887
Views
62
CrossRef citations to date
0
Altmetric
Reviews

Ligand functional selectivity and quantitative pharmacology at G protein-coupled receptors

, (Professor and researcher) & (Professor and researcher)
Pages 811-825 | Published online: 24 May 2011

Bibliography

  • Lappano R, Maggiolini M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 2011;10:47-60
  • Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol 2002;3:639-50
  • Stephenson RP. A modification of receptor theory. Br J Pharmacol Chemother 1956;11:379-93
  • Chidiac P, Hebert TE, Valiquette M, Inverse agonist activity of beta-adrenergic antagonists. Mol Pharmacol 1994;45:490-9
  • Kenakin T. Efficacy as a vector: the relative prevalence and paucity of inverse agonism. Mol Pharmacol 2004;65:2-11
  • Bond R, Leff P, Johnson T, Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the beta2-adrenoceptor. Nature 1995;374:272-6
  • Costa T, Herz A. Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci USA 1989;86:7321-5
  • Samama P, Cotecchia S, Costa T, A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 1993;268:4625-36
  • Samama P, Pei G, Costa T, Negative Antagonists promote an inactive conformation of the beta2-Adrenergic receptor. Mol Pharmacol 1994;45:390-4
  • Lefkowitz RJ, Cotecchia S, Samama P, Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci 1993;14:303-7
  • Hermans E. Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol Ther 2003;99:25-44
  • Bockaert J, Fagni L, Dumuis A, GPCR interacting proteins (GIP). Pharmacol Ther 2004;103:203-21
  • Brady A, Limbard L. G protein-coupled receptor interacting proteins: Emerging roles in localization and signal transduction. Cell Signal 2002;14:297-309
  • Urban JD, Clarke W, von Zastrow M, Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 2007;320(1):13
  • Kenakin T. Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol Sci 1995;16:232-8
  • Spengler D, Waeber C, Pantaloni C, Differential signal transduction by five splice variants of the PACAP receptor. Nature 1993;365:170-5
  • Robb S, Cheek TR, Hannan FL, Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems. EMBO J 1994;13:1325
  • Mottola DM, Kilts JD, Lewis MM, Functional selectivity of dopamine receptor agonists. I. Selective activation of postsynaptic dopamine D2 receptors linked to adenylate cyclase. J Pharmacol Exp Ther 2002;301:1166-78
  • Kilts JD, Connery HS, Arrington EG, Functional selectivity of dopamine receptor agonists. II. Actions of dihydrexidine in D2L receptor-transfected MN9D cells and pituitary lactotrophs. J Pharmacol Exp Ther 2002;301:1179-89
  • Sato M, Horinouchi T, Hutchinson DS, Ligand-directed signaling at the beta3-adrenoceptor produced by 3-(2-Ethylphenoxy)-1-[(1,S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S-2-propanol oxalate (SR59230A) relative to receptor agonists. Mol Pharmacol 2007;72:1359-68
  • De Deurwaerdere P, Navailles S, Berg KA, Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J Neurosci 2004;24:3235-41
  • Berg K, Maayani S, Goldfarb J, Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol Pharmacol 1998;54:94-104
  • Reiner S, Ambrosio M, Hoffmann C, Differential signaling of the endogenous agonists at the {beta}2-adrenergic receptor. J Biol Chem 2010;285:36188-98
  • Kohout T, Nicholas SL, Perry SJ, Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J Biol Chem 2004;279:23214-22
  • Nickolls SA, Fleck B, Hoare SRJ, Functional selectivity of melanocortin 4 receptor peptide and nonpeptide agonists : evidence for ligand-specific conformational states. J Pharmacol Exp Ther 2005;313:1281-8
  • Rajagopal S, Rajagopal K, Lefkowitz RJ. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 2010;9:373-86
  • Luttrell LM, Gesty-Palmer D. Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev 2010;62:305-30
  • Violin JD, Dewire SM, Yamashita D, Selectively engaging beta-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac. J Pharmacol Exp Ther 2010;335:572-9
  • Azzi M, Charest PG, Angers S, Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci USA 2003;100:11406-11
  • Werry TD, Gregory KJ, Sexton PM, Characterization of serotonin 5-HT2C receptor signaling to extracellular signal-regulated kinases 1 and 2. J Neurochem 2005;93:1603-15
  • Audet N, Paquin-Gobeil M, Landry-Paquet O, Internalization and Src activity regulate the time course of ERK activation by delta opioid receptor ligands. J Biol Chem 2005;280:7808-16
  • Galandrin S, Bouvier M. Distinct signaling profiles of beta1 and beta2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 2006;70:1575-84
  • Wisler JW, Dewire SM, Whalen EJ, A unique mechanism of beta-blocker action Carvedilol stimulates beta-arrestin signaling. Proc Natl Acad Sci USA 2007;104:16657-62
  • Metra M, Cas LD, di Lenarda A, Beta-blockers in heart failure: are pharmacological differences clinically important? Heart Fail Rev 2004;9:123-30
  • Gainetdinov RR, Premont RT, Bohn LM, Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 2004;27:107-44
  • Wolfe BL, Trejo J. Clathrin-dependent mechanisms of G protein-coupled receptor endocytosis. Traffic 2007;8:462-70
  • Kelly E, Bailey CP, Henderson G. Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol 2008;153: (Suppl):S379-88
  • Trester-Zedlitz M, Burlingame A, Kobilka B, Mass spectrometric analysis of agonist effects on posttranslational modifications of the beta-2 adrenoceptor in mammalian cells. Biochemistry 2005;44:6133-43
  • Luk T, Jin W, Zvonok A, Identification of a potent and highly efficacious, yet slowly desensitizing CB1 cannabinoid receptor agonist. Br J Pharmacol 2004;142:495-500
  • Stout BD, Clarke WP, Berg K. Rapid desensitization of the serotonin(2C) receptor system: effector pathway and agonist dependence. J Pharmacol Exp Ther 2002;302:957-62
  • Roettger B, Ghanekar D, Rao R, Antagonist-stimulated internalization of the G protein-coupled cholecystokinin receptor. Mol Pharmacol 1997;51:357
  • Pheng LH, Dumont Y, Fournier A, Agonist- and antagonist-induced sequestration/internalization of neuropeptide Y Y1 receptors in HEK293 cells. Br J Pharmacol 2003;139:695-704
  • Sneddon WB, Syme CA, Bisello A, Activation-independent parathyroid hormone receptor internalization is regulated by NHERF1 (EBP50). J Biol Chem 2003;278:43787-96
  • Bhowmick N, Narayan P, Puett D. The endothelin subtype A receptor undergoes agonist- and antagonist-mediated internalization in the absence of signaling. Endocrinology 1998;139:3185-92
  • Gray JA, Roth BL. Paradoxical trafficking and regulation of 5-HT(2A) receptors by agonists and antagonists. Brain Res Bull 2001;56:441-51
  • Pradhan AAA, Walwyn W, Nozaki C, Ligand-directed trafficking of the delta-opioid receptor in vivo: two paths toward analgesic tolerance. J Neurosc 2010;30:16459-68
  • Kenakin T. New concepts in drug discovery: collateral efficacy and permissive antagonism. Nat Rev Drug Discov 2005;4:919-27
  • Thomas WG, Qian H, Chang CS, Agonist-induced phosphorylation of the angiotensin II (AT(1A)) receptor requires generation of a conformation that is distinct from the inositol phosphate-signaling state. J Biol Chem 2000;275:2893-900
  • Zidar D, Violin JD, Whalen EJ, Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc Natl Acad Sci USA 2009;106:9649-54
  • Johnson EA, Oldfield S, Braksator E, Agonist-selective mechanisms of mu-opioid receptor desensitization in human embryonic kidney 293 cells. Mol Pharmacol 2006;70:676
  • Whistler JL, Zastrow M. von Morphine-activated opioid receptors elude desensitization by beta-arrestin. Proc Natl Acad Sci USA 1998;95:9914-19
  • Chu J, Zheng H, Loh HH, Morphine-induced mu-opioid receptor rapid desensitization is independent of receptor phosphorylation and beta-arrestins. Cell Signal 2008;20:1616-24
  • Zeitz KP, Malmberg AB, Gilbert H, Reduced development of tolerance to the analgesic effects of morphine and clonidine in PKC gamma mutant mice. Pain 2001;94:245-53
  • Smith FL, Gabra BH, Smith PA, Determination of the role of conventional, novel and atypical PKC isoforms in the expression of morphine tolerance in mice. Pain 2007;127:129-39
  • Terman GW, Jin W, Cheong Y-P, G-protein receptor kinase 3 (GRK3) influences opioid analgesic tolerance but not opioid withdrawal. Br J Pharmacol 2004;141:55-64
  • Ferguson SS, Zhang J, Barak LS, Molecular mechanisms of G protein-coupled receptor desensitization and resensitization. Life Sci 1998;62:1561-5
  • Finn AK, Whistler JL. Endocytosis of the mu opioid receptor reduces tolerance and a cellular hallmark of opiate withdrawal. Neuron 2001;32:829-39
  • Berger AC, Whistler JL. How to design an opioid drug that causes reduced tolerance and dependence. Ann Neurol 2010;67:559-69
  • Vaidehi N, Kenakin T. The role of conformational ensembles of seven transmembrane receptors in functional selectivity. Curr Opin Pharmacol 2010;10:775-81
  • Kobilka BK, Deupi X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 2007;28:397-406
  • Gether U, Lin S, Kobilka BK. Fluorescent labeling of purified beta 2 adrenergic receptor. Evidence for ligand-specific conformational changes. J Biol Chem 1995;270:28268-75
  • Swaminath G, Xiang Y, Lee TW, Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermediate conformational states. J Biol Chem 2004;279:686-91
  • Ghanouni P, Gryczynski Z, Steenhuis JJ, Functionally different agonists induce distinct conformations in the G protein coupling domain of the beta 2 adrenergic receptor. J Biol Chem 2001;276:24433-6
  • Yao X, Parnot C, Deupi X, Coupling ligand structure to specific conformational switches in the beta2-adrenoceptor. Nat Chem Biol 2006;2:417-22
  • Vilardaga J-P, Steinmeyer R, Harms GS, Molecular basis of inverse agonism in a G protein-coupled receptor. Nat Chem Biol 2005;1:25-8
  • Bisello A, Chorev M, Rosenblatt M, Selective ligand-induced stabilization of active and desensitized parathyroid hormone type 1 receptor conformations. J Biol Chem 2002;277:38524-30
  • Li JH, Han S-J, Hamdan FF, Distinct structural changes in a G protein-coupled receptor caused by different classes of agonist ligands. J Biol Chem 2007;282:26284-93
  • Li JH, Hamdam FF, Kim S-K, Ligand-specific changes in M3 muscarinic acetylcholine receptor structure detected by a disulfide scanning strategy. Biochemistry 2008;47:2776-88
  • Audet N, Gales C, Archer-Lahlou E, Bioluminescence resonance energy transfer assays reveal ligand-specific conformational changes within preformed signaling complexes containing delta-opioid receptors and heterotrimeric G proteins. J Biol Chem 2008;283:15078-88
  • Alves ID, Salamon Z, Varga E, Direct observation of G-protein binding to the human delta-opioid receptor using plasmon-waveguide resonance spectroscopy. J Biol Chem 2003;278:48890-7
  • Yao XJ, Velez Ruiz G, Whorton MR, The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex. Proc Natl Acad Sci USA 2009;106:9501-6
  • Gales C, Van Durm JJJ, Schakk Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat Struct Mol Biol 2006;13:778-86
  • Nikolaev VO, Hoffmann C, Bunemann M, Molecular basis of partial agonism at the neurotransmitter alpha2A-adrenergic receptor and Gi-protein heterotrimer. J Biol Chem 2006;281:24506-11
  • Wei H, Ahn S, Shenoy SK, Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci USA 2003;100:10782-7
  • Galandrin S, Oligny-Longpre G, Bonin H, Conformational rearrangements and signaling cascades involved in ligand-biased mitogen-activated protein kinase signaling through the beta1-adrenergic receptor. Mol Pharmacol 2008;74:162-72
  • Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature 2009;459:356-63
  • Cherezov V, Rosenbaum DM, Hanson M, High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 2007;318:1258-65
  • Chien EYT, Liu W, Zhao Q, Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 2010;330:1091-5
  • Rasmussen SGF, Choi H-J, Rosembaum DM. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 2007;450:383-7
  • Warne T, Serrano-Vega MJ, Baker JG, Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 2008;454:486-91
  • Jaakola VP, Griffith MT, Hanson MA, The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 2008;322:1211
  • Wu B, Chien EYT, Mol CD, Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 2010;330:1066-71
  • Rasmussen SGF, Choi H-J, Fung JJ, Structure of a nanobody-stabilized active state of the beta2 adrenoceptor. Nature 2011;469:175-80
  • Rosenbaum DM, Zhang C, Lyons J, Structure and function of an irreversible agonist-beta2 adrenoceptor complex. Nature 2011;469:236-40
  • Warne T, Moukhametzianov R, Baker JG, The structural basis for agonist and partial agonist action on a beta1-adrenergic receptor. Nature 2011;469:241-4
  • Goncalves J, South K, Ahuja S, Highly conserved tyrosine stabilizes the active state of rhodopsin. Proc Natl Acad Sci USA 2010;107:19861-6
  • Bokoch MP, Zou Y, Rasmussen SGF, Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 2010;463:108-12
  • Stewart GD, Sexton PM, Christopoulos A. Prediction of functionally selective allosteric interactions at an M3 muscarinic acetylcholine receptor mutant using Saccharomyces cerevisiae. Mol Pharmacol 2010;78:205-14
  • Stewart GD, Sexton PM, Christopoulos A. Detection of novel functional selectivity at M3 muscarinic acetylcholine receptors using a Saccharomyces cerevisiae platform. ACS Chem Biol 2010;5:365-75
  • Stewart GD, Valant C, Dowell SJ, Determination of adenosine A1 receptor agonist and antagonist pharmacology using Saccharomyces cerevisiae: implications for ligand screening and functional selectivity. J Pharmacol Exp Ther 2009;331:277-86
  • Jiang LI, Collins J, Davis R, Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. J Biol Chem 2007;282:10576-84
  • Charest PG, Terrillon S, Bouvier M. Monitoring agonist-promoted conformational changes of beta-arrestin in living cells by intramolecular BRET. EMBO Rep 2005;6:334-40
  • Breton B, Lagace M, Bouvier M. Combining resonance energy transfer methods reveals a complex between the {alpha}2A-adrenergic receptor, G{alpha}i1{beta}1{gamma}2, and GRK2. FASEB J 2010;24:1-11
  • Gorokhovatsky AY, Marchenkov VV, Rudenko NV, Fusion of Aequorea victoria GFP and aequorin provides their Ca(2+)-induced interaction that results in red shift of GFP absorption and efficient bioluminescence energy transfer. Biochem Biophys Res Commun 2004;320:703-11
  • Huwiler KG, Machleidt T, Chase L, Characterization of serotonin 5-hydroxytryptamine-1A receptor activation using a phospho-extracellular-signal regulated kinase 2 sensor. Anal Biochem 2009;393:95-104
  • Fosbrink M, Aye-Han N-N, Cheong R, Visualization of JNK activity dynamics with a genetically encoded fluorescent biosensor. Proc Natl Acad Sci USA 2010;107:5459-64
  • Hodgson L, Shen F, Hahn K. Biosensors for characterizing the dynamics of rho family GTPases in living cells. Curr Protocols Cell Biol 2010;46:14.11.1-26
  • Depry C, Allen M, Zhang J. Visualization of PKA activity in plasma membrane microdomains. Molecular BioSystems 2011;7:52-8
  • Nishioka T, Frohman MA, Matsuda M, Heterogeneity of phosphatidic acid levels and distribution at the plasma membrane in living cells as visualized by a forster resonance energy transfer (FRET) biosensor. J Biol Chem 2010;285:35979-87
  • Depry C, Allen MD, Zhang J. Visualization of PKA activity in plasma membrane microdomains. Mol Biosyst 2010;7:52-8
  • Lin C, Kolossov VL, Tsvid G, Imaging in real-time with FRET the redox response of tumorigenic cells to glutathione perturbations in a microscale flow. Integrative biology (Cambridge) 2011;3:208-17
  • Harvey CD, Ehrhardt AG, Cellurale C, A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci USA 2008;105:19264-9
  • Breton B, Sauvageau E, Zhou J, Multiplexing of multicolor bioluminescence resonance energy transfer. Biophys J 2010;99:4037-46
  • Scott CW, Peters MF. Label-free whole-cell assays: expanding the scope of GPCR screening. Drug Discov Today 2010;15:704-16
  • Yu N, Atienza JM, Bernard J, Real-time monitoring of morphological changes in living cells by electronic cell sensor arrays: an approach to study G protein-coupled receptors. Anal Chem 2006;78:35-43
  • Fang Y, Li G, Ferrie AM. Non-invasive optical biosensor for assaying endogenous G protein-coupled receptors in adherent cells. J Pharmacol Toxicol Methods 2007;55:314-22
  • Schroder R, Janssen N, Schmidt J, Deconvolution of complex G protein-coupled receptor signaling in live cells using dynamic mass redistribution measurements. Nat Biotechnol 2010;28:943-9
  • Peters MF, Scott CW. Evaluating cellular impedance assays for detection of GPCR pleiotropic signaling and functional selectivity. J Biomol Screen 2009;14:246-55
  • Dodgson K, Gedge L, Murray DC, A 100K well screen for a muscarinic receptor using the Epic label-free system–a reflection on the benefits of the label-free approach to screening seven-transmembrane receptors. J Recept Signal Transduct Res 2009;29:163-72
  • McGuinness RP, Proctor JM, Gallant DL, Enhanced selectivity screening of GPCR ligands using a label-free cell based assay technology. Comb Chem High Throughput Screen 2009;12:812-23
  • Gregory KJ, Hall NE, Tobin AB, Identification of orthosteric and allosteric site mutations in M2 muscarinic acetylcholine receptors that contribute to ligand-selective signaling bias. J Biol Chem 2010;285:7459-74
  • Kenakin T, Miller LJ. Seven Transmembrane receptors as shapeshifting proteins : the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 2010;62:265-304
  • Valant C, Aurelio L, Urmaliya VB, Delineating the mode of action of adenosine A1 receptor allosteric modulators. Mol Pharmacol 2010;78:444-55
  • Koole C, Wootten D, Simms J, Allosteric ligands of the glucagon-like peptide 1 receptor (GLP-1R) differentially modulate endogenous and exogenous peptide responses in a pathway-selective manner: implications for drug screening. Mol Pharmacol 2010;78:456-65
  • Evans BA, Broxton N, Merlin J, Quantification of functional selectivity at the human {alpha}1A-Adrenoceptor. Mol Pharmacol 2011;79:298-307
  • Figueroa KW, Griffin MT, Ehlert FJ. Selectivity of agonists for the active state of M1 to M4 muscarinic receptor subtypes. J Pharmacol Exp Ther 2009;328:331-42
  • Christopoulos A. Assessing the distribution of parameters in models of ligand-receptor interaction: to log or not to log. Trends Pharmacol Sci 1998;19:351-7
  • Black J, Leff P. Operational models of pharmacological agonism. Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain) 1983;220(1219):141-62

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.