71
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Allylic structures in cancer drugs and body metabolites that control cell life and death

, PhD
Pages 809-821 | Published online: 26 Jul 2007

Bibliography

  • RADIN NS: Designing anticancer drugs via the Achilles heel: ceramide, allylic ketones, and mitochondria. Bioorg. Med. Chem. (2003) 11:2123-2142.
  • RADIN NS: Meta-analysis of anticancer drug structures – significance of their polar allylic moieties. Anti-Cancer Agents Med. Chem. (2007) 7:209-222.
  • BU S, BLAUKAT A, FU X, HELDIN NE, LANDSTROM M: Mechanisms for 2-methoxyestradiol-induced apoptosis of prostate cancer cells. FEBS Lett. (2002) 531:141-151.
  • VILLANI MG, APPIERTO V, CAVADINI E et al.: 4-Oxo-fenretinide, a recently identified fenretinide metabolite, induces marked G2-M cell cycle arrest and apoptosis in fenretinide-sensitive and fenretinide-resistant cell lines. Cancer Res. (2006) 66:3238-3247.
  • CASSIDY PB, EDES K, NELSON CC, PARSAWAR K, FITZPATRICK FA, MOOS PJ: Thioredoxin reductase is required for the inactivation of tumor suppressor p53 and for apoptosis induced by endogenous electrophiles. Carcinogenesis (2006) 27:2538-2549.
  • HARA M, AKASAKA K, AKINAGA S et al.: Identification of Ras farnesyltransferase inhibitors by microbial screening. Proc. Natl. Acad. Sci. USA (1993) 90:2281-2285.
  • MCANALLY JA, JUNG M, MO H: Farnesyl-O-acetylhydroquinone and geranyl-O-acetylhydroquinone suppress the proliferation of murine B16 melanoma cells, human prostate and colon adenocarcinoma cells, human lung carcinoma cells, and human leukemia cells. Cancer Lett. (2003) 202(2):181-192.
  • RIVKIN A, CHOU TC, DANISHEFSKY SJ: On the remarkable antitumor properties of fludelone: how we got there. Angew. Chem. Int. Ed. Engl. (2005) 44(19):2838-2850.
  • MODRAK DE, GOLD DV, GOLDENBERG DM: Sphingolipid targets in cancer therapy. Mol. Cancer Ther. (2006) 5:200-208.
  • RADIN NS: Killing tumors by ceramide-induced apoptosis: critique of available drugs. Biochem. J. (2003) 371:243-256.
  • PERRY DK: Ceramide and apoptosis. Biochem. Soc. Trans. (1999) 27:399-404.
  • PETTUS BJ, CHALFANT CE, HANNUN YA: Ceramide in apoptosis: an overview and current perspectives. Biochim. Biophys. Acta (2002) 1585:114-125.
  • OGRETMEN B, HANNUN YA: Biologically active sphingolipids in cancer pathogenesis and treatment. Nat. Rev. Cancer (2004) 4:604.
  • RIBONI L, VIANI P, BASSI R, PRINETTI A, TETTAMANTI G: The role of sphingolipids in the process of signal transduction. Prog. Lipid Res. (1997) 36(2-3):153-195.
  • RUVOLO PP: Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol. Res. (2003) 47:383-392.
  • BIRBES H, BAWAB SE, OBEID LM, HANNUN YA, RALPH H: Mitochondria and ceramide: intertwined roles in regulation of apoptosis. Adv. Enz. Regul. (2002) 42:113-129.
  • MCKALLIP R, LI R, LADISCH S: Tumor gangliosides inhibit the tumor-specific immune response. J. Immunol. (1999) 163:3718-3726.
  • SENCHENKOV A, LITVAK DA, CABOT MC: Targeting ceramide metabolism – a strategy for overcoming drug resistance. J. Nat. Cancer Inst. (2001) 93:347-357.
  • SHAYMAN JA: Sphingolipids. Kidney Int. (2000) 58:11-26.
  • DERBRÉ S, DUVAL R, ROUÉ et al.: Semisynthesis and screening of a small library of pro-apoptotic squamocin analogues: selection and study of a benzoquinone hybrid with an improved biological profile. ChemMedChem (2006) 1(1):118-129.
  • VALLS V, CASTELLUCCIO C, FATO R et al.: Protective effect of exogenous coenzyme Q against damage by adriamycin in perfused rat liver. Biochem. Mol. Biol. Int. (1994) 33(4):633-642.
  • EATON S, SKINNER R, HALE JP et al.: Plasma coenzyme Q10 in children and adolescents undergoing doxorubicin therapy. Clin. Chim. Acta (2000) 302:1-9.
  • ROUDIER E, MISTAFA O, STENIUS U: Statins induce mammalian target of rapamycin (mTOR)-mediated inhibition of Akt signaling and sensitize p53-deficient cells to cytostatic drugs. Mol. Cancer Ther. (2006) 5:2706-2715.
  • GUDZ TI, TSERNG KY, HOPPEL CL: Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J. Biol. Chem. (1997) 272:24154-24158.
  • QUILLET-MARY A, JAFFRÉZOU JP, MANSAT V, BORDIER C, NAVAL J, LAURENT G: Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J. Biol. Chem. (1997) 272:21388-21395.
  • CORDA S, LAPLACE C, VICAUT E, DURANTEAU J: Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-α is mediated by ceramide. Am. J. Resp. Cell Mol. Biol. (2001) 24:762-768.
  • RADIN NS: Apoptotic death by ceramide: will the real killer please stand up? Med. Hypotheses (2001) 57:96-100.
  • GARCIA-RUIZ C, COLELL A, PARIS R, FERNANDEZ-CHECA JC: Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release, and caspase activation. FASEB J. (2000) 14:847-858.
  • TETTAMANTI G, BASSI R, VIANI P, RIBONI L: Salvage pathways in glycosphingolipid metabolism. Biochimie (2003) 85(3-4):423-437.
  • LAVIE Y, CAO H, VOLNER A: Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J. Biol. Chem. (1997) 272:1682-1687.
  • UCHIDA Y, BEHNE M, QUIEC D, ELIAS PM, HOLLERAN WM: Vitamin C stimulates sphingolipid production and markers of barrier formation in submerged human keratinocyte cultures. J. Invest. Dermatol. (2001) 117:1307-1313.
  • JAYADEV S, LINARDIC CM, HANNUN YA: Identification of arachidonic acid as a mediator of SM hydrolysis in response to tumor necrosis factor-α. J. Biol. Chem. (1994) 269:5757-5763.
  • LAHIRI S, FUTERMAN AH: LASS5 is a bona fide dihydroceramide synthase that selectively utilizes palmitoyl CoA as acyl donor. J. Biol. Chem. (2005) 280:33735-33738.
  • SENKAL CE, SURIYAN P, ROSSI MJ et al.: Role of human longevity assurance gene 1 and C18-ceramide in chemotherapy-induced cell death in human head and neck squamous cell carcinomas. Mol. Cancer Ther. (2007) 6(2):712-722.
  • CHAN SY, HILCHIE AL, BROWN MG, ANDERSON R, HOSKIN DW: Apoptosis induced by intracellular ceramide accumulation in MDA-MB-435 breast carcinoma cells is dependent on the generation of reactive oxygen species. Exp. Mol. Pathol. (2007) 82(1):1-11.
  • GUTIERREZ G, MENDOZA C, MONTANO LF, LOPEZ-MARURE R: Ceramide induces early and late apoptosis in human papilloma virus + cervical cancer cells by inhibiting reactive oxygen species decay, diminishing the intracellular concentration of glutathione and increasing NF-κB translocation. Anticancer Drugs (2007) 18:149-159.
  • JAFFRÉZOU JP, MAESTRE N, DE MAS-MANSAT V, BEZOMBES C, LEVADE T, LAURENT G: Positive feedback control of neutral sphingomyelinase activity by ceramide. FASEB J. (1998) 12:999-1006.
  • AZUMA H, IJICHI S, KATAOKA M et al.: Short-chain 3-ketoceramides, strong apoptosis inducers against human leukemia HL-60 cells. Bioorg. Med. Chem. (2007) 15:2860-2867.
  • MARTIN SF, SAWAI H, VILLALBA JM, HANNUN YA: Redox regulation of neutral sphingomyelinase-1 activity in HEK293 cells through a GSH-dependent mechanism. Arch. Biochem. Biophys. (2007) 459:295-300.
  • SMITH AR, VISIOLI F, FREI B, HAGEN TM: Age-related changes in endothelial nitric oxide synthase phosphorylation and nitric oxide dependent vasodilation: evidence for a novel mechanism involving sphingomyelinase and ceramide-activated phosphatase 2A. Aging Cell (2006) 5:391-400.
  • DBAIBO GS, EL-ASSAAD W, KRIKORIAN A et al.: Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death. FEBS Lett. (2001) 503(1):7-12.
  • YANG CR, OU YC, KUO JH et al.: Intracellular glutathione content of urothelial cancer in correlation to chemotherapy response. Cancer Lett. (1997) 119:157-162.
  • MAEHARA S, TANAKA S, SHIMADA M et al.: Selenoprotein P, as a predictor for evaluating gemcitabine resistance in human pancreatic cancer cells. Int. J. Cancer (2004) 112:184-189.
  • ROSATO RR, MAGGIO SC, ALMENARA JA et al.: The histone deacetylase inhibitor LAQ824 induces human leukemia cell death through a process involving XIAP down-regulation, oxidative injury, and the acid sphingomyelinase-dependent generation of ceramide. Mol. Pharmacol. (2006) 69(1):216-225.
  • JABOIN J, WILD J, HAMIDI H et al.: MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res. (2002) 62:6108-6115.
  • RAHMANI M, REESE E, DAI Y et al.: Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res. (2005) 65(6):2422-2432.
  • ULLMAN MD, RADIN NS: The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver. J. Biol. Chem. (1974) 249:1506-1512.
  • XU Z, ZHOU J, DIANN M, MCCOY DM, MALLAMPALLI RK: LASS5 is the predominant ceramide synthase isoform involved in de novo sphingolipid synthesis in lung epithelia. J. Lipid Res. (2005) 46(6):1229-1238.
  • RAMOS B, SALIDO GM, CAMPO ML, CLARO E: Inhibition of phosphatidylcholine synthesis precedes aptosis induced by C2-ceramide: protection by exogenous phosphatidylcholine (2000) 11:3103-3108.
  • DINKOVA-KOSTOVA AT, MASSIAH MA, BOZAK RE, HICKS RJ, TALALAY P: Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc. Natl. Acad. Sci. USA (2001) 98(6):3404-3409.
  • ALDINI G, CARINI M, VISTOLI G et al.: Identification of actin as a 15-deoxy-Δ12,14-prostaglandin J2 target in neuroblastoma cells: mass spectrometric, computational, and functional approaches to investigate the effect on cytoskeletal derangement. Biochemistry (2007).
  • ZHOU S, PALMEIRA CM, WALLACE KB: Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett. (2001) 121(3):151-157.
  • DOBROWSKY RT, HANNUN YA: Ceramide stimulates a cytosolic protein phosphatase. J. Biol. Chem. (1992) 267(8):5048-5051.
  • ZINDA MJ, VLAHOS CJ, LAI MT: Ceramide induces the dephosphorylation and inhibition of constitutively activated Akt in PTEN negative U87 mg cells. Biochem. Biophys. Res. Commun. (2001) 280(4):1107-1115.
  • RUVOLO PP: Ceramide regulates cellular homeostasis via diverse stress signaling pathways. Leukemia (2001) 15(8):1153-1160.
  • XIN M, DENG X: Protein phosphatase 2A enhances the proapoptotic function of Bax through dephosphorylation. J. Biol. Chem. (2006) 281:18859-18867.
  • WU Y, SONG P, XU J, ZHANG M, ZOU M-H: Activation of protein phosphatase PP2A by palmitic acid inhibits the AMP-activated kinase. J. Biol. Chem. (2007).
  • MAYNES JT, BATEMAN KS, CHERNEY MM et al.: Crystal structure of the tumor-promoter okadaic acid bound to protein phosphatase-1. J. Biol. Chem. (2001) 276:44078-44082.
  • LEREA KM, VENJARA AY, OLSON SC, KELLY MR: Threonine phosphorylation of integrin beta(3) in calyculin A-treated platelets is selectively sensitive to 5′-iodotubercidin. Biochim. Biophys. Acta (2007) 1773(2):185-191.
  • GOLDKORN T, DRESSLER KA, MUINDI J et al.: Cer stimulates epidermal growth factor receptor phosphorylation in A431 human epidermoid carcinoma cells. Evidence that Cer may mediate sphingosine action. J. Biol. Chem. (1991) 266:16092-16097.
  • ZHANG Y, YAO B, DELIKAT S et al.: Kinase suppressor of Ras is ceramide-activated protein kinase. Cell (1997) 89:63-72.
  • HUWILER A, PFEILSCHIFTER J: Altering the sphingosine-1-phosphate/ceramide balance: a promising approach for tumor therapy. Curr. Pharm. Des. (2006) 12(35):4625-4635.
  • RADIN NS: Killing cancer cells by poly-drug elevation of ceramide – a hypothesis whose time has come? Eur. J. Biochem. (2001) 268:193-204.
  • HAIT NC, OSKERITZIAN CA, PAUGH SW, MILSTIEN S, SPIEGEL S: Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim. Biophys. Acta (2006) 1758(12):2016-2026.
  • INOKUCHI J, MASON I, RADIN NS: Antitumor activity in mice of an inhibitor of glycosphingolipid biosynthesis. Cancer Lett. (1987) 38:23-30.
  • OLSHEFSKI RS, LADISCH S: Glucosylceramide synthase inhibition enhances vincristine-induced cytotoxicity. Int. J. Cancer (2001) 93:131-138.
  • ABE A, RADIN NS, SHAYMAN et al.: Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth. J. Lipid Res. (1995) 36:611-621.
  • OKADA Y, RADIN NS, HAKOMORI S: Phenotypic changes in 3T3 cells associated with the change of sphingolipid synthesis by a ceramide analog, 2-decanoylamino-3-morpholino-1-phenylpropanol (compound RV538). FEBS Lett. (1988) 235:25-29.
  • UEMURA K, SUGIYAMA E, TAMAI C et al.: Effect of an inhibitor of glucosylceramide synthesis on cultured rabbit skin fibroblasts. J. Biochem. (1990) 108:525-530.
  • SHUKLA G, SHUKLA A, INOKUCHI J, RADIN NS: Rapid kidney changes resulting from glycosphingolipid depletion by treatment with a glucosyltransferase inhibitor. Biochim. Biophys. Acta (1991) 1083:101-108.
  • ABE A, GREGORY S, LEE L et al.: Reduction of globotriaosylceramide in Fabry disease mice by substrate deprivation. J. Clin. Invest. (2000) 105(11):1563-1571.
  • UCHIDA Y, MURATA S, SCHMUTH M et al.: Glucosylceramide synthesis and synthase expression protect against ceramide-induced stress. J. Lipid Res. (2002) 43:1293-1302.
  • AERTS JM, OTTENHOFF R, POWLSON AS et al.: Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes (2007).
  • ZIMRAN A: Gaucher disease and the clinical experience with substrate reduction therapy. Philos. Trans. R. Soc. Lond. B. Biol. Sci. (2003) 358(1433):961-966.
  • HILLAERT U, BOLDIN-ADAMSKY S, ROZENSKI J, BUSSON R, FUTERMAN AH, VAN CALENBERGH S: Synthesis and biological evaluation of novel PDMP analogues. Bioorg. Med. Chem. (2006) 14:5273-5284.
  • JIMBO M, YAMAGISHI K, YAMAKI T et al.: Development of a new inhibitor of glucosylceramide synthase. J. Biochem. (2000) 127:485-491.
  • BENNACEUR K, POPA I, PORTOUKALIAN J, BERTHIER-VERGNES O, PEGUET-NAVARRO J: Melanoma-derived gangliosides impair migratory and antigen-presenting function of human epidermal Langerhans cells and induce their apoptosis. Int. Immunol. (2006) 18(6):879-886.
  • SHEN W, FALAHATI R, STARK R, LEITENBERG D, LADISCH S: Modulation of CD4 Th cell differentiation by ganglioside GD1a in vitro. J. Immunol. (2005) 175:4927-4934.
  • SHURIN GV, SHURIN MR, BYKOVSKAIA S, SHOGAN J, LOTZE MT, BARKSDALE EM: Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res. (2001) 61:363-369.
  • LIU Y, LI R, LADISCH S: Exogenous ganglioside GD1a enhances EGF receptor binding and dimerization. J. Biol. Chem. (2004) 279:36481-36489.
  • DYATLOVITSKAYA EV, ANDREASYAN GO, MALYKH YAN, RYLOVA SN, SOMOVA OG: Ganglioside shedding and changes in ceramide biosynthesis in human ovarian tumors. Biochemistry (Mosc). (1997) 62:557-561.
  • MITRA P, MACEYKA M, PAYNE SG et al.: Ceramide kinase regulates growth and survival of A549 human lung adenocarcinoma cells. FEBS Lett. (2007) 581(4):735-740.
  • MEGIDISH T, COOPER J, ZHANG L, FU H, HAKOMORI S: A novel sphingosine-dependent protein kinase (SDK1) specifically phosphorylates certain isoforms of 14-3-3 protein. J. Biol. Chem. (1998) 273(34):21834-21845.
  • FELDING-HABERMANN B, IGARASHI Y, FENDERSON BA et al.: A ceramide analog inhibits T cell proliferative response through inhibition of glycosphingolipid synthesis and enhancement of N,N-dimethylsphingosine synthesis. Biochemistry (1990) 29:6314-6322.
  • MEGIDISH T, TAKIO K, TITANI K et al.: Endogenous substrates of sphingosine-dependent kinases (SDKs) are chaperone proteins: heat shock proteins, glucose-regulated proteins, protein disulfide isomerase, and calreticulin. Biochemistry (1999) 38:3369-3378.
  • FRENCH KJ, UPSON JJ, KELLER SN, ZHUANG Y, YUN JK, SMITH CD: Antitumor activity of sphingosine kinase inhibitors. J. Pharmacol. Exp. Ther. (2006) 318:596-603.
  • ZHU H, GOODERHAM NJ: Mechanisms of induction of cell cycle arrest and cell death by cryptolepine in human lung adenocarcinoma a549 cells. Toxicol. Sci. (2006) 91(1):132-139.
  • STRATFORD S, DEWALD DB, SUMMERS SA: Ceramide dissociates 3′-phosphoinositide production from pleckstrin homology domain translocation. Biochem. J. (2001) 354:359-368.
  • KITATANI K, IDKOWIAK-BALDYS J, BIELAWSKI J et al.: Protein kinase C-induced activation of a ceramide/protein phosphatase 1 pathway leading to dephosphorylation of p38 MAPK. J. Biol. Chem. (2006) 281(48):36793-36802.
  • LIAO CH, PAN SL, GUH JH, TENG CM: Genistein inversely affects tubulin-binding agent-induced apoptosis in human breast cancer cells. Biochem. Pharmacol. (2004) 67:2031-2038.
  • HEINRICH M, WICKEL M, WINOTO-MORBACH S et. al.: Ceramide as an activator lipid of cathepsin D. Adv. Exp. Med. Biol. (2000) 477:305-315.
  • HEINRICH M, NEUMEYER J, JAKOB M et al.: Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ. (2004) 11:550-563.
  • SMYTH MJ, PERRY DK, ZHANG J, POIRIER GG, HANNUN YA, OBEID LM: prICE: a downstream target for ceramide-induced apoptosis and for the inhibitory action of Bcl-2. Biochem. J. (1996) 316:25-28.
  • OGRETMEN B, KRAVEKA JM, SCHADY D, USTA J, HANNUN YA, OBEID LM: Molecular mechanisms of ceramide-mediated telomerase inhibition in the A549 human lung adenocarcinoma cell line. J. Biol. Chem. (2001) 276:32506-32514.
  • PIEDRAFITA FJ, PFAHL M: Retinoid-induced apoptosis and Sp1 cleavage occur independently of transcription and require caspase activation. Mol. Cell Biol. (1997) 17(11):6348-6358.
  • RADIN NS: Sphingolipids as coenzymes in anion transfer and tumor death. Bioorg. Med. Chem. (2004) 12:6029-6037.
  • NAGAHARA Y, SHINOMIYA T, KURODA S, KANEKO N, NISHIO R, IKEKITA M: Phytosphingosine induced mitochondria-involved apoptosis. Cancer Sci. (2005) 96(2):83-92.
  • PARK MT, KIM MJ, KANG YH et al.: Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release. Blood (2005) 105(4):1724-1733.
  • ZHAO J, AGARWAL R: Tissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of Phase II enzymes: implications in cancer chemoprevention. Carcinogenesis (1999) 20:2101-2108.
  • LU X, ARTHUR G, BITTMAN R: Synthesis of a novel ceramide analogue via Tebbe methylenation and evaluation of its antiproliferative activity. Org. Lett. (2005) 7(8):1645-1648.
  • ROBSON KJ, STEWART ME, MICHELSEN S, LAZO ND, DOWNING DT: 6-Hydroxy-4-sphingenine in human epidermal ceramides. J. Lipid Res. (1994) 35:2060-6068.
  • CHUN J, BYUN HS, BITTMAN R: First asymmetric synthesis of 6-hydroxy-4-sphingenine-containing ceramides. Use of chiral propargylic alcohols to prepare a lipid found in human skin. J. Org. Chem. (2003) 68:348-354.
  • HAMADA T, ICHIMARU N, ABE M et al.: Synthesis and inhibitory action of novel acetogenin mimics with bovine heart mitochondrial complex I. Biochemistry (2004) 43(12):3651-3658.
  • SENKAL CE, PONNUSAMY S, ROSSI MJ et al.: Potent antitumor activity of a novel cationic pyridinium-ceramide alone or in combination with gemcitabine against human head and neck squamous cell carcinomas in vitro and in vivo. J. Pharmacol. Exp. Ther. (2006) 317:1188-1199.
  • WANG JL, LIU D, ZHANG ZJ et al.: Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA (2000) 97(13):7124-7129.
  • RADIN NS: Poly-drug cancer therapy based on ceramide. Eksp. Onkol. (2004) 26:3-10.
  • ALPHONSE G, BIONDA C, ALOY MT, ARDAIL D, ROUSSON R, RODRIGUEZ-LAFRASSE C: Overcoming resistance to Γ-rays in squamous carcinoma cells by poly-drug elevation of ceramide levels. Oncogene (2004) 23(15):2703-2715.
  • KANNAN R, JIN M, GAMULESCU MA, HINTON DR: Ceramide-induced apoptosis: role of catalase and hepatocyte growth factor. Free Radic. Biol. Med. (2004) 37(2):166-175.
  • SHAN X, JONES DP, HASHMI M, ANDERS MW: Selective depletion of mitochondrial glutathione concentrations by (R,S)-3-hydroxy-4-pentenoate potentiates oxidative cell death. Chem. Res. Toxicol. (1993) 6(1):75-81.
  • TAUZIN L, GRAF C, SUN M et al.: Effects of ceramide-1-phosphate on cultured cells: dependence on dodecane in the vehicle. Lipid Res. (2007) 48:66-76.
  • SANO A, RADIN NS, JOHNSON LL, TARR GE: The activator protein for glucosylceramide β-glucosidase from guinea pig liver: improved isolation method and complete amino acid sequence. J. Biol. Chem. (1988) 263:19597-19601.
  • GRADISHAR WJ: Albumin-bound paclitaxel: a next-generation taxane. Expert Opin. Pharmacother. (2006) 7(8):1041-1053.
  • BERENT SL, RADIN NS: Mechanism of activation of glucocerebrosidase by co-β-glucosidase (glucosidase activator protein). Biochim. Biophys. Acta (1981) 664:572-582.
  • ZEISIG R, ARNDT D, STAHN R, FICHTNER I: Physical properties and pharmacological activity in vitro and in vivo of optimised liposomes prepared from a new cancerostatic alkylphospholipid. Biochim. Biophys. Acta (1998) 1414:238-248.
  • STOVER T, KESTER MJ: Liposomal delivery enhances short-chain ceramide-induced apoptosis of breast cancer cells. Pharmacol. Exp. Ther. (2003) 307(2):468-475.
  • SCHMELZ EM, BUSHNEV AS, DILLEHAY DL, SULLARDS MC, LIOTTA DC, MERRILL AH: Ceramide-β-D-glucuronide: synthesis, digestion, and suppression of early markers of colon carcinogenesis. Cancer Res. (1999) 59:5768-5772.
  • MEYER T, WAIDELICH D, FRAHM AW: Polyoxyethylene-Δ9,11-didehydrostearate and glycerol-polyoxyethylene-Δ9,11-didehydrostearate: two new components of the non-ionic emulsifier Cremophor EL. J. Pharm. Biomed. Anal. (2002) 30(2):263-271.
  • GELDERBLOM H, VERWEIJ J, NOOTER K, SPARREBOOM A: Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer (2001) 37(13):1590-1598.
  • LEVADE T, AUGE N, VELDMAN RJ, CUVILLIER O, NEGRE-SALVAYRE A, SALVAYRE R: Sphingolipid mediators in cardiovascular cell biology and pathology. Circ. Res. (2001) 89:957-968.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.