273
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Cytochrome P450 1A1-mediated anticancer drug discovery: in silico findings

(Research scholar) & (Assistant professor)
Pages 771-789 | Published online: 21 Jun 2012

Bibliography

  • World Health Organization: Fact sheet. 2011. Available from: http://www.who.int/mediacentre/factsheets/fs297/en/index.html [Cited 5 Octomber 2011]
  • Gibbs JB. Mechanism-based target identification and drug discovery in cancer research. Science 2000;287(5460):1969
  • Rochat B. Importance of influx and efflux systems and xenobiotic metabolizing enzymes in intratumoral disposition of anticancer agents. Curr Cancer Drug Targets 2009;9(5):652-74
  • Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov Sept 2011;10(9):671-84
  • Murray GI, Paterson PJ, Weaver RJ, The expression of cytochrome P450, epoxide hydrolase, and glutathione-S-transferase in hepatocellular carcinoma. Cancer 1993;71(1):36-43
  • Downie D, McFadyen MCE, Rooney PH, Profiling cytochrome P450 expression in ovarian cancer: identification of prognostic markers. Clin Cancer Res 2005;11(20):7369-75
  • Kumarakulasingham M, Rooney PH, Dundas SR, Cytochrome p450 profile of colorectal cancer: identification of markers of prognosis. Clin Cancer Res 2005;11(10):3758
  • Karlgren M, Ingelman-Sundberg M. Tumour-specific expression of CYP2W1: its potential as a drug target in cancer therapy. Expert Opin Ther Targets 2007;11(1):61-7
  • McFadyen MCE, Melvin WT, Murray GI. Cytochrome P450 enzymes: novel options for cancer therapeutics. Mol Cancer Ther 2004;3(3):363-71
  • Bozina N, Bradamante V, Lovri M. Genetic polymorphism of metabolic enzymes P450 (CYP) as a susceptibility factor for drug response, toxicity, and cancer risk. Arch Ind Hyg Toxicol 2009;60(2):217-42
  • Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer 2006;6(12):947-60
  • Patterson LH, Murray GI. Tumour cytochrome P450 and drug activation. Curr Pharm Des 2002;8(15):1335-47
  • Hankinson O. The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol 1995;35:307-40
  • Shimada T, Fujii Kuriyama Y. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and1B1. Cancer Sci 2004;95(1):1-6
  • McKay JA, Melvin WT, Ah-See AK, Expression of cytochrome P450 CYP1B1 in breast cancer. FEBS Lett 1995;374(2):270-2
  • Spink DC, Spink BC, Cao JQ, Differential expression of CYP1A1 and CYP1B1 in human breast epithelial cells and breast tumor cells. Carcinogenesis 1998;19(2):291-8
  • Atherton KM, Mutch E, Ford D. Metabolism of the soyabean isoflavone daidzein by CYP1A2 and the extra-hepatic CYPs 1A1 and 1B1 affects biological activity. Biochem Pharmacol 2006;72(5):624-31
  • Shimada T, Yun CH, Yamazaki H, Characterization of human lung microsomal cytochrome P-450 1A1 and its role in the oxidation of chemical carcinogens. Mol Pharmacol 1992;41(5):856
  • Shimada T, Hayes CL, Yamazaki H, Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res 1996;56(13):2979
  • Murray GI, Taylor MC, McFadyen MCE, Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res 1997;57(14):3026
  • Whitlock JP Jr. Induction of cytochrome P4501A1. Annu Rev Pharmacol Toxicol 1999;39(1):103-25
  • Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer 2009;9:187-202
  • Chua MS, Kashiyama E, Bradshaw T, Role of CYP1A1 in modulation of antitumor properties of the novel agent 2-(4-Amino-3-methylphenyl)benzothiazole (DF 203, NSC 674495) in human breast cancer cells1. Cancer Res 2000;60:5196-203
  • Leong CO, Gaskell M, Martin EA, Antitumour 2-(4-aminophenyl) benzothiazoles generate DNA adducts in sensitive tumour cells in vitro and in vivo. Br J Cancer 2003;88(3):470-7
  • Dubey R, Shrivastava PK, Basniwal PK, 2-(4-Aminophenyl) benzothiazole: a potent and selective pharmacophore with novel mechanistic action towards various tumour cell lines. Mini Rev Med Chem 2006;6(6):633-7
  • Beresford AP. CYP1A1: friend or foe? Drug Metab Rev 1993;25(4):503-17
  • Koymans L, Donne-Op den Kelder GM, Te Koppele JM, Vermeulen NPE. Cytochromes P450: their active-site structure and mechanism of oxidation. Drug Metab Rev 1993;25(3):325-87
  • Bradshaw TD, Wren JE, Bruce M, Preclinical toxicokinetic evaluation of phortress [2-(4-Amino-3-Methylphenyl)-5-Fluorobenzothiazole Lysylamide Dihydrochloride] in two rodent species. Pharmacology 2009;83(2):99-109
  • Puga A, Ma C, Marlowe JL. The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. Biochem Pharmacol 2009;77(4):713-22
  • Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 2003;43:309-34
  • Nebert DW, Dalton TP, Okey AB, Gonzalez FJ. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 2004;279(23):23847-50
  • Delescluse C, Lemaire G, De Sousa G, Rahmani R. Is CYP1A1 induction always related to AHR signaling pathway? Toxicology 2000;153(1-3):73-82
  • Ma Q. Induction of CYP1A1. The AhR/DRE paradigm transcription, receptor regulation, and expanding biological roles. Curr Drug Metab 2001;2(2):149-64
  • Ma Q, Whitlock JP. A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide repeat motifs, and augments the transcriptional response to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. J Biol Chem 1997;272(14):8878-84
  • Shimizu Y, Nakatsuru Y, Ichinose M, Benzo [a] pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc Natl Acad Sci USA 2000;97(2):779-82
  • Okey AB, Riddick DS, Harper PA. The Ah receptor: mediator of the toxicity of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Toxicol Lett 1994;70(1):1-22
  • Ciolino HP, Daschner PJ, Yeh GC. Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. Biochem J 1999;340(Pt 3):715-22
  • Rowlands JC, Gustafsson J. Aryl hydrocarbon receptor-mediated signal transduction. CRC Crit Rev Toxicol 1997;27(2):109-34
  • Hahn ME, Karchner SI, Shapiro MA, Perera SA. Molecular evolution of two vertebrate aryl hydrocarbon (dioxin) receptors (AHR1 and AHR2) and the PAS family. Proc Natl Acad Sci USA 1997;94(25):13743-8
  • Erbel PJA, Card PB, Karakuzu O, Structural basis for PAS domain heterodimerization in the basic helix–loop–helix-PAS transcription factor hypoxia-inducible factor. Proc Natl Acad Sci USA 2003;100(26):15504-9
  • Whelan F, Hao N, Furness SGB, Amino acid substitutions in the aryl hydrocarbon receptor ligand binding domain reveal YH439 as an atypical AhR activator. Mol Pharmacol 2010;77(6):1037
  • Marlowe JL, Puga A. Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J Cell Biochem 2005;96(6):1174-84
  • Barouki R, Coumoul X, Fernandez-Salguero PM. The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett 2007;581(19):3608-15
  • Bradshaw TD, Trapani V, Vasselin DA, Westwell AD. The aryl hydrocarbon receptor in anticancer drug discovery: friend or foe? Curr Pharm Des 2002;8(27):2475-90
  • Anttila S, Hakkola J, Tuominen P, Methylation of cytochrome P4501A1 promoter in the lung is associated with tobacco smoking. Cancer Res 2003;63(24):8623-8
  • Yang IA, Relan V, Wright CM, Common pathogenic mechanisms and pathways in the development of COPD and lung cancer. Expert Opin Ther Targets 2011;15(4):439-56
  • Oyama T, Sugio K, Uramoto H, Increased cytochrome P450 and aryl hydrocarbon receptor in bronchial epithelium of heavy smokers with non-small cell lung carcinoma carries a poor prognosis. Front Biosci 2007;12:4497-503
  • Oyama T, Sugio K, Uramoto H, Cytochrome P450 expression (CYP) in non-small cell lung cancer. Front Biosci 2007;12:2299-308
  • Liehr JG, Ricci MJ. 4-Hydroxylation of estrogens as marker of human mammary tumors. Proc Natl Acad Sci USA 1996;93(8):3294-6
  • Murray GI, Taylor VE, McKay JA, Expression of xenobiotic metabolizing enzymes in tumours of the urinary bladder. Int J Exp Pathol 1995;76(4):271-6
  • Murray GI, Shaw D, Weaver RJ, Cytochrome P450 expression in oesophageal cancer. Gut 1994;35(5):599-603
  • Murray GI, Taylor MC, Burke MD, Melvin WT. Enhanced expression of cytochrome P450 in stomach cancer. Br J Cancer 1998;77(7):1040
  • Crofts F, Taioll E, Trachman J, Functional significance of different human CYPlAl genotypes. Carcinogenesis 1994;15(12):2961-3
  • Avery ML, Meek CE, Audus KL. The presence of inducible cytochrome P450 types 1A1 and 1A2 in the BeWo cell line. Placenta 2003;24(1):45-52
  • Conney AH. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: GHA clowes memorial lecture. Cancer Res 1982;42(12):4875-917
  • Guengerich FP, Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol 1991;4(4):391-407
  • Doggrell SA. Inhibition of cardiac cytochrome P450: a new approach to cardiac ischaemia and reperfusion damage. Expert Opin Ther Targets 2004;8(5):491-3
  • Lawless MW, O'Byrne KJ, Gray SG. Targeting oxidative stress in cancer. Expert Opin Ther Targets 2010;14(11):1225-45
  • Jeyabalan J, Vadhanam MV, Ravoori S, Gupta RC. Sustained overexpression of CYP1A1 and 1B1 and steady accumulation of DNA adducts by low-dose, continuous exposure to benzo [a] pyrene by polymeric implants. Chem Res Toxicol 2011;24(11):1937-43
  • Brantley E, Trapani V, Alley MC, Fluorinated 2-(4-amino-3-methylphenyl) benzothiazoles induce CYP1A1 expression, become metabolized, and bind to macromolecules in sensitive human cancer cells. Drug Metab Dispos 2004;32(12):1392-401
  • Bradshaw TD, Westwell AD. The development of the antitumour benzothiazole prodrug, Phortress, as a clinical candidate. Curr Med Chem 2004;11(8):1009-21
  • Trapani V, Patel V, Leong CO, DNA damage and cell cycle arrest induced by 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203, NSC 703786) is attenuated in aryl hydrocarbon receptor deficient MCF-7 cells. Br J Cancer 2003;88(4):599-605
  • Loaiza-Perez AI, Kenney S, Boswell J, Aryl hydrocarbon receptor activation of an antitumor aminoflavone: basis of selective toxicity for MCF-7 breast tumor cells. Mol Cancer Ther 2004;3(6):715-25
  • Meng L, Shankavaram U, Chen C, Activation of aminoflavone (NSC 686288) by a sulfotransferase is required for the antiproliferative effect of the drug and for induction of histone -H2AX. Cancer Res 2006;66(19):9656-64
  • Androutsopoulos V, Arroo RRJ, Hall JF, Antiproliferative and cytostatic effects of the natural product eupatorin on MDA-MB-468 human breast cancer cells due to CYP1-mediated metabolism. Breast Cancer Res 2008;10:1-12
  • Androutsopoulos VP, Mahale S, Arroo RR, Potter G. Anticancer effects of the flavonoid diosmetin on cell cycle progression and proliferation of MDA-MB 468 breast cancer cells due to CYP1 activation. Oncol Rep 2009;21(6):1525-8
  • Androutsopoulos V, Wilsher N, Arroo RRJ, Potter GA. Bioactivation of the phytoestrogen diosmetin by CYP1 cytochromes P450. Cancer Lett 2009;274(1):54-60
  • Walle UK, Walle T. Bioavailable flavonoids: cytochrome P450-mediated metabolism of methoxyflavones. Drug Metab Dispos 2007;35(11):1985-9
  • Otake Y, Walle T. Oxidation of the flavonoids galangin and kaempferide by human liver microsomes and CYP1A1, CYP1A2, and CYP2C9. Drug Metab Dispos 2002;30(2):103-5
  • Ciolino HP, Yeh GC. Inhibition of aryl hydrocarbon-induced cytochrome P-450 1A1 enzyme activity and CYP1A1 expression by resveratrol. Mol Pharmacol 1999;56(4):760-7
  • Androutsopoulos VP, Papakyriakou A, Vourloumis D, Spandidos DA. Comparative CYP1A1 and CYP1B1 substrate and inhibitor profile of dietary flavonoids. Bioorg Med Chem 2011;19(9):2842-9
  • Arroo RRJ, Androutsopoulos V, Patel A, Phytoestrogens as natural prodrugs in cancer prevention: a novel concept. Phytochem Rev 2008;7(3):431-43
  • Ramadoss P, Marcus C, Perdew GH. Role of the aryl hydrocarbon receptor in drug metabolism. Expert Opin Drug Metab Toxicol 2005;1(1):9-21
  • Anderson LM, Priest LJ, Deschner EE, Budinger JM. Carcinogenic effects of intracolonic benzo [a] pyrene in [beta]-naphthoflavone-induced mice. Cancer Lett 1983;20(2):117-23
  • Cavalieri E, Roth R, Althoff J, Carcinogenicity and metabolic profiles of 3-methylcholanthrene oxygenated derivatives at the 1 and 2 positions. Chem Biol Interact 1978;22(1):69-81
  • Leong CO, Suggitt M, Swaine DJ, In vitro, in vivo, and in silico analyses of the antitumor activity of 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazoles. Mol Cancer Ther 2004;3(12):1565-75
  • Stevens MFG, Poole TD, Westwell AD, inventors. Substituted 2-Arylbenzazole Compounds and Their Use as Antitumour Agents.. WO0114354A1; 2001
  • Bradshaw TD, Bibby MC, Double JA, Preclinical evaluation of amino acid prodrugs of novel antitumor 2-(4-amino-3-methylphenyl) benzothiazoles. Mol Cancer Ther 2002;1(4):239-46
  • Stevens MFG, McCall CJ, Lelievald P, Structural studies on bioactive compounds. 23. Synthesis of polyhydroxylated 2-phenylbenzothiazoles and a comparison of their cytotoxicities and pharmacological properties with genistein and quercetin. J Med Chem 1994;37(11):1689-95
  • Bradshaw T, Stevens M, Westwell A. The discovery of the potent and selective antitumour agent 2-(4-amino-3-methylphenyl) benzothiazole (DF 203) and related compounds. Curr Med Chem 2001;8(2):203-10
  • Shi DF, Bradshaw TD, Wrigley S, Antitumor benzothiazoles. 3. Synthesis of 2-(4-aminophenyl) benzothiazoles and evaluation of their activities against breast cancer cell lines in vitro and in vivo. J Med Chem 1996;39(17):3375-84
  • Kadri H, Matthews CS, Bradshaw TD, Synthesis and antitumour evaluation of novel 2-phenylbenzimidazoles. J Enzyme Inhib Med Chem 2008;23(5):641-7
  • Chua MS, Shi DF, Wrigley S, Antitumor benzothiazoles. 7. Synthesis of 2-(4-acylaminophenyl) benzothiazoles and investigations into the role of acetylation in the antitumor activities of the parent amines. J Med Chem 1999;42(3):381-92
  • Kashiyama E, Hutchinson I, Chua MS, Antitumor benzothiazoles. 8. Synthesis, metabolic formation, and biological properties of the C-and N-oxidation products of antitumor 2-(4-aminophenyl)-benzothiazoles. J Med Chem 1999;42(20):4172-84
  • Wells G, Bradshaw TD, Diana P, Antitumour benzothiazoles. Part 10: the synthesis and antitumour activity of benzothiazole substituted quinol derivatives. Bioorg Med Chem Lett 2000;10(5):513-15
  • Hutchinson I, Chua MS, Browne HL, Antitumor benzothiazoles. 14. Synthesis and in vitro biological properties of fluorinated 2-(4-aminophenyl) benzothiazoles. J Med Chem 2001;44(9):1446-55
  • Hutchinson I, Bradshaw TD, Matthews CS, Antitumor Benzothiazoles. Part 20. 3-Cyano and 3-Alkynyl-Substituted 2-(4-Aminophenyl) benzothiazoles as new potent and selective analogues. Bioorg Med Chem Lett 2003;13(20):370-4
  • Shi DF, Bradshaw TD, Chua MS, Antitumour benzothiazoles. part 15:[1] the synthesis and physico-chemical properties of 2-(4-Aminophenyl) benzothiazole sulfamate salt derivatives. Bioorg Med Chem Lett 2001;11(8):1093-5
  • Hutchinson I, Jennings SA, Vishnuvajjala BR, Antitumor benzothiazoles. 16.1 synthesis and pharmaceutical properties of antitumor 2-(4-Aminophenyl) benzothiazole amino acid prodrugs. J Med Chem 2002;45(3):744-7
  • Bradshaw TD, Chua MS, Browne HL, In vitro evaluation of amino acid prodrugs of novel antitumour 2-(4-amino-3-methylphenyl) benzothiazoles. Br J Cancer 2002;86(8):1348-54
  • Mortimer CG, Wells G, Crochard JP, Antitumor benzothiazoles. 26. 2-(3, 4-Dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon, and breast cancer cell lines. J Med Chem 2006;49(1):179-85
  • Vasselin DA, Westwell AD, Matthews CS, Structural studies on bioactive compounds. 40. 1 synthesis and biological properties of fluoro-, methoxyl-, and amino-substituted 3-phenyl-4 H-1-benzopyran-4-ones and a comparison of their antitumor activities with the activities of related 2-phenylbenzothiazoles. J Med Chem 2006;49(13):3973-81
  • Labhsetwar LB, Shendarkar GR, Kuberkar SV. Synthesis and in vitro anticancer activity of 8-chloro-3-cyano-4-imino-2-methylthio-4H-pyrimido [2, 1-b][1, 3] benzothiazole and its 2-substituted derivatives. Pharm Res Health Care 2010;2(3):273-8
  • Luther GW. The frontier molecular orbital theory approach in geochemical processes. In: Stumm W, editor, Aquatic Chemical Kinetics: Reaction Rates of Processes in Natural Waters. John Wiley and Sons, New York, 1990; p. 173-198
  • O'Brien SE, Browne HL, Bradshaw TD, Antitumor benzothiazoles. Frontier molecular orbital analysis predicts bioactivation of 2-(4-aminophenyl) benzothiazoles to reactive intermediates by cytochrome P4501A1. Org Biomol Chem 2003;1(3):493-7
  • Hilal R, Khalek A. DFT investigation of nitrenium ions derived from metabolism of antitumor 2-(4-aminophenyl) benzothiazoles. J Mol Struct (THEOCHEM) 2005;731(1-3):115-21
  • Cramer R III, Clark M, Simeroth P, Patterson D. Recent developments in comparative molecular field analysis (CoMFA). Pharmacochem Libr 1991;16:239-42
  • Pan J, Liu GY, Cheng J, CoMFA and molecular docking studies of benzoxazoles and benzothiazoles as CYP450 1A1 inhibitors. Eur J Med Chem 2010;45(3):967-72
  • Aiello S, Wells G, Stone EL, Synthesis and biological properties of benzothiazole, benzoxazole, and chromen-4-one analogues of the potent antitumor agent 2-(3, 4-Dimethoxyphenyl)-5-fluorobenzothiazole (PMX 610, NSC 721648)(1). J Med Chem 2008;51(16):5135-9
  • Burger A, Sausville E, Shelton P. inventors. Aminoflavone (NSC 686288) and combination therof for treating breast cancer. US20100260753A1; 2010
  • Akama T, Shida Y, Sugaya T, Novel 5-aminoflavone derivatives as specific antitumor agents in breast cancer. J Med Chem 1996;39(18):3461-9
  • Akama T, Ishida H, Kimura U, Structure-activity relationships of the 7-substituents of 5, 4'-diamino-6, 8, 3'-trifluoroflavone, a potent antitumor agent. J Med Chem 1998;41(12):2056-67
  • Akama T, Ishida H, Shida Y, Design and synthesis of potent antitumor 5, 4'-diaminoflavone derivatives based on metabolic considerations. J Med Chem 1997;40(12):1894-900
  • Kuffel MJ, Schroeder JC, Pobst LJ, Activation of the antitumor agent aminoflavone (NSC 686288) is mediated by induction of tumor cell cytochrome P450 1A1/1A2. Mol Pharmacol 2002;62(1):143
  • Pobst LJ, Ames MM. CYP1A1 activation of aminoflavone leads to DNA damage in human tumor cell lines. Cancer Chemother Pharmacol 2006;57(5):569-76
  • Meng LH, Shankavaram U, Chen C, Selective activity of aminoflavone (NSC 626288), a novel drug in phase I clinical trials is determined by cellular expression of sulfotransferase. Proceedings of the American Association for Cancer Research; 1 – 5 April 2006; Washington, DC; 2006. p. 302
  • Meng LH, Kohn KW, Pommier Y. Dose–response transition from cell cycle arrest to apoptosis with selective degradation of Mdm2 and p21WAF1/CIP1 in response to the novel anticancer agent, aminoflavone (NSC 686288). Oncogene 2007;26(33):4806-16
  • Terzuoli E, Puppo M, Rapisarda A, Aminoflavone, a ligand of the aryl hydrocarbon receptor, inhibits HIF-1 expression in an AhR-independent fashion. Cancer Res Sept 2010;70(17):6837
  • Chen C, Meng L, Ma X, Urinary metabolite profiling reveals CYP1A2-mediated metabolism of NSC686288 (aminoflavone). J Pharmacol Exp Ther 2006;318(3):1330
  • Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. In: Henrik Bohr SB, editor. Protein structure by distance analysis. IOS press, Accucoms US, Inc., 1994. p. 64-86
  • Lewis BC, Mackenzie PI, Miners JO. Comparative homology modeling of human cytochrome P4501A1 (CYP1A1) and confirmation of residues involved in 7-ethoxyresorufin O-deethylation by site-directed mutagenesis and enzyme kinetic analysis. Arch Biochem Biophys 2007;468(1):58-69
  • Lewis DFV, Lake BG, Dickins M. Quantitative structure-activity relationships within a homologous series of 7-alkoxyresorufins exhibiting activity towards CYP1A and CYP2B enzymes: molecular modelling studies on key members of the resorufin series with CYP2C5-derived models of human CYP1A1, CYP1A2, CYP2B6 and CYP3A4. Xenobiotica 2004;34(6):501-13
  • Prasad JC, Goldstone JV, Camacho CJ, Ensemble modeling of substrate binding to cytochromes P450: analysis of catalytic differences between CYP1A orthologs. Biochem Columbus 2007;46(10):2640-54
  • Schwarz D, Kisselev P, Ericksen SS, Arachidonic and eicosapentaenoic acid metabolism by human CYP1A1: highly stereoselective formation of 17 (R), 18 (S)-epoxyeicosatetraenoic acid. Biochem Pharmacol 2004;67(8):1445-57
  • Szklarz GD, Paulsen MD. Molecular modeling of cytochrome P450 1A1: enzyme-substrate interactions and substrate binding affinities. J Biomol Struct Dyn 2002;20(2):155-62
  • Liu J, Ericksen SS, Besspiata D, Characterization of substrate binding to cytochrome P450 1A1 using molecular modeling and kinetic analyses: case of residue 382. Drug Metab Dispos 2003;31(4):412-20
  • Wester MR, Johnson EF, Marques-Soares C, Structure of mammalian cytochrome P450 2C5 complexed with diclofenac at 2.1 A resolution: evidence for an induced fit model of substrate binding. Biochemistry 2003;42(31):9335-45
  • Wester MR, Johnson EF, Marques-Soares C, Structure of a substrate complex of mammalian cytochrome P450 2C5 at 2.3 A resolution: evidence for multiple substrate binding modes. Biochemistry 2003;42(21):6370-9
  • Williams PA, Cosme J, Sridhar V, Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 2000;5(1):121-31
  • Lewis BC, Mackenzie PI, Miners JO. Application of homology modeling to generate CYP1A1 mutants with enhanced activation of the cancer chemotherapeutic prodrug dacarbazine. Mol Pharmacol 2011;80(5):879-88
  • Sangamwar AT, Labhsetwar LB, Kuberkar S. Exploring CYP1A1 as anticancer target: homology modeling and in silico inhibitor design. J Mol Model 2008;14(11):1101-9
  • Ewing TJA, Kuntz ID. Critical evaluation of search algorithms for automated molecular docking and database screening. J Comput Chem 1997;18(9):1175-89
  • Sansen S, Yano JK, Reynald RL, Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J Biol Chem 2007;282(19):14348-55
  • Ginalski K. Comparative modeling for protein structure prediction. Curr Opin Struct Biol 2006;16(2):172-7
  • Yarnitzky T, Levit A, Niv MY. Homology modeling of G-protein-coupled receptors with X-ray structures on the rise. Curr Opin Drug Discov Devel 2010;13(3):317-25
  • Fan H, Mark AE. Refinement of homology based protein structures by molecular dynamics simulation techniques. Protein Sci 2004;13(1):211-20
  • Rosales-Hernandez MC, Mendieta-Wejebe JE, Trujillo-Ferrara JG, Correa-Basurto J. Homology modeling and molecular dynamics of CYP1A1 and CYP2B1 to explore the metabolism of aryl derivatives by docking and experimental assays. Eur J Med Chem 2010;45(11):4845-55
  • Rapaport DC. The art of molecular dynamics simulation. Cambridge Univ Pr, UPH, Shaftesbury Road Cambridge, UK; 2004
  • Paulsen MD, Ornstein RL. Binding free energy calculations for P450cam-substrate complexes. Protein Eng 1996;9(7):567-71
  • Hansch C. Quantitative structure-activity relationships in drug design. Drug Des 1971;1:271-342
  • Burke MD, Mayer RT. Differential effects of phenobarbitone and 3-methylcholanthrene induction on the hepatic microsomal metabolism and cytochrome P-450-binding of phenoxazone and a homologous series of its n-alkyl ethers (alkoxyresorufins). Chem Biol Interact 1983;45(2):243-58
  • Burke MD, Thompson S, Elcombe CR, Ethoxy-, pentoxy-and benzyloxyphenoxazones and homologues: a series of substrates to distinguish between different induced cytochromes P-450. Biochem Pharmacol 1985;34(18):3337-45
  • Mannhold R, Dross K, Sonntag C. Estimation of lipophilicity by reversed-phase thin-layer chromatography. VCH; Weinheim: 1996
  • Lewis DFV. Quantitative structure–activity relationships (QSARs) within the cytochrome P450 system: QSARs describing substrate binding, inhibition and induction of P450s. Inflammopharmacology 2003;11(1):43-73
  • Iori F, Fonseca R, Ramos MJ, Menziani MC. Theoretical quantitative structure-activity relationships of flavone ligands interacting with cytochrome P450 1A1 and 1A2 isozymes. Bioorg Med Chem 2005;13(14):4366-74
  • Gonzalez J, Marchand-Geneste N, Giraudel J, Shimada T. Docking and QSAR comparative studies of polycyclic aromatic hydrocarbons and other procarcinogen interactions with cytochromes P450 1A1 and 1B1. SAR QSAR Environ Res 2012;23(1-2):87-109
  • Guner O. History and evolution of the pharmacophore concept in computer-aided drug design. Curr Top Med Chem 2002;2(12):1321-32
  • Sat R, Sato R, Kat R. Microsomes, drug oxidations, and drug toxicity. Japan Scientific Societies Press, Tokyo; 1982
  • Kadlubar FF, Hammons GJ. The role of cytochrome P-450 in the metabolism of chemical carcinogens. In: Guengerich FP, editor. Mammalian cytochromes P450. CRC Press; Boca Raton, FL; 1987. p. 81-130
  • Yang SK. Stereoselectivity of cytochrome P-450 isozymes and epoxide hydrolase in the metabolism of polycyclic aromatic hydrocarbons. Biochem Pharmacol 1988;37(1):61-70

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.