612
Views
49
CrossRef citations to date
0
Altmetric
Reviews

Approaches to efficiently estimate solvation and explicit water energetics in ligand binding: the use of WaterMap

, &
Pages 277-287 | Published online: 04 Jan 2013

Bibliography

  • Warshel A. Energetics of enzyme catalysis. P Natl Acad Sci USA 1978;75(11):5250-4
  • Dill KA. Dominant forces in protein folding. Biochemistry 1990;29(31):7133-55
  • Cramer CJ, Truhlar DG. An SCF solvation model for the hydrophobic effect and absolute free-energies of aqueous solvation. Science 1992;256(5054):213-17
  • Cheung MS, Garcia AE, Onuchic JN. Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. P Natl Acad Sci USA 2002;99(2):685-90
  • Lazaridis T, Karplus M. Thermodynamics of protein folding: a microscopic view. Biophys Chem 2003;100(1-3):367-95
  • Dougan L, Feng G, Lu H, Fernandez JM. Solvent molecules bridge the mechanical unfolding transition state of a protein. P Natl Acad Sci USA 2008;105(9):3185-90
  • Smith L, Cheetham AK, Morris RE, On the nature of water bound to a solid acid catalyst. Science 1996;271(5250):799-802
  • Xu DG, Guo H. Electrostatic influence of active-site waters on the nucleophilic aromatic substitution catalyzed by 4-chlorobenzoyl-CoA dehalogenase. Febs Lett 2005;579(20):4249-53
  • Yang Y, Miao YP, Wang B, Catalytic mechanism of aromatic prenylation by NphB. Biochemistry 2012;51(12):2606-18
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46(1-3):3-26
  • Abel R, Young T, Farid R, Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J Am Chem Soc 2008;130(9):2817-31
  • Setny P, Baron R, McCammon JA. How can hydrophobic association be enthalpy driven? J Chem Theory Comput 2010;6(9):2866-71
  • Snyder PW, Mecinovic J, Moustakas DT, Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. P Natl Acad Sci USA 2011;108(44):17889-94
  • Leach AR. Molecular modelling: principles and applications. 2nd edition. Prentice Hall, New York; 2001
  • Paesani F, Voth GA. The properties of water: insights from quantum simulations. J Phys Chem B 2009;113(17):5702-19
  • Berne BJ, Weeks JD, Zhou RH. Dewetting and hydrophobic interaction in physical and biological systems. Annu Rev Phys Chem 2009;60:85-103
  • Ladbury JE. Just add water! The effect of water on the specificity of protein-ligand binding sites and its potential application to drug design. Chem Biol 1996;3(12):973-80
  • Hummer G. Molecular binding under water's influence. Nat Chem 2010;2(11):906-7
  • Michel J, Tirado-Rives J, Jorgensen WL. Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization. J Am Chem Soc 2009;131(42):15403-11
  • Edinger SR, Cortis C, Shenkin PS, Friesner RA. Solvation free energies of peptides: comparison of approximate continuum solvation models with accurate solution of the Poisson-Boltzmann equation. J Phys Chem B 1997;101(7):1190-7
  • Ghosh A, Rapp CS, Friesner RA. Generalized born model based on a surface integral formulation. J Phys Chem B 1998;102(52):10983-90
  • Kollman PA, Massova I, Reyes C, Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 2000;33(12):889-97
  • Kuhn B, Kollman PA. A ligand that is predicted to bind better to avidin than biotin: insights from computational fluorine scanning. J Am Chem Soc 2000;122(16):3909-16
  • Bashford D, Case DA. Generalized born models of macromolecular solvation effects. Annu Rev Phys Chem 2000;51:129-52
  • Tsui V, Case DA. Theory and applications of the generalized Born solvation model in macromolecular Simulations. Biopolymers 2001;56(4):275-91
  • Qiu D, Shenkin PS, Hollinger FP, Still WC. The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate Born radii. J Phys Chem A 1997;101(16):3005-14
  • Nicholls A, Honig B. A rapid finite-difference algorithm, utilizing successive over-relaxation to solve the Poisson-Boltzmann equation. J Comput Chem 1991;12(4):435-45
  • Mahoney MW, Jorgensen WL. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys 2000;112(20):8910-22
  • Jorgensen WL, Chandrasekhar J, Madura JD, Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983;79(2):926-35
  • Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 2001;105(43):9954-60
  • Amira S, Spangberg D, Hermansson K. Derivation and evaluation of a flexible SPC model for liquid water. Chem Phys 2004;303(3):327-34
  • Lobaugh J, Voth GA. A quantum model for water: equilibrium and dynamical properties. J Chem Phys 1997;106(6):2400-10
  • Borgis D, Staib A. A semiempirical quantum polarization model for water. Chem Phys Lett 1995;238(1-3):187-92
  • Srinivasan J, Cheatham TE, Cieplak P, Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate - DNA helices. J Am Chem Soc 1998;120(37):9401-9
  • McCammon JA, Gelin BR, Karplus M. Dynamics of folded proteins. Nature 1977;267(5612):585-90
  • Tsui V, Case DA. Molecular dynamics simulations of nucleic acids with a generalized born solvation model. J Am Chem Soc 2000;122(11):2489-98
  • Guimaraes CRW, Cardozo M. MM-GB/SA rescoring of docking poses in structure-based lead optimization. J Chem Inf Model 2008;48(5):958-70
  • Guillot B. A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liq 2002;101(1-3):219-60
  • Lisal M, Kolafa J, Nezbeda I. An examination of the five-site potential (TIP5P) for water. J Chem Phys 2002;117(19):8892-7
  • Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J. Intermolecular forces. In: Pullman B, editor. Reidel; Dordrecht: 1981
  • Wong S, Amaro RE, McCammon JA. MM-PBSA captures key role of intercalating water molecules at a protein-protein interface. J Chem Theory Comput 2009;5(2):422-9
  • Mandell DJ, Chorny I, Groban ES, Strengths of hydrogen bonds involving phosphorylated amino acid side chains. J Am Chem Soc 2007;129(4):820-7
  • Lu YP, Wang RX, Yang CY, Wang SM. Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes. J Chem Inf Model 2007;47(2):668-75
  • Pan CF, Mezei M, Mujtaba S, Structure-guided optimization of small molecules inhibiting human immunodeficiency virus 1 Tat association with the human coactivator p300/CREB binding protein-associated factor. J Med Chem 2007;50(10):2285-8
  • Yu HT, Rick SW. Free energies and entropies of water molecules at the inhibitor-protein interface of DNA gyrase. J Am Chem Soc 2009;131(18):6608-13
  • Yu HT, Rick SW. Free energy, entropy, and enthalpy of a water molecule in various protein environments. J Phys Chem B 2010;114(35):11552-60
  • Baron R, Setny P, McCammon JA. Water in cavity-ligand recognition. J Am Chem Soc 2010;132(34):12091-7
  • Baron R, Molinero V. Water-driven cavity–ligand binding: comparison of thermodynamic signatures from coarse-grained and atomic-level simulations. J Chem Theory Comput 2012;8(10):3696-704
  • Michel J, Tirado-Rives J, Jorgensen WL. Prediction of the water content in protein binding sites. J Phys Chem B 2009;113(40):13337-46
  • Luccarelli J, Michel J, Tirado-Rives J, Jorgensen WL. Effects of water placement on predictions of binding affinities for p38 alpha MAP kinase inhibitors. J Chem Theory Comput 2010;6(12):3850-6
  • Barillari C, Taylor J, Viner R, Essex JW. Classification of water molecules in protein binding sites. J Am Chem Soc 2007;129(9):2577-87
  • Michel J, Essex JW. Prediction of protein-ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations. J Comput Aid Mol Des 2010;24(8):639-58
  • Young T, Abel R, Kim B, Motifs for Molecular Recognition Exploiting Hydrophobic Enclosure in Protein-Ligand Binding. P Natl Acad Sci USA 2007;104(3):808-13
  • Chrencik JE, Patny A, Leung IK, Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6. J Mol Biol 2010;400(3):413-33
  • Laha JK, Zhang XM, Qiao LX, Structure-activity relationship study of 2,4-diaminothiazoles as Cdk5/p25 kinase inhibitors. Bioorg Med Chem Lett 2011;21(7):2098-101
  • Knegtel RMA, Robinson DD. A role for hydration in interleukin-2 inducible T cell kinase (Itk) selectivity. Mol Inform 2011;30(11-12):950-9
  • Lazaridis T. Inhomogeneous fluid approach to solvation thermodynamics. 2. Applications to simple fluids. J Phys Chem B 1998;102(18):3542-50
  • Lazaridis T. Inhomogeneous fluid approach to solvation thermodynamics. 1. Theory. J Phys Chem B 1998;102(18):3531-41
  • Wang L, Berne BJ, Friesner RA. Ligand binding to protein-binding pockets with wet and dry regions. P Natl Acad Sci USA 2011;108(4):1326-30
  • Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 2001;105(28):6474-87
  • Jorgensen WL, Maxwell DS, TiradoRives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996;118(45):11225-36
  • Padmanabhan K, Padmanabhan KP, Tulinsky A, Structure of Human Des(1-45) Factor-Xa at 2.2-Angstrom Resolution. J Mol Biol 1993;232(3):947-66
  • Makarov VA, Andrews BK, Smith PE, Pettitt BM. Residence times of water molecules in the hydration sites of myoglobin. Biophys J 2000;79(6):2966-74
  • Carugo O, Bordo D. How many water molecules can be detected by protein crystallography? Acta Crystallogr D 1999;55:479-83
  • Nakasako M, Takahashi H, Shimba N, The pH-dependent structural variation of complementarity-determining region H3 in the crystal structures of the Fv fragment from an anti-dansyl monoclonal antibody. J Mol Biol 1999;291(1):117-34
  • Mattos C. Protein-water interactions in a dynamic world. Trends Biochem Sci 2002;27(4):203-8
  • Beuming T, Farid R, Sherman W. High-energy water sites determine peptide binding affinity and specificity of PDZ domains. Protein Sci 2009;18(8):1609-19
  • Skelton NJ, Koehler MFT, Zobel K, Origins of PDZ domain ligand specificity - Structure determination and mutagenesis of the erbin PDZ domain. J Biol Chem 2003;278(9):7645-54
  • Partanen J, Makela TP, Alitalo R, Putative Tyrosine Kinases Expressed in K-562 Human Leukemia-Cells. P Natl Acad Sci USA 1990;87(22):8913-17
  • Peterson DW, Ando DM, Taketa DA, No difference in kinetics of tau or histone phosphorylation by CDK5/p25 versus CDK5/p35 in vitro. P Natl Acad Sci USA 2010;107(7):2884-9
  • Charrier JD, Miller A, Kay DP, Discovery and structure-activity relationship of 3-aminopyrid-2-ones as potent and selective interleukin-2 inducible T-cell kinase (Itk) inhibitors. J Med Chem 2011;54(7):2341-50
  • Robinson DD, Sherman W, Farid R. Understanding kinase selectivity through energetic analysis of binding site waters. ChemMedChem 2010;5(4):618-27
  • Manning G, Whyte DB, Martinez R, The protein kinase complement of the human genome. Science 2002;298(5600):1912-34
  • Higgs C, Beuming T, Sherman W. Hydration site thermodynamics explain SARs for triazolylpurines analogues binding to the A2A receptor. Acs Med Chem Lett 2010;1(4):160-4
  • Libert F, Parmentier M, Lefort A, Selective amplification and cloning of 4 new members of the G-protein coupled receptor family. Science 1989;244(4904):569-72
  • Jacobson KA, Gao ZG. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 2006;5(3):247-64
  • Fidock DA. Drug discovery priming the antimalarial pipeline. Nature 2010;465(7296):297-8
  • Shah F, Gut J, Legac J, Computer-aided drug design of falcipain inhibitors: virtual screening, structure-activity relationships, hydration site thermodynamics, and reactivity analysis. J Chem Inf Model 2012;52(3):696-710
  • Kawasaki Y, Freire E. Finding a better path to drug selectivity. Drug Discov Today 2011;16(21-22):985-90
  • Harris CJ, Stevens AP. Chemogenomics: structuring the drug discovery process to gene families. Drug Discov Today 2006;11(19-20):880-8
  • Rockey WM, Elcock AH. Rapid computational identification of the targets of protein kinase inhibitors. Curr Opin Drug Disc 2006;9(3):326-31
  • Beuming T, Che Y, Abel R, Thermodynamic analysis of water molecules at the surface of proteins and applications to binding site prediction and characterization. Proteins 2012;80(3):871-83
  • Pearlstein RA, Hu QY, Zhou J, New hypotheses about the structure–function of proprotein convertase subtilisin/kexin type 9: analysis of the epidermal growth factor-like repeat A docking site using WaterMap. Proteins 2010;78:2571-86
  • Horton JD, Cohen JC, Hobbs HH. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci 2007;32(2):71-7
  • Copeland RA, Pompliano DL, Meek TD. Opinion - Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov 2006;5(9):730-9
  • Guimaraes CRW, Mathiowetz AM. Addressing limitations with the MM-GB/SA scoring procedure using the Water Map method and free energy perturbation calculations. J Chem Inf Model 2010;50(4):547-59
  • Kohlmann A, Zhu XT, Dalgarno D. Application of MM-GB/SA and WaterMap to SRC kinase inhibitor potency prediction. Acs Med Chem Lett 2012;3(2):94-9
  • Dalgarno D, Stehle T, Narula S, Structural basis of Src tyrosine kinase inhibition with a new class of potent and selective trisubstituted purine-based compounds. Chem Biol Drug Des 2006;67(1):46-57
  • Abel R, Salam NK, Shelley J, Contribution of explicit solvent effects to the binding affinity of small-molecule inhibitors in blood coagulation factor serine proteases. ChemMedChem 2011;6(6):1049-66
  • Hedstrom L. Serine protease mechanism and specificity. Chem Rev 2002;102(12):4501-23
  • Hess B, van der Vegt NFA. Hydration thermodynamic properties of amino acid analogues: a systematic comparison of biomolecular force fields and water models. J Phys Chem B 2006;110(35):17616-26
  • Abascal JLF, Vega C. A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 2005;123:23
  • Rick SW, Stuart SJ, Berne BJ. Dynamical fluctuating charge force-fields - application to liquid water. J Chem Phys 1994;101(7):6141-56
  • Lawrence CP, Skinner JL. Flexible TIP4P model for molecular dynamics simulation of liquid water. Chem Phys Lett 2003;372(5-6):842-7
  • Horn HW, Swope WC, Pitera JW, Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 2004;120(20):9665-78

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.