441
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Proteomics approaches for myeloid leukemia drug discovery

, MSc, , MSc, , MSc, , MSc &
Pages 1165-1175 | Published online: 13 Sep 2012

Bibliography

  • Futcher B, Latter GI, Monardo P, A sampling of the yeast proteome. Mol Cell Biol 1999;19(11):7357-68
  • Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999;19(3):1720-30
  • Lian Z, Kluger Y, Greenbaum DS, Genomic and proteomic analysis of the myeloid differentiation program: global analysis of gene expression during induced differentiation in the MPRO cell line. Blood 2002;100(9):3209-20
  • Kanaujiya JK, Lochab S, Pal P, Proteomic approaches in myeloid leukemia. Electrophoresis 2011;32(3-4):357-67
  • Cristea IM, Gaskell SJ, Whetton AD. Proteomics techniques and their application to hematology. Blood 2004;103(10):3624-34
  • Weston AD, Hood L. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J Proteome Res 2004;3(2):179-96
  • Wittmann-Liebold B, Graack HR, Pohl T. Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics 2006;6(17):4688-703
  • Rekhtman N, Choe KS, Matushansky I, PU.1 and pRB interact and cooperate to repress GATA-1 and block erythroid differentiation. Mol Cell Biol 2003;23(21):7460-74
  • Zhang P, Behre G, Pan J, Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci USA 1999;96(15):8705-10
  • Scandura JM, Boccuni P, Cammenga J, Nimer SD. Transcription factor fusions in acute leukemia: variations on a theme. Oncogene 2002;21(21):3422-44
  • Rangatia J, Vangala RK, Treiber N, Downregulation of c-Jun expression by transcription factor C/EBPalpha is critical for granulocytic lineage commitment. Mol Cell Biol 2002;22(24):8681-94
  • Ross SE, Radomska HS, Wu B, Phosphorylation of C/EBPalpha inhibits granulopoiesis. Mol Cell Biol 2004;24(2):675-86
  • Vangala RK, Heiss-Neumann MS, Rangatia JS, The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 2003;101(1):270-7
  • Kindler T, Lipka DB, Fischer T. FLT3 as a therapeutic target in AML: still challenging after all these years. Blood 2010;116(24):5089-102
  • Giannopoulou EG, Garbis SD, Vlahou A, Proteomic feature maps: a new visualization approach in proteomics analysis. J Biomed Inform 2009;42(4):644-53
  • Monteoliva L, Albar JP. Differential proteomics: an overview of gel and non-gel based approaches. Brief Funct Genomic Proteomic 2004;3(3):220-39
  • Hanash S. Disease proteomics. Nature 2003;422(6928):226-32
  • Hanash SM, Madoz-Gurpide J, Misek DE. Identification of novel targets for cancer therapy using expression proteomics. Leukemia 2002;16(4):478-85
  • He QY, Chiu JF. Proteomics in biomarker discovery and drug development. J Cell Biochem 2003;89(5):868-86
  • Kolch W, Mischak H, Pitt AR. The molecular make-up of a tumour: proteomics in cancer research. Clin Sci (Lond) 2005;108(5):369-83
  • Baharvand H, Fathi A, van Hoof D, Salekdeh GH. Concise review: trends in stem cell proteomics. Stem Cells 2007;25(8):1888-903
  • Friedman DB, Hill S, Keller JW, Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 2004;4(3):793-811
  • Seike M, Kondo T, Fujii K, Proteomic signature of human cancer cells. Proteomics 2004;4(9):2776-88
  • Somiari RI, Sullivan A, Russell S, High-throughput proteomic analysis of human infiltrating ductal carcinoma of the breast. Proteomics 2003;3(10):1863-73
  • Wang D, Jensen R, Gendeh G, Proteome and transcriptome analysis of retinoic acid-induced differentiation of human acute promyelocytic leukemia cells. NB4. J Proteome Res 2004;3(3):627-35
  • Flory MR, Griffin TJ, Martin D, Aebersold R. Advances in quantitative proteomics using stable isotope tags. Trends Biotechnol 2002;20(12 Suppl):S23-9
  • Yan W, Chen SS. Mass spectrometry-based quantitative proteomic profiling. Brief Funct Genomic Proteomic 2005;4(1):27-38
  • Hjelle SM, Forthun RB, Haaland I, Clinical proteomics of myeloid leukemia. Genome Med 2010;2(6):41
  • Oveland E, Gjertsen BT, Wergeland L, Ligand-induced Flt3-downregulation modulates cell death associated proteins and enhances chemosensitivity to idarubicin in THP-1 acute myeloid leukemia cells. Leuk Res 2009;33(2):276-87
  • Pan C, Olsen JV, Daub H, Mann M. Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 2009;8(12):2796-808
  • Liang X, Hajivandi M, Veach D, Quantification of change in phosphorylation of BCR-ABL kinase and its substrates in response to Imatinib treatment in human chronic myelogenous leukemia cells. Proteomics 2006;6(16):4554-64
  • Xiong L, Wang Y. Quantitative proteomic analysis reveals the perturbation of multiple cellular pathways in HL-60 cells induced by arsenite treatment. J Proteome Res 2010;9(2):1129-37
  • Yocum AK, Busch CM, Felix CA, Blair IA. Proteomics-based strategy to identify biomarkers and pharmacological targets in leukemias with t(4;11) translocations. J Proteome Res 2006;5(10):2743-53
  • Goshe MB, Smith RD. Stable isotope-coded proteomic mass spectrometry. Curr Opin Biotechnol 2003;14(1):101-9
  • Han DK, Eng J, Zhou H, Aebersold R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 2001;19(10):946-51
  • Shiio Y, Donohoe S, Yi EC, Quantitative proteomic analysis of Myc oncoprotein function. EMBO J 2002;21(19):5088-96
  • Brand M, Ranish JA, Kummer NT, Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics. Nat Struct Mol Biol 2004;11(1):73-80
  • Bantscheff M, Eberhard D, Abraham Y, Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 2007;25(9):1035-44
  • Unwin RD, Whetton AD. How will haematologists use proteomics? Blood Rev 2007;21(6):315-26
  • Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 2009;11:49-79
  • Verrills NM. Clinical proteomics: present and future prospects. Clin Biochem Rev 2006;27(2):99-116
  • Haab BB. Antibody arrays in cancer research. Mol Cell Proteomics 2005;4(4):377-83
  • Kornblau SM, Tibes R, Qiu YH, Functional proteomic profiling of AML predicts response and survival. Blood 2009;113(1):154-64
  • Hofmann A, Gerrits B, Schmidt A, Proteomic cell surface phenotyping of differentiating acute myeloid leukemia cells. Blood 2010;116(13):e26-34
  • Albitar M, Potts SJ, Giles FJ, Proteomics-based prediction of clinical response in acute myeloid leukemia. Exp Hematol 2009;37(7):784-90
  • Pui CH, Jeha S. New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov 2007;6(2):149-65
  • Nerlov C. C/EBPalpha mutations in acute myeloid leukaemias. Nat Rev Cancer 2004;4(5):394-400
  • Pabst T, Mueller BU, Zhang P, Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 2001;27(3):263-70
  • Geletu M, Balkhi MY, Peer Zada AA, Target proteins of C/EBPalphap30 in AML: C/EBPalphap30 enhances sumoylation of C/EBPalphap42 via up-regulation of Ubc9. Blood 2007;110(9):3301-9
  • Pulikkan JA, Dengler V, Peer Zada AA, Elevated PIN1 expression by C/EBPalpha-p30 blocks C/EBPalpha-induced granulocytic differentiation through c-Jun in AML. Leukemia 2010;24(5):914-23
  • Buchi F, Spinelli E, Masala E, Proteomic analysis identifies differentially expressed proteins in AML1/ETO acute myeloid leukemia cells treated with DNMT inhibitors azacitidine and decitabine. Leuk Res 2012;36(5):607-18
  • Trivedi AK, Bararia D, Christopeit M, Proteomic identification of C/EBP-DBD multiprotein complex: JNK1 activates stem cell regulator C/EBPalpha by inhibiting its ubiquitination. Oncogene 2007;26(12):1789-801
  • Zada AA, Pulikkan JA, Bararia D, Proteomic discovery of Max as a novel interacting partner of C/EBPalpha: a Myc/Max/Mad link. Leukemia 2006;20(12):2137-46
  • Bararia D, Trivedi AK, Zada AA, Proteomic identification of the MYST domain histone acetyltransferase TIP60 (HTATIP) as a co-activator of the myeloid transcription factor C/EBPalpha. Leukemia 2008;22(4):800-7
  • Mayer RJ, Davis RB, Schiffer CA, Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B. N Engl J Med 1994;331(14):896-903
  • Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 1999;57(7):727-41
  • Laurent G, Jaffrezou JP. Signaling pathways activated by daunorubicin. Blood 2001;98(4):913-24
  • Godl K, Wissing J, Kurtenbach A, An efficient proteomics method to identify the cellular targets of protein kinase inhibitors. Proc Natl Acad Sci USA 2003;100(26):15434-9
  • Brehmer D, Godl K, Zech B, Proteome-wide identification of cellular targets affected by bisindolylmaleimide-type protein kinase C inhibitors. Mol Cell Proteomics 2004;3(5):490-500
  • Chen L, Monti S, Juszczynski P, SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood 2008;111(4):2230-7
  • Feldman AL, Sun DX, Law ME, Overexpression of Syk tyrosine kinase in peripheral T-cell lymphomas. Leukemia 2008;22(6):1139-43
  • Rinaldi A, Kwee I, Taborelli M, Genomic and expression profiling identifies the B-cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma. Br J Haematol 2006;132(3):303-16
  • Streubel B, Vinatzer U, Willheim M, Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia 2006;20(2):313-18
  • Hahn CK, Berchuck JE, Ross KN, Proteomic and genetic approaches identify Syk as an AML target. Cancer Cell 2009;16(4):281-94
  • Snow ET, Sykora P, Durham TR, Klein CB. Arsenic, mode of action at biologically plausible low doses: what are the implications for low dose cancer risk? Toxicol Appl Pharmacol 2005;207(2 Suppl):557-64
  • Zhu J, Chen Z, Lallemand-Breitenbach V, de The H. How acute promyelocytic leukaemia revived arsenic. Nat Rev Cancer 2002;2(9):705-13
  • Kuhajda FP. Fatty acid synthase and cancer: new application of an old pathway. Cancer Res 2006;66(12):5977-80

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.