980
Views
48
CrossRef citations to date
0
Altmetric
Reviews

Strategies to optimize the brain availability of central nervous system drug candidates

, , , &
Pages 371-381 | Published online: 22 Mar 2011

Bibliography

  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004;6:711-15
  • Kaitin KI. Tufts Center for the Study of Drug Development: longer clinical times are extending time to market for new drugs in US. Tufts CSDD Impact Rep 2005;(7):1-4
  • Pangalos MN, Schechter LE, Hurko O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat Rev Drug Discov 2007;6:521-32
  • Shaffer CL. Defining neuropharmacokinetic parameters in CNS drug discovery to determine cross-species pharmacologic exposure-response relationships. Annu Rep Med Chem 2010;45:55-70
  • Hammarlund-Udenaes M, Friden M, Syvanen S, On the rate and extent of drug delivery to the brain. Pharm Res 2008;25:1737-50
  • Liu X, Chen C. Strategies to optimize brain penetration in drug discovery. Curr Opin Drug Discov Devel 2005;8(4):505-12
  • Kalvass JC, Maurer TS. Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug design. Biopharm Drug Dispos 2002;23:327-38
  • Liu X, Van Natta K, Yeo H, Unbound drug concentration in brain homogenate and cerebral spinal fluid at steady state as a surrogate for unbound concentration in brain interstitial fluid. Drug Metab and Dispos 2009;37(4):787-93
  • Liu X, Vilenski O, Kwan J, Unbound brain concentration determines receptor occupancy: a correlation of drug concentration and brain serotonin and dopamine reuptake transporter occupancy for eighteen compounds in rats. Drug Metab Dispos 2009;37(7):1548-56
  • Kalvass JC, Olson ER, Cassidy MP, Pharmacokinetics and pharmacodynamics of seven opioids in P-glycoprotein-competent mice: assessment of unbound brain EC50,u and correlation of in vitro, preclinical and clinical data. J Pharmacol Exp Ther 2007;323:346-55
  • Watson J, Wright S, Lucas A, Receptor occupancy and brain free fraction. Drug Metab Dispos 2009;37(4):753-60
  • Norinder U, Haeberlein M. Computational approaches to the prediction of the blood-brain distribution. Adv Drug Deliv Rev 2002;54(3):291-313
  • Abraham MH. The factors that influence permeation across the blood-brain barrier. Eur J Med Chem 2004;39(3):235-40
  • Hitchcock SA. Blood-brain barrier permeability considerations for CNS-targeted compound library design. Curr Opin Chem Biol 2008;12(3):318-23
  • Wager TT, Chandrasekaran RY, Hou X, Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chem Neurosci 2010;1(6):420-34
  • Hitchcock SA, Pennington LD. Structure-brain exposure relationships. J Med Chem 2006;49(26):7559-83
  • Overton E. Uber die allgemeinen osmotischen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedeutung fur die Physiologie: Vierteljahrsschr Naturforsch Ges Zuerich. 1899;44:88-135
  • Wager TT, Hou X, Verhoest PR, Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neurosci 2010;1(6):435-49
  • Barn D, Caulfield W, Cowley P, Design and synthesis of a maximally diverse and druglike screening library using REM resin methodology. J Comb Chem 2001;3(6):534-41
  • Shen J, Cheng F, Xu Y, Estimation of ADME properties with substructure pattern recognition. J Chem Inf Model 2010;50(6):1034-41
  • Adenot M, Lahana R. Blood-brain barrier permeation models: discriminating between potential CNS and non-CNS drugs Including P-glycoprotein substrates. J Chem Inf Comput Sci 2004;44(1):239-48
  • Mente SR, Lombardo F. A recursive-partitioning model for blood-brain barrier permeation. J Comput Aided Mol Des 2005;19(7):465-81
  • Van Damme S, Langenaeker W, Bultinck P. Prediction of blood-brain partitioning: a model based on ab initio calculated quantum chemical descriptors. J Mol Graph Model 2008;26(8):1223-36
  • Vastag M, Keseru GM. Current in vitro and in silico models of blood-brain barrier penetration: a practical view. Curr Opin Drug Discov Devel 2009;12(1):115-24
  • Wang J, Hou T. Recent advances on in silico ADME modeling. Annu Rep Comput Chem 2009;5:101-27
  • Mensch J, Oyarzabal J, Mackie C, In vivo, in vitro and in silico methods for small molecule transfer across the blood brain barrier. J Pharm Sci 2009;98(12):4429-68
  • Mehdipour AR, Hamidi M. Brain drug targeting: a computational approach for overcoming blood-brain barrier. Drug Discov Today 2009;14(21/22):1030-6
  • Bendels S, Kansy M, Wagner B, In silico prediction of brain and CSF permeation of small molecules using PLS regression models. Eur J Med Chem 2008;43(8):1581-92
  • Verhoest PR, Proulx-Lafrance C, Corman M, Identification of a brain penetrant PDE9A inhibitor utilizing prospective design and chemical enablement as a rapid lead optimization strategy. J Med Chem 2009;52(24):7946-9
  • Zhou S-F, Wang L-L, Di YM, Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 2008;15(20):1981-2039
  • Giacomini KM, Huang S-M, Tweedie DJ, Membrane transporters in drug development. Nat Rev Drug Discov 2010;9(3):215-36
  • Kusuhara H, Sugiyama Y. Efflux transport systems for organic anions and cations at the blood-CSF barrier. Adv Drug Deliv Rev 2004;56(12):1741-63
  • Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2003;55(1):3-29
  • Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 2001;11(7):1156-66
  • de Boer AG, van der Sandt ICJ, Gaillard PJ. The role of drug transporters at the blood-brain barrier. Annu Rev Pharmacol Toxicol 2003;43(1):629-56
  • Warren MS, Zerangue N, Woodford K, Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res 2009;59(6):404-13
  • Hori S, Ohtsuki S, Tachikawa M, Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). J Neurochem 2004;90(3):526-36
  • Cooray HC, Blackmore CG, Maskell L, Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 2002;13(16):2059-63
  • Eisenblatter T, Huwel S, Galla H-J. Characterisation of the brain multidrug resistance protein (BMDP/ABCG2/BCRP) expressed at the blood-brain barrier. Brain Res 2003;971(2):221-31
  • Robey RW, To KKK, Polgar O, ABCG2: a perspective. Adv Drug Deliv Rev 2009;61(1):3-13
  • Ito K, Uchida Y, Ohtsuki S, Quantitative membrane protein expression at the blood–brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci, n/a. doi: 10.1002/jps.22487
  • Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993;62:385-427
  • Callaghan R, Ford RC, Kerr ID. The translocation mechanism of P-glycoprotein. FEBS Lett 2006;580(4):1056-63
  • Jones PM, George AM. Mechanism of ABC transporters: a molecular dynamics simulation of a well characterized nucleotide-binding subunit. Proc Natl Acad Sci USA 2002;99(20):12639-44
  • Ambudkar SV, Kim I-W, Sauna ZE. The power of the pump: mechanisms of action of P-glycoprotein (ABCB1). Eur J Pharm Sci 2006;27(5):392-400
  • Aller SG, Yu J, Ward A, Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 2009;323:1718-22
  • Demel MA, Kraemer O, Ettmayer P, Ensemble rule-based classification of substrates of the human ABC-transporter ABCB1 using simple physicochemical descriptors. Mol Inform 2010;29(3):233-42
  • Hammann F, Gutmann H, Jecklin U, Development of decision tree models for substrates, inhibitors, and inducers of P-glycoprotein. Curr Drug Metab 2009;10(4):339-46
  • Ravna AW, Sylte I, Sager G. Binding site of ABC transporter homology models confirmed by ABCB1 crystal structure. Theor Biol Med Model 2009;6(1):20
  • Cecchelli R, Berezowski V, Lundquist S, Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov 2007;6(8):650-61
  • Garberg P, Ball M, Borg N, In vitro models for the blood-brain barrier. Toxicol In Vitro 2005;19(3):299-334
  • Ohe T, Sato M, Tanaka S, Effect of P-glycoprotein-mediated efflux on cerebrospinal fluid/plasma concentration ratio. Drug Metab Dispos 2003;31(10):1251-4
  • Feng B, Mills JB, Davidson RJ, In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab Dispos 2008;36:268-75
  • Doan KMM, Humphreys JE, Webster LO, Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther 2002;303(3):1029-37
  • Schinkel AH. Disruption of the mouse Mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994;77:491-502
  • Doran A, Obach RS, Smith BJ, The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos 2005;33(1):165-74
  • Tang C, Kuo Y, Pudvah NT, Effect of P-glycoprotein-mediated efflux on cerebrospinal fluid concentrations in rhesus monkeys. Biochem Pharmacol 2009;78(6):642-7
  • He H, Lyons KA, Shen X, Utility of unbound plasma drug levels and P-glycoprotein transport data in prediction of central nervous system exposure. Xenobiotica 2009;39(9):687-93
  • Maurer TS, DeBartolo DB, Tess DA, Relationship between exposure and nonspecific binding of thirty-three central nervous system drugs in mice. Drug Metab Dispos 2005;33(1):175-81
  • Kalvass JC, Maurer TS, Pollack GM. Use of plasma and brain unbound fractions to assess the extent of brain distribution of 34 drugs: comparison of unbound concentration ratios to in vivo P-glycoprotein efflux ratios. Drug Metab Dispos 2007;35(4):660-6
  • Mealey KL, Greene S, Bagley R, P-glycoprotein contributes to the blood-brain, but not blood-cerebrospinal fluid, barrier in a spontaneous canine P-glycoprotein knockout model. Drug Metab Dispos 2008;36(6):1073-9
  • Summerfield SG, Read K, Begley DJ, Central nervous system drug disposition: the relationship between in situ brain permeability and brain free fraction. J Pharmacol Exp Ther 2007;322(1):205-13
  • Pathan SA, Iqbal Z, Zaidi SMA, CNS drug delivery systems: novel approaches. Recent Pat Drug Deliv Formul 2009;3(1):71-89
  • Neuwelt EA, editor, Implications of the blood-brain barrier and its manipulation. Volume 1. Plenum Publishing Corp, New York, NY, USA; 1989
  • Barbu E, Molnar E, Tsibouklis J, The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier. Expert Opin Drug Discov 2009;6(6):553-65
  • Raymond SB, Treat LH, Dewey JD, Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer's disease mouse models. PLoS One 2008;3(5):e2175
  • Treat LH, McDannold N, Vykhodtseva N, Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 2007;121:901-7
  • Tosi G, Costantino L, Ruozi B, Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin Drug Discov 2008;5(2):155-74
  • Debbage P. Targeted drugs and nanomedicine: present and future. Curr Pharm Des 2009;15(2):153-72
  • Ewend MG, Williams JA, Tabassi K, Local delivery of chemotherapy and concurrent external beam radiotherapy prolongs survival in metastatic brain tumor models. Cancer Res 1996;56(22):5217-23
  • McRae-Degueurce A, Hjorth S, Dillon DL, Implantable microencapsulated dopamine: a new approach for slow-release DA delivery into brain tissue. Neurosci Lett 1988;92(3):303-9
  • Gilman S. Clinical effects of AB immunization (AN1792) in patients with AD in an interrupted trial. Neurology 2005;64:1553-62
  • Thakker DR, Weatherspoon MR, Harrison J, Intracerebroventricular amyloid-beta antibodies reduce cerebral amyloid angiopathy and associated micro-hemorrhages in aged Tg2576 mice. Proc Natl Acad Sci USA 2009;106(11):4501-6
  • Pardridge WM. Transport of small molecules through the blood-brain barrier: biology and methodology. Adv Drug Deliv Rev 1995;15(1-3):5-36
  • Gynther M, Laine K, Ropponen J, Large neutral amino acid transporter enables brain drug delivery via prodrugs. J Med Chem 2008;51:932-6
  • Malakoutikhah M, Prades R, Teixido M, N-Methyl phenylalanine-rich peptides as highly versatile blood-brain barrier shuttles. J Med Chem 2010;53(6):2354-63
  • Teixido M, Zurita E, Malakoutikhah M, Diketopiperazines as a tool for the study of transport across the blood-brain barrier (BBB) and their potential use as BBB-shuttles. J Am Chem Soc 2007;129(38):11802-13
  • Boado RJ, Hui EK-W, Lu JZ, Drug targeting of erythropoietin across the primate blood-brain barrier with an IgG molecular Trojan horse. J Pharmacol Exp Ther 2010;333(3):961-9
  • deBoer AG, Gaillard PJ. Strategies to improve drug delivery across the blood-brain barrier. Clin Pharmacokinet 2007;46:553-76
  • Thomas F, Taskar K, Rudraraju V, Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res 2009;26(11):2486-94

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.