEN FR, WINKLER DA: Predictive Bayesian neural network models of MHC class II peptide binding. J. Mol. Graph Model (2005) 23(6):481-489.
  • YANG ZR, JOHNSON FC: Prediction of T cell epitopes using biosupport vector machines. J. Chem. Inf. Model (2005) 45(5):1424-1428.
  • MALLIOS RR: Predicting class II MHC/peptide multi-level binding with an iterative stepwise discriminant analysis meta-algorithm. Bioinformatics (2001) 17(10):942-948.
  • DOYTCHINOVA IA, FLOWER DR: Towards the in silico identification of class II restricted T cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction. Bioinformatics (2003) 19(17):2263-2270.
  • MURUGAN N, DAI Y: Prediction of MHC class II binding peptides based on an iterative learning model. Immunome Res. (2005) 1:6.
  • NOGUCHI H, KATO R, HANAI T et al.: Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules. J. Biosci. Bioeng. (2002) 94(3):264-270.
  • KARPENKO O, SHI J, DAI Y: Prediction of MHC class II binders using the ant colony search strategy. Artif. Intell. Med. (2005) 35(1-2):147-156.
  • NIELSEN M, LUNDEGAARD C, WORNING P et al.: Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics (2004) 20(9):1388-1397.
  • YU K, PETROVSKY N, SCHONBACH C, KOH JY, BRUSIC V: Methods for prediction of peptide binding to MHC molecules: a comparative study. Mol. Med. (2002) 8(3):137-148.
  • PETERS B, BUI HH, FRANKILD S et al.: A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput. Biol. (2006) 2(6):e65.
  • MOUTAFTSI M, PETERS B, PASQUETTO V et al.: A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. Nat. Biotechnol. (2006) 24(7):817-819.
  • DOYTCHINOVA IA, WALSHE VA, JONES NA, GLOSTER SE, BORROW P, FLOWER DR: Coupling in silico and in vitro analysis of peptide–MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes. J. Immunol. (2004) 172(12):7495-7502.
  • BLYTHE MJ, FLOWER DR: Benchmarking B-cell epitope prediction: underperformance of existing methods. Protein Sci, (2005) 14:246-248.
  • SOLLNER J, MAYER B: Machine learning approaches for prediction of linear B-cell epitopes on proteins. J. Mol. Recognit. (2006) 19:200-208.
  • SOLLNER J: Selection and combination of machine learning classifiers for prediction of linear B-cell epitopes on proteins. J. Mol. Recognit. (2006) 19(3):209-214.
  • SAHA S, RAGHAVA GP: Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins (2006) 65:40-48.
  • LARSEN JE, LUND O, NIELSEN M: Improved method for predicting linear B-cell epitopes. Immunome Res. (2006) 2:2.
  • ANDERSEN PH, NIELSEN M, LUND O: Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci. (2006) 15(11):2558-2567.
  • VAN REGENMORTEL MH: Immunoinformatics may lead to a reappraisal of the nature of B-cell epitopes and of the feasibility of synthetic peptide vaccines. J. Mol. Recognit. (2006) 19:183-187.
  • BENJAMIN DC, BERZOFSKY JA, EAST IJ et al.: The antigenic structure of proteins: a reappraisal. Annu. Rev. Immunol. (1984) 2:67-101.
  • DOYTCHINOVA IA, FLOWER DR: In silico identification of supertypes for class II MHCs. J. Immunol. (2005) 174(11):7085-7095.
  • DOYTCHINOVA IA, GUAN P, FLOWER DR: Identifiying human MHC supertypes using bioinformatic methods. J. Immunol. (2004) 172(7):4314-4323.
  • LUND O, NIELSEN M, KESMIR C et al.: Definition of supertypes for HLA molecules using clustering of specificity matrices. Immunogenetics (2004) 55(12):797-810.
  • DOYTCHINOVA IA, FLOWER DR: Predicting candidate vaccine antigens using alignment-free method based on principal amino acid properties. Vaccine (2007) 25:856-866.
  • AALBERSE RC, STADLER BM: In silico predictability of allergenicity: from amino acid sequence via 3D structure to allergenicity. Mol. Nutr. Food Res. (2006) 50(7):625-627.
  • KUTTLER C, NUSSBAUM AK, DICK TP, RAMMENSEE H-G, SCHILD H, HADELER KP: An algorithm for the prediction of proteasomal cleavages. J. Mol. Biol. (2000) 298(3):417-429.
  • NUSSBAUM AK, KUTTLER C, HADELE KP, RAMMENSEE H-G, SCHILD H: PAProC: a prediction algorithm for proteasomal cleavages available on the WWW. Immunogenetics (2001) 53(1):87-94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.