260
Views
7
CrossRef citations to date
0
Altmetric
Reviews

3D-QSAR and molecular docking for the discovery of ketolide derivatives

, , , &
Pages 427-444 | Published online: 26 Feb 2013

Bibliography

  • Chopra I. Protein synthesis as a target for antibacterial drugs: current status and future opportunities. Expert Opin Investig Drugs 1998;7:1237-44
  • Bryskier A. New research in macrolides and ketolides since 1997. Expert Opin Investig Drugs 1999;8:1171-94
  • Wu Y-J, Su W-G. Recent developments on ketolides and macrolides. Curr Med Chem 2001;8:1727-58
  • Zhanel GG, Dueck M, Hoban DJ, Review of macrolides and ketolides: focus on respiratory tract infections. Drugs 2001;61:443-98
  • Nightingale CH, Mattoes HM. Macrolide, azalide, and ketolide pharmacodynamics. Infect Dis Ther 2002;28:205-20
  • Asaka T, Manaka A, Sugiyama H. Recent developments in macrolide antimicrobial research. Curr Top Med Chem 2003;3:961-89
  • Agouridas C, Benedetti Y, Bonnefoy A, Ketolides: a new class of macrolide antibacterials - structural characteristics and biological properties of RU 004. Infect Dis Ther 1997;21:279-85
  • Bryskier A, Agouridas C, Chantot J-F. Ketolides: new semisynthetic 14-membered-ring macrolides. Infect Dis Ther 1997;21:39-50
  • Anderson RC, Harris PN, Chen K. Further toxicological studies with ilotycin® (Erythromycin, Lilly). J Am Pharm Assoc 1955;44(4):199-204
  • Kurath P, Jones PH, Egan RS, Acid degradation of erythromycin A and erythromycin B. Cell Mol Life Sci 1971;27(4):362
  • Ludden T. Pharmacokinetic interactions of the macrolide antibiotics. Clin Pharmacokinet 1985;10(1):63
  • Barre J, Mallat A, Rosenbaum J, Pharmacokinetics of erythromycin in patients with severe cirrhosis. Respective influence of decreased serum binding and impaired liver metabolic capacity. Br J Clin Pharmacol 1987;23(6):753
  • Weber F Jr, Richards R, McCallum R. Erythromycin: a motilin agonist and gastrointestinal prokinetic agent. Am J Gastroenterol 1993;88(4):485
  • Morimoto S, Takahashi Y, Watanabe Y, Chemical modification of erythromycins. I. Synthesis and antibacterial activity of 6-O-methylerythromycins A. J Antibiot (Tokyo) 1984;37(2):187
  • Peters D, Friedel H, McTavish D. Azithromycin. A review of its antimicrobial activity, pharmacokinetic properties and clinical efficacy. Drugs 1992;44(5):750
  • Piscitelli S, Danziger L, Rodvold K. Clarithromycin and azithromycin: new macrolide antibiotics. Clin Pharm 1992;11(2):137
  • Dunn C, Barradell L. Azithromycin. A review of its pharmacological properties and use as 3-day therapy in respiratory tract infections. Drugs 1996;51(3):483
  • Ballow C, Amsden G. Azithromycin: the first azalide antibiotic. Ann Pharmacother 1992;26(10):1253-61
  • Retsema J, Girard A, Schelkly W, Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. Antimicrob Agents Chemother 1987;31(12):1939-47
  • Baldwin D, Wise R, Andrews J, Azithromycin concentrations at the sites of pulmonary infection. Eur Respir J 1990;3(8):886-90
  • Tateda K, Comte R, Pechere JC, Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2001;45(6):1930-3
  • Doern GV, Heilmann KP, Huynh HK, Antimicrobial resistance among clinical isolates of streptococcus pneumoniae in the United States during 1999–2000, including a comparison of resistance rates since 1994–1995. Antimicrob Agents Chemother 2001;45(6):1721-9
  • Richter S, Heilmann K, Coffman S, The molecular epidemiology of penicillin-resistant Streptococcus pneumoniae in the United States, 1994–2000. Clin Infect Dis 2002;34(3):330
  • Zhanel GG, Dueck M, Hoban DJ, Review of macrolides and ketolides: focus on respiratory tract infections. Drugs 2001;61(4):443-98
  • Hoban DJ, Zhanel GG. Clinical implications of macrolide resistance in community-acquired respiratory tract infections. Expert Rev Anti Infect Ther 2006;4(6):973-80
  • Felmingham D, Cantón R, Jenkins SG. Regional trends in beta-lactam, macrolide, fluoroquinolone and telithromycin resistance among Streptococcus pneumoniae isolates 2001–2004. J Infect 2007;55(2):111-18
  • Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 1995;39(3):577
  • Seppälä H, Skurnik M, Soini H, A novel erythromycin resistance methylase gene (ermTR) in Streptococcus pyogenes. Antimicrob Agents Chemother 1998;42(2):257-62
  • Farrell D, Morrissey I, Bakker S, Molecular characterization of macrolide resistance mechanisms among Streptococcus pneumoniae and Streptococcus pyogenes isolated from the PROTEKT 1999-2000 study. J Antimicrob Chemother 2002;50(Suppl 2):39-47
  • Bryskier A, Agouridas C, Chantot JF. Ketolide: novel antibacterial agent designed to overcome erythromycin A resistance. Infect Dis Ther 2000;23:79-102
  • Chu DTW. Chapter 13. Progress in macrolide and ketolide antibacterials. Annu Rep Med Chem 2000;35:145-55
  • Sorbera LA, Rabasseda X, Castaner J. ABT-773. Drugs Future 2000;25:445-53
  • Balfour JAB, Figgitt DP. Telithromycin. Drugs 2001;61:815-29
  • Dougherty TJ, Barrett JF. ABT-773. A new ketolide antibiotic. Expert Opin Investig Drugs 2001;10:343-51
  • Johnson AP. Telithromycin. aventis pharma. Curr Opin Investig Drugs 2001;2:1691-701
  • Lawrence LE. ABT-773 (Abbott Laboratories). Curr Opin Investig Drugs 2001;2:766-72
  • Yassin HM, Dever LL. Telithromycin: a new ketolide antimicrobial for treatment of respiratory tract infections. Expert Opin Investig Drugs 2001;10:353-67
  • Kaneko T, Romero K, Li B, Novel tethers in ketolide antibiotics. Bioorg Med Chem Lett 2007;17:5049-53
  • Hammerschlag MR, Sharma R. Use of cethromycin, a new ketolide, for treatment of community-acquired respiratory infections. Expert Opin Investig Drugs 2008;17:387-400
  • Marrie TJ. Novel uses of macrolides, azalides, streptogramins, and ketolides in treating emerging pathogens. Infect Dis Ther 2000;23:277-82
  • Mayer KH, Clumeck N. Use of the newer macrolide, azalide, streptogramin, and ketolide antibiotics for mycobacterial and other HIV-related diseases. Infect Dis Ther 2000;23:393-403
  • Mole L. Drug interactions with macrolides and related structures. Infect Dis Ther 2000;23:25-34
  • Moreillon P. Resistance to macrolides-lincosamides-streptogramins and ketolides in staphylococci and streptococci, and new therapeutic strategies. Infect Dis Ther 2000;23:197-207
  • Doucet-Populaire F, Buriankova K, Weiser J, Natural and acquired macrolide resistance in mycobacteria. Curr Drug Targets Infect Disord 2002;2:355-70
  • Brown SD. Benefit-risk assessment of telithromycin in the treatment of community-acquired pneumonia. Drug Saf 2008;31(7):561-75
  • Jabes D. The antibiotic R&D pipeline: an update. Curr Opin Microbiol 2011;14:564-9
  • Sutcliffe JA. Antibiotics in development targeting protein synthesis. Ann NY Acad Sci 2011;1241(1):122-52
  • Bush K, Pucci MJ. New antimicrobial agents on the horizon. Biochem Pharmacol 2011;82:1528-39
  • Zhanel GG, Hisanaga T, Nichol K, Ketolides: an emerging treatment for macrolide-resistant respiratory infections, focusing on S. pneumoniae. Expert Opin Emerg Drugs 2003;8:297-321
  • Bermudez LE, Yamazaki Y. Effects of macrolides and ketolides on mycobacterial infections. Curr Pharm Des 2004;10:3221-8
  • Owens RC Jr. QT prolongation with antimicrobial agents: understanding the significance. Drugs 2004;64:1091-124
  • Wellington K, Noble S. Telithromycin. Drugs 2004;64:1683-94
  • Alekshun MN. New advances in antibiotic development and discovery. Expert Opin Investig Drugs 2005;14(2):117-34
  • Jain S, Bishai W, Nightingale CH. Macrolide, azalide, and ketolides. Infect Dis Ther 2007;44:217-30
  • Davis S. Macrolides and ketolides: more than just antimicrobials. SA Pharm J 2011;78(6):24-7
  • Fernandes P, Pereira D, Jamieson B, Solithromycin: macrolide antibiotic. Drugs Future 2011;36:751-8
  • McCoy LS, Xie Y, Tor Y. Antibiotics that target protein synthesis. Wiley Interdiscip Rev RNA 2011;2(2):209-32
  • Pal S. A journey across the sequential development of macrolides and ketolides related to erythromycin. Tetrahedron 2006;62(14):3171-200
  • Mutak S. Azalides from azithromycin to new azalide derivatives. J Antibiot (Tokyo) 2007;60(2):85-122
  • Fajdetic A, Cipcic PH, Lazarevski G, 4′′-O-(omega-Quinolylamino-alkylamino)propionyl derivatives of selected macrolides with the activity against the key erythromycin resistant respiratory pathogens. Bioorg Med Chem 2010;18:6559-68
  • Zhu B, Marinelli BA, Abbanat D, Synthesis and antibacterial activity of 3-keto-6-O-carbamoyl-11,12-cyclic thiocarbamate erythromycin A derivatives. Bioorg Med Chem Lett 2007;17(14):3900-4
  • Grant EB, Guiadeen D, Abbanat D, Synthesis and antibacterial activity of 6-O-heteroaryl-carbamoyl-11,12-lacto-ketolides. Bioorg Med Chem Lett 2006;16:1929-33
  • Tennakoon MA, Henninger TC, Abbanat D, Synthesis and antibacterial activity of C6-carbazate ketolides. Bioorg Med Chem Lett 2006;16:6231-5
  • Henninger TC, Xu X, Abbanat D, Synthesis and antibacterial activity of C-6 carbamate ketolides, a novel series of orally active ketolide antibiotics. Bioorg Med Chem Lett 2004;14:4495-9
  • Xu X, Henninger T, Abbanat D, Synthesis and antibacterial activity of C2-fluoro, C6-carbamate ketolides, and their C9-oximes. Bioorg Med Chem Lett 2005;15:883-7
  • Beebe X, Yang F, Bui MH, Synthesis and antibacterial activity of 6-O-arylpropargyl-9-oxime-11,12-carbamate ketolides. Bioorg Med Chem Lett 2004;14:2417-21
  • Yong H, Gui GY, Clark RF, Design, synthesis and structure-activity relationships of 6-O-arylpropargyl diazalides with potent activity against multidrug-resistant Streptococcus pneumoniae. Bioorg Med Chem Lett 2005;15:2653-8
  • Nomura T, Iwaki T, Yasukata T, A new type of ketolides bearing an N-aryl-alkyl acetamide moiety at the C-9 imino ether synthesis and structure-activity relationships. Bioorg Med Chem 2005;13:6615-28
  • Nomura T, Iwaki T, Narukawa Y, A new type of ketolide bearing an N-aryl-alkyl acetamide moiety at the C-9 iminoether: synthesis and structure-activity relationships. Bioorg Med Chem 2006;14:3697-711
  • Burger MT, Hiebert C, Seid M, Synthesis and antibacterial activity of novel C12 ethyl ketolides. Bioorg Med Chem 2006;14:5592-604
  • Burger MT, Lin X, Chu DT, Synthesis and antibacterial activity of novel C12 vinyl ketolides. J Med Chem 2006;49:1730-43
  • Lin X, Rico AC, Chu DT, Synthesis and antibacterial activity of C12 des-methyl ketolides. Bioorg Med Chem Lett 2006;16:4692-6
  • Magee TV, Ripp SL, Li B, Discovery of azetidinyl ketolides for the treatment of susceptible and multidrug resistant community-acquired respiratory tract infections. J Med Chem 2009;52:7446-57
  • Hu L, Lan P, Song Q-L, Synthesis and antibacterial activity of C-12 pyrazolinyl spiro ketolides. Eur J Med Chem 2010;45:5943-9
  • Song Q-L, Guo B-Q, Zhang W, Design, synthesis and antibacterial activity of novel ketolides bearing an aryltetrazolyl-substituted alkyl side chain. J Antibiot 2011;64:571-81
  • Shaw SJ, Ashley GW, Burlingame MA. 7-Quinolyl ketolide antibacterial agents. US7595300; 2009
  • Alihodzic S, Fajdetic A, Kobrehel G, Synthesis and antibacterial activity of isomeric 15-membered azalides. J Antibiot 2006;59:753-69
  • Pavlovic D, Fajdetic A, Mutak S. Novel hybrids of 15-membered 8a- and 9a-azahomoerythromycin A ketolides and quinolones as potent antibacterials. Bioorg Med Chem 2010;18:8566-82
  • Pavlovic D, Mutak S. Synthesis and structure-activity relationships of novel 8a-aza-8a-homoerythromycin a ketolides. J Med Chem 2010;53:5868-80
  • Putnam SD, Castanheira M, Moet GJ, CEM-101, a novel fluoroketolide: antimicrobial activity against a diverse collection of Gram-positive and Gram-negative bacteria. Diagn Microbiol Infect Dis 2010;66(4):393-401
  • Roblin PM, Kohlhoff SA, Parker C, In vitro activity of CEM-101, a new fluoroketolide antibiotic, against Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae. Antimicrob Agents Chemother 2010;54(3):1358-9
  • Xu G, Tang D, Gai Y, An efficient large-scale synthesis of EDP-420, a first-in-class bridged bicyclic macrolide (BBM) antibiotic drug candidate. Organ Process Res Dev 2010;14(3):504-10
  • Kouvela EC, Kalpaxis DL, Wilson DN, Distinct mode of interaction of a novel ketolide antibiotic that displays enhanced antimicrobial activity. Antimicrob Agents Chemother 2009;53:1411-19
  • Song Q-L, Sun P-H, Chen W-M. Exploring 3D-QSAR for ketolide derivatives as antibacterial agents using CoMFA and CoMSIA. Lett Drug Des Discov 2010;7:149-59
  • Zou L, Chen Y, You Q, 2D-QSAR and HQSAR study on quantitative structure-activity relationship of 6-O-aryl ketolides derivatives. Zhongguo Yaoke Daxue Xuebao 2010;41:208-15
  • Vilar S, Cozza G, Moro S. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr Top Med Chem 2008;8(18):1555-72
  • Dean P, Lloyd D, Todorov N. De novo drug design: integration of structure-based and ligand-based methods. Curr Opin Drug Discov Dev 2004;7(3):347-53
  • Cavasotto CN, Orry W, Andrew J. Ligand docking and structure-based virtual screening in drug discovery. Curr Top Med Chem 2007;7(10):1006-14
  • Roy K, Ojha PK. Advances in quantitative structure activity relationship models of antimalarials. Expert Opin Drug Discov 2010;5(8):751-78
  • Cavasotto CN, Phatak SS. Homology modeling in drug discovery: current trends and applications. Drug Discov Today 2009;14(13):676-83
  • Prado-Prado FJ, Uriarte E, Borges F, Multi-target spectral moments for QSAR and complex networks study of antibacterial drugs. Eur J Med Chem 2009;44(11):4516-21
  • Li X, Ye L, Wang X, Combined 3D-QSAR, molecular docking and molecular dynamics study on thyroid hormone activity of hydroxylated polybrominated diphenyl ethers to thyroid receptors beta. Toxicol Appl Pharmacol 2012;265(3):300-7
  • Prado-Prado FJ, Ubeira FM, Borges F, Unified QSAR & network-based computational chemistry approach to antimicrobials. II. Multiple distance and triadic census analysis of antiparasitic drugs complex networks. J Comput Chem 2010;31(1):164-73
  • Verma J, Khedkar VM, Coutinho EC. 3D-QSAR in drug design-a review. Curr Top Med Chem 2010;10(1):95-115
  • Cramer RD III, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 1988;110(18):5959-67
  • Clark M, Cramer RD III, Jones DM, Comparative molecular field analysis (CoMFA). 2. Toward its use with 3D-structural databases. Tetrahedron Comput Methodol 1990;3(1):47-59
  • Böhm M, Stürzebecher J, Klebe G. Three-dimensional quantitative structure-activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa. J Med Chem 1999;42(3):458-77
  • Lan P, Chen WN, Xiao GK, 3D-QSAR and docking studies on pyrazolo 4,3-H qinazoline-3-carboxamides as cyclin-dependent kinase 2 (CDK2) inhibitors. Bioorg Med Chem Lett 2010;20(22):6764-72
  • Lan P, Xie MQ, Yao YM, 3D-QSAR studies and molecular docking on [5-(4-amino-1H-benzoimidazol-2-yl)-furan-2-yl]-phosphonic acid derivatives as fructose-1,6-biphophatase inhibitors. J Comput Aided Mol Des 2010;24(12):993-1008
  • Zeng HH, Zhang HB. Combined 3D-QSAR modeling and molecular docking study on 1,4-dihydroindeno 1,2-c pyrazoles as VEGFR-2 kinase inhibitors. J Mol Graph 2010;29(1):54-71
  • Prado-Prado F, García-Mera X, Escobar M, 3D MI-DRAGON: new model for the reconstruction of US FDA drug-target network and theoretical-experimental studies of inhibitors of rasagiline derivatives for AChE. Curr Top Med Chem 2012;12(16):1843-65
  • Riera-Fernández P, Martín-Romalde R, Prado-Prado FJ, From QSAR models of drugs to complex networks: state-of-art review and introduction of new Markov-spectral moments indices. Curr Top Med Chem 2012;12(8):927-60
  • Prado-Prado F, García-Mera X, Escobar M, 2D MI-DRAGON: a new predictor for protein-ligands interactions and theoretic-experimental studies of US FDA drug-target network, oxoisoaporphine inhibitors for MAO-A and human parasite proteins. Eur J Med Chem 2011;46(12):5838-51
  • González-Díaz H, Prado-Prado F, Ubeira FM. Predicting antimicrobial drugs and targets with the MARCH-INSIDE approach. Curr Top Med Chem 2008;8(18):1676-90
  • SYBYL 8.1, Tripos Inc., St. Louis, MO, USA
  • Wold S, Ruhe A, Wold H, The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J Sci Stat Comp 1984;5:735-43
  • Ojha PK, Mitra I, Das RN, Further exploring rm2 metrics for validation of QSPR models. Chemom Intell Lab Syst 2011;107(1):194-205
  • Roy K, Mitra I, Kar S, Comparative Studies on Some Metrics for External Validation of QSPR Models. J Chem Inf Model 2011;52(2):396-408
  • Available from: http://203.200.173.43:8080/rmsquare/
  • Heggelund A, Undheim K. Preparation of cyclic 2′,3′-carbamate derivatives of erythromycin macrolide antibiotics. Bioorg Med Chem 2007;15:3266-77
  • LeTourneau N, Vimal P, Klepacki D, Synthesis and antibacterial activity of desosamine-modified macrolide derivatives. Bioorg Med Chem Lett 2012;22:4575-8
  • Kubinyi H. QSAR and 3D QSAR in drug design Part 1: methodology. Drug Discov Today 1997;2(11):457-67
  • Kubinyi H. QSAR and 3D QSAR in drug design Part 2: applications and problems. Drug Discov Today 1997;2(12):538-46
  • Chung JY, Chung HW, Cho SJ, QM/MM based 3D QSAR models for potent B-Raf inhibitors. J Comput Aided Mol Des 2010;24(5):385-97
  • Gupta P, Roy N, Garg P. Docking-based 3D-QSAR study of HIV-1 integrase inhibitors. Eur J Med Chem 2009;44(11):4276-87
  • Weber KC, Salum LB, Honório KM, Pharmacophore-based 3D QSAR studies on a series of high affinity 5-HT1A receptor ligands. Eur J Med Chem 2010;45(4):1508-14
  • Tu D, Blaha G, Moore PB, Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 2005;121(2):257-70
  • Golbraikh A, Tropsha A. Beware of q2!. J Mol Graph Model 2002;20(4):269-76
  • Berisio R, Corti N, Pfister P, 23S rRNA 2058A→G alteration mediates ketolide resistance in combination with deletion in L22. Antimicrob Agents Chemother 2006;50:3816-23
  • Dunkle JA, Xiong L, Mankin AS, Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc Natl Acad Sci USA 2010;107:17152-7; S/1-S/3
  • Velvadapu V, Paul T, Wagh B, Desmethyl macrolides: synthesis and evaluation of 4,8,10-tridesmethyl telithromycin. ACS Med Chem Lett 2011;2(1):68-72
  • Velvadapu V, Glassford I, Lee M, Desmethyl macrolides: synthesis and evaluation of 4,10-didesmethyl telithromycin. ACS Med Chem Lett 2012;3:211-15
  • Mwakwari SC, Guerrant W, Patil V, Non-peptide macrocyclic histone deacetylase inhibitors derived from tricyclic ketolide skeleton. J Med Chem 2010;53:6100-11
  • Zhang J, Pan X, Wang C, Pharmacophore modeling, 3D-QSAR Studies, and in-silico ADME prediction of pyrrolidine derivatives as neuraminidase inhibitors. Chem Biol Drug Des 2012;79(3):353-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.