4,743
Views
451
CrossRef citations to date
0
Altmetric
Reviews

The influence of lipophilicity in drug discovery and design

&
Pages 863-875 | Published online: 19 Sep 2012

Bibliography

  • DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ 2003;22:151-85
  • Paul SM, Mytelka DS, Dunwiddie CT, How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov 2010;9:203-14
  • Liu X, Testa B, Fahr A. Lipophilicity and its relationship with passive drug permeation. Pharm Res 2011;28:962-77
  • Lipinski CA, Lombardo F, Dominy BW, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3-26
  • Veber DF, Johnson SR, Cheng HY, Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002;45:2615-23
  • Tian S, Li Y, Wang J, ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Mol Pharm 2011;8:841-51
  • Leeson PD, Davis AM. Time-related differences in the physical property profiles of oral drugs. J Med Chem 2004;47:6338-48
  • Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 2007;6:881-90
  • Testa B, Crivori P, Reist M, The influence of lipophilicity on the parmacokinetic behavior of drugs: concepts and examples. Perspect Drug Discov Des 2000;19:179-210
  • Waring MJ. Defining optimum lipophilicity and molecular weight ranges for drug candidates-molecular weight dependent lower logD limits based on permeability. Bioorg Med Chem Lett 2009;19:2844-51
  • Gleeson MP, Hersey A, Montanari D, Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat Rev Drug Discov 2011;10:197-208
  • Gleeson MP. Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem 2008;51:817-34
  • Hughes JD, Blagg J, Price DA, Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett 2008;18:4872-5
  • van De Waterbeemd H, Smith DA, Beaumont K, Property-based design: optimization of drug absorption and pharmacokinetics. J Med Chem 2001;44:1313-33
  • Azzaoui K, Hamon J, Faller B, Modeling promiscuity based on in vitro safety pharmacology profiling data. ChemMedChem 2007;2:874-80
  • Bender A, Scheiber J, Glick M, Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure. ChemMedChem 2007;2:861-73
  • Peters JU, Schnider P, Mattei P, Pharmacological promiscuity: dependence on compound properties and target specificity in a set of recent roche compounds. ChemMedChem 2009;4:680-6
  • Greene N, Aleo MD, Louise-May S, Using an in vitro cytotoxicity assay to aid in compound selection for in vivo safety studies. Bioorg Med Chem Lett 2010;20:5308-12
  • Price DA, Blagg J, Jones L, Physicochemical drug properties associated with in vivo toxicological outcomes: a review. Expert Opin Drug Metab Toxicol 2009;5:921-31
  • Leeson PD, St-Gallay SA. The influence of the 'organizational factor' on compound quality in drug discovery. Nat Rev Drug Discov 2011;10:749-65
  • Walters WP, Green J, Weiss JR, What do medicinal chemists actually make? A 50-year retrospective. J Med Chem 2011;54:6405-16
  • Waring MJ. Liphophilicity in drug discovery. Expert Opin Drug Discov 2010;5:235-8
  • Meanwell NA. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem Res Toxicol 2011;24:1420-56
  • Wyatt PG, Woodhead AJ, Berdini V, Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design. J Med Chem 2008;51:4986-99
  • Squires MS, Feltell RE, Wallis NG, Biological characterization of AT7519, a small-molecule inhibitor of cyclin-dependent kinases, in human tumor cell lines. Mol Cancer Ther 2009;8:324-32
  • Saxty G, Woodhead SJ, Berdini V, Identification of inhibitors of protein kinase B using fragment-based lead discovery. J Med Chem 2007;50:2293-6
  • Imig JD, Hammock BD. Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov 2009;8:794-805
  • Ryckmans T, Edwards MP, Horne VA, Rapid assessment of a novel series of selective CB(2) agonists using parallel synthesis protocols: a Lipophilic Efficiency (LipE) analysis. Bioorg Med Chem Lett 2009;19:4406-9
  • Lange JH, van der Neut MA, Wals HC, Synthesis and SAR of novel imidazoles as potent and selective cannabinoid CB2 receptor antagonists with high binding efficiencies. Bioorg Med Chem Lett 2010;20:1084-9
  • Freeman-Cook KD, Autry C, Borzillo G, Design of selective, ATP-competitive inhibitors of Akt. J Med Chem 2010;53:4615-22
  • Liu KK, Bagrodia S, Bailey S, 4-methylpteridinones as orally active and selective PI3K/mTOR dual inhibitors. Bioorg Med Chem Lett 2010;20:6096-9
  • Mowbray CE, Burt C, Corbau R, Pyrazole NNRTIs 4: selection of UK-453,061 (lersivirine) as a development candidate. Bioorg Med Chem Lett 2009;19(20):5857-60
  • Keseru GM, Makara GM. The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov 2009;8:203-12
  • Tarcsay A, Nyiri K, Keseru GM. Impact of lipophilic efficiency on compound quality. J Med Chem 2012;55:1252-60
  • Mannhold R, Poda GI, Ostermann C, Calculation of molecular lipophilicity: state-of-the-art and comparison of log P methods on more than 96,000 compounds. J Pharm Sci 2009;98:861-93
  • Sangster J. editor. Octanol-water partition coefficients: fundamentals and physical chemistry. John Wiley & Sons Ltd; Chichester: 1997
  • Avdeef A. pH-metric log P. II: refinement of partition coefficients and ionization constants of multiprotic substances. J Pharm Sci 1993;82:183-90
  • Scherrer RA, Donovan SF. Automated potentiometric titrations in KCl/water-saturated octanol: method for quantifying factors influencing ion-pair partitioning. Anal Chem 2009;81:2768-78
  • Gocan S, Cimpan G, Comer J. Lipophilicity measurements by liquid chromatography. Adv Chromatogr 2006;44:170-6
  • Hitzel L, Watt AP, Locker KL. An increased throughput method for the determination of partition coefficients. Pharm Res 2000;17:1389-95
  • Giaginis C, Theocharis S, Tsantili-Kakoulidou A. Structural basis for the design of PPAR-gamma ligands: a survey on quantitative structure- activity relationships. Mini Rev Med Chem 2009;9:1075-83
  • Pallicer JM, Sales J, Roses M, Lipophilicity assessment of basic drugs (log P(o/w) determination) by a chromatographic method. J Chromatogr A 2011;1218:6356-68
  • Lombardo F, Faller B, Shalaeva MY, The good, the bad and the ugly of distribution coefficients: current status, views and outlook. In: Mannhold R, editor. Molecular drug properties. Measurement and prediction. Wiley-VCH; Denmark 2008. p. 407-37
  • Valko K, Bevan C, Reynolds D. Chromatographic hydrophobicity index by fast-gradient RP-HPLC: a high-throughput alternative to log P/log D. Anal Chem 1997;69:2022-9
  • Roses M, Bosch E, Rafols C, Chromatographic hydrophobicity index (CHI). 50. CRC Press; Taylor & Francis Group; Boca Raton: 2012
  • Pallicer JM, Calvet C, Port A, Extension of the liquid chromatography/quantitative structure-property relationship method to assess the lipophilicity of neutral, acidic, basic and amphotheric drugs. J Chromatogr A 2012;1240:113-22
  • Young RJ, Green DV, Luscombe CN, Getting physical in drug discovery II: the impact of chromatographic hydrophobicity measurements and aromaticity. Drug Discov Today 2011;16:822-30
  • Young RJ. The successful quest for oral factor Xa inhibitors; learnings for all of medicinal chemistry? Bioorg Med Chem Lett 2011;21:6228-35
  • Yalkowsky SH, Valvani SC. Solubility and partitioning I: solubility of nonelectrolytes in water. J Pharm Sci 1980;69:912-22
  • Ran Y, Jain N, Yalkowsky SH. Prediction of aqueous solubility of organic compounds by the general solubility equation (GSE). J Chem Inf Comput Sci 2001;41:1208-17
  • Hill AP, Young RJ. Getting physical in drug discovery: a contemporary perspective on solubility and hydrophobicity. Drug Discov Today 2010;15:648-55
  • Kearns EH, Di L. Drug-like properties: concepts, structure design and methods. Elsevier; USA 2008
  • Gleeson MP. Plasma protein binding affinity and its relationship to molecular structure: an in-silico analysis. J Med Chem 2007;50:101-12
  • Kakemi K, Arita T, Hori R, Absorption and excretion of drugs. XXXII. Absorption of barbituric acid derivatives from rat small intestine. Chem Pharm Bull (Tokyo) 1967;15:1883-7
  • Kubinyi H. Quantitative structure-activity relationships. 2. A mixed approach, based on hansch and free-wilson analysis. J Med Chem 1976;19:587-600
  • Camenisch G, Alsenz J, van de Waterbeemd H, Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs' lipophilicity and molecular weight. Eur J Pharm Sci 1998;6:317-24
  • Physical model approach to the design of drugs with improved intestinal absorption. In: Roche EB. (ed), Design of biopharmaceutical properties through prodrugs and analogs. APhA/APS; Washington, DC: 1977; p. 136-227
  • Advancing quantitative and mechanical approaches in interfacing gastrointestinal drug absorption studies in animals and man. In Crouthamel WG, Sarapu A. (eds), Animal models for aral drug delivery in man: In situ and in vivo approaches. APhA/APS; Washington DC: 1983; p. 27-106
  • Adson A, Burton PS, Raub TJ, Passive diffusion of weak organic electrolytes across Caco-2 cell monolayers: uncoupling the contributions of hydrodynamic, transcellular, and paracellular barriers. J Pharm Sci 1995;84:1197-204
  • Hansch C. Quantitative approach to biochemical structure-activity relationships. Acc Chem Res 1969;2:232-40
  • Lee AJ, King JR, Rogers TG. A multiple-pathway model for the diffusion of drugs in skin. IMA J Math Appl Med Biol 1996;13:127-50
  • Garringues T, Perez-Varona A, Climent E. Bastric absorption of acidic xenobiotics in the rat: biophysical interpretation of an apparently atypical behaviour. Int J Pharm 1990;64:127-38
  • Wagner JG. Quantitation of rate of gastrointestinal and buccal absorption of acidic and basic drugs based on extraction theory. J Parmacokinet Biopharm 1973;1:23-50
  • Wagner JG, Sedman AJ. Quantitation of rate of gastrointestinal and buccal absorption of acidic and basic drugs based on extraction theory. J Parmacokinet Biopharm 1973;1:23-50
  • Egan WJ, Merz KM Jr, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem 2000;43:3867-77
  • Yoshida F, Topliss JG. QSAR model for drug human oral bioavailability. J Med Chem 2000;43:2575-85
  • Thomas VH, Bhattachar S, Hitchingham L, The road map to oral bioavailability: an industrial perspective. Expert Opin Drug Metab Toxicol 2006;2:591-608
  • Comer J. In: van De Waterbeemd H, editor. Methods and principles in medicinal chemistry. Wiley VCH; Weinheim 2003. p. 21-45
  • Martin YC. A bioavailability score. J Med Chem 2005;48:3164-70
  • Varma MV, Obach RS, Rotter C, Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. J Med Chem 2010;53:1098-108
  • Oie S, Tozer TN. Effect of altered plasma protein binding on apparent volume of distribution. J Pharm Sci 1979;68:1203-5
  • van de Waterbeemd H, Smith DA, Jones BC. Lipophilicity in PK design: methyl, ethyl, futile. J Comput Aided Mol Des 2001;15:273-86
  • Obach RS, Lombardo F, Waters NJ. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos 2008;36:1385-405
  • Valko K, Nunhuck S, Bevan C, Fast gradient HPLC method to determine compounds binding to human serum albumin. Relationships with octanol/water and immobilized artificial membrane lipophilicity. J Pharm Sci 2003;92:2236-48
  • Lombardo F, Obach RS, Shalaeva MY, Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data. J Med Chem 2002;45:2867-76
  • Lombardo F, Obach RS, Shalaeva MY, Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics. J Med Chem 2004;47:1242-50
  • Ghuman J, Zunszain PA, Petitpas I, Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol 2005;353:38-52
  • Kremer JM, Wilting J, Janssen LH. Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacol Rev 1988;40:1-47
  • Kramer SD, Wunderli-Allenspach H. Physicochemical properties in pharmacokinetic lead optimization. Farmaco 2001;56:145-8
  • Hitchcock SA, Pennington LD. Structure-brain exposure relationships. J Med Chem 2006;49:7559-83
  • Abbott NJ, Patabendige AA, Dolman DE, Structure and function of the blood-brain barrier. Neurobiol Dis 2010;37:13-25
  • Bain LJ, LeBlanc GA. Interaction of structurally diverse pesticides with the human MDR1 gene product P-glycoprotein. Toxicol Appl Pharmacol 1996;141:288-98
  • Seelig A. A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem 1998;251:252-61
  • Cavalli A, Poluzzi E, De Ponti F, Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K(+) channel blockers. J Med Chem 2002;45:3844-53
  • Clark DE. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. J Pharm Sci 1999;88:815-21
  • Gerebtzoff G, Seelig A. In silico prediction of blood-brain barrier permeation using the calculated molecular cross-sectional area as main parameter. J Chem Inf Model 2006;46:2638-50
  • Summerfield SG, Read K, Begley DJ, Central nervous system drug disposition: the relationship between in situ brain permeability and brain free fraction. J Pharmacol Exp Ther 2007;322:205-13
  • Wager T, Hou T, Verhoest PR, Moving beyond rules: the development of a Central Nervous System Multiparameter Optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neruosci 2010;1:435-9
  • Nassar AE, Kamel AM, Clarimont C. Improving the decision-making process in structural modification of drug candidates: reducing toxicity. Drug Discov Today 2004;9:1055-64
  • Borchard U. Pharmacokinetics of beta-adrenoceptor blocking agents: clinical significance of hepatic and/or renal clearance. Clin Physiol Biochem 1990;8(Suppl):28-34
  • Varma MV, Feng B, Obach RS, Physicochemical determinants of human renal clearance. J Med Chem 2009;52:4844-52
  • Johnson TW, Dress KR, Edwards M. Using the golden triangle to optimize clearance and oral absorption. Bioorg Med Chem Lett 2009;19:5560-4
  • Jamieson C, Moir EM, Rankovic Z, Medicinal chemistry of hERG optimizations: highlights and hang-ups. J Med Chem 2006;49:5029-46
  • Waring MJ, Johnstone C. A quantitative assessment of hERG liability as a function of lipophilicity. Bioorg Med Chem Lett 2007;17:1759-64
  • Redfern WS, Carlsson L, Davis AS, Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res 2003;58:32-45
  • Anderson N, Borlak J. Drug-induced phospholipidosis. FEBS Lett 2006;580:5533-40
  • Reasor MJ, Hastings KL, Ulrich RG. Drug-induced phospholipidosis: issues and future directions. Expert Opin Drug Saf 2006;5:567-83
  • Nonoyama T, Fukuda R. Drug induced phospholipidosis pathological aspects and its prediction. J toxicol Pathol 2008;1:9-24
  • Ploemen JP, Kelder J, Hafmans T, Use of physicochemical calculation of pKa and CLogP to predict phospholipidosis-inducing potential: a case study with structurally related piperazines. Exp Toxicol Pathol 2004;55:347-55
  • Pelletier DJ, Gehlhaar D, Tilloy-Ellul A, Evaluation of a published in silico model and construction of a novel Bayesian model for predicting phospholipidosis inducing potential. J Chem Inf Model 2007;47(3):1196-205
  • Hanumegowda UM, Wenke G, Regueiro-Ren A, Phospholipidosis as a function of basicity, lipophilicity, and volume of distribution of compounds. Chem Res Toxicol 2010;23(4):749-55
  • Tomizawa K, Sugano K, Yamada H, Physicochemical and cell-based approach for early screening of phospholipidosis-inducing potential. J Toxicol Sci 2006;31:315-24
  • Guengerich FP. Cytochrome p450 and chemical toxicology. Chem Res Toxicol 2008;21:70-83
  • Lewis DF, Dickins M. Substrate SARs in human P450s. Drug Discov Today 2002;7:918-25
  • Lewis DF, Dickins M. Baseline lipophilicity relationships in human cytochromes P450 associated with drug metabolism. Drug Metab Rev 2003;35:1-18
  • Wenlock MC, Austin RP, Barton P, A comparison of physiochemical property profiles of development and marketed oral drugs. J Med Chem 2003;46:1250-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.