1,115
Views
52
CrossRef citations to date
0
Altmetric
Reviews

Developing new antibacterials through natural product research

, PhD
Pages 479-493 | Published online: 12 Mar 2013

Bibliography

  • Bérdy J. Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 2012;65:385-95
  • Freire-Moran L, Aronsson B, Manz C, ECDC-EMA working group. Critical shortage of new antibiotics in development against multi-resistant bacteria-time to react is now. Drug Resist Updat 2011;14:118-24
  • Boucher HW, Talbot GH, Bradley JS, Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 2009;48:1-12
  • Kirst HA. Antibiotics versus resistant bacteria: a continual challenge. Expert Opin Ther Patents 2010;20:1271-2
  • Bush K, editor. Antimicrobial therapeutic reviews - antibiotics that target the ribosome. Ann NY Acad Sci 2011;1241:1-161
  • Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010;74:417-33
  • Kneller R. The importance of new companies for drug discovery: origins of a decade of new drugs. Nat Rev Drug Discov 2010;9:867-82
  • Knutsen LJS. Drug discovery management, small is still beautiful: why a number of companies get it wrong. Drug Discov Today 2011;16:476-84
  • Butler MS, Cooper MA. Antibiotics in the clinical pipeline in 2011. J Antibiot 2011;64:413-25
  • Donadio S, Maffioli S, Monciardini P, Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot 2010;63:423-30
  • Bush K, Pucci MJ. New antimicrobial agents on the horizon. Biochem Pharmacol 2011;82:1528-39
  • Sutcliffe JA. Antibiotics in development targeting protein synthesis. Ann NY Acad Sci 2011;1241:122-52
  • Coates ARM, Halls G, Hu Y. Novel classes of antibiotics or more of the same? Br J Pharmacol 2011;163:184-94
  • Fischbach MA, Walsh CT. Antibiotics for emerging pathogens. Science 2009;325:1089-93
  • Ledford H. FDA under pressure to relax drug rules. Nature 2012;492:19
  • Cooper MA, Shlaes D. Fix the antibiotic pipeline. Nature 2011;472:32
  • Bronson J, Dhar M, Ewing W, Lonberg N. Fidaxomicin (antibacterial). Annu Rep Med Chem 2012;47:531-3
  • Hochlowski JE, Swanson SJ, Ranfranz LM, Tiacumicins, a novel complex of 18-membered macrolide antibiotics. II. Isolation and structure determination. J Antibiot 1987;40:575-88
  • Pulcini C, Bush K, Craig WA, Forgotten antibiotics: an inventory in Europe, the United States, Canada, and Australia. Clin Infect Dis 2012;54:268-74
  • Corey GR, Moellering R, Grayson ML. Fusidic acid enters the United States. Clin Infect Dis 2011;52(Suppl 7):S467-546
  • Debono M, Barnhart M, Carrell CB, A21978C, a complex of new acidic peptide antibiotics: isolation, chemistry, and mass spectral structure elucidation. J Antibiot 1987;40:761-77
  • Eisenstein BI, Oleson FB Jr, Baltz RH. Daptomycin: from the mountain to the clinic, with essential help from Francis Tally, MD. Clin Infect Dis 2010;50:S10-15
  • Molinari G. Natural products in drug discovery: present status and perspectives. Adv Exp Med Biol 2009;655:13-27
  • Nicolaou KC, Chen JS, Edmonds DJ, Estrada AA. Recent advances in the chemistry and biology of naturally occurring antibiotics. Angew Chem Int Ed 2009;48:660-719
  • Wagman AS, Wentland MP. Quinolone antibacterial agents. In: Taylor JB, Triggle DJ, editors. Comprehensive medicinal chemistry II. Volume 7 Elsevier; 2007. p. 567-96
  • Shaw KJ, Barbachyn MR. The oxazolidinones: past, present, and future. Ann NY Acad Sci 2011;1241:48-70
  • Novak R. Are pleuromutilin antibiotics finally fit for human use? Ann NY Acad Sci 2011;1241:71-81
  • Novak R, Shlaes DM. The pleuromutilin antibiotics: a new class for human use. Curr Opin Investig Drugs 2010;11:182-91
  • Martens E, Demain AL. Platensimycin and platencin: promising antibiotics for future application in human medicine. J Antibiot 2011;64:705-10
  • Bush K. Improving known classes of antibiotics: an optimistic approach for the future. Curr Opin Pharmacol 2012;12:527-34
  • Bassetti M, Ginocchio F, Mikulska M, Will new antimicrobials overcome resistance among Gram-negatives? Expert Rev Anti Infect Ther 2011;9:909-22
  • Kirst HA. Recent derivatives from smaller classes of fermentation-derived antibacterials. Expert Opin Ther Patents 2012;22:15-35
  • Sader HS, Biedenbach DJ, Paukner S, Antimicrobial activity of the investigational pleuromutilin compound BC-3781 tested against gram-positive organisms commonly associated with acute bacterial skin and skin structure infections. Antimicrob Agents Chemother 2012;56:1619-23
  • Available from: http://www.nabriva.com/news-publications/news/15092011
  • Tang YZ, Liu YH, Chen JX. Pleuromutilin and its derivatives – the lead compounds for novel antibiotics. Mini Rev Med Chem 2012;12:53-61
  • Wang X, Ling Y, Wang H, Novel pleuromutilin derivatives as antibacterial agents: synthesis, biological evaluation and molecular docking studies. Bioorg Med Chem Lett 2012;22:6166-72
  • Ling Y, Wang X, Wang H, Design, synthesis, and antibacterial activity of novel pleuromutilin derivatives bearing an amino thiazolyl ring. Arch Pharm 2012;345:638-46
  • Dreier I, Kumar S, Sondergaard H, A click chemistry approach to pleuromutilin derivatives, part 2. J Med Chem 2012;55:2067-77
  • Wang H, Andemichael YW, Vogt FG. A scalable synthesis of 2S-hydroxymutilin via a modified Rubottom oxidation. J Org Chem 2009;74:478-81
  • Liu J, Lotesta SD, Sorensen EJ. A concise synthesis of the molecular framework of pleuromutilin. Chem Commun 2011;47:1500-2
  • Lotesta SD, Liu J, Yates EV, Expanding the pleuromutilin class of antibiotics by de novo chemical synthesis. Chem Sci 2011;2:1258-61
  • Findley TJ, Sucunza D, Miller LC, A stereoselective, Sm(II)-mediated approach to decorated cis-hydrindanes: synthetic studies on faurinone and pleuromutilin. Org Biomol Chem 2011;9:2433-51
  • Kilaru S, Collins CM, Hartley AJ, Establishing molecular tools for genetic manipulation of the pleuromutilin-producing fungus Clitopilus passeckerianus. Appl Environ Microbiol 2009;75:7196-204
  • Baltz RH. Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synth Biol 2012; DOI: 10.1021/sb300055e
  • Baltz RH. Biosynthesis and genetic engineering of lipopeptides in Streptomyces roseosporus. Methods Enzymol 2009;458:511-31
  • Available from: http://www.cubist.com
  • Mascio CTM, Morton LI, Howland KT, In vitro and in vivo characterization of CB-183,315, a novel lipopeptide antibiotic for treatment of Clostridium difficile. Antimicrob Agents Chemother 2012;56:5023-30
  • Hamamoto H, Paudel A, Urai M, Mechanistic analysis of novel antibiotics kaikosins. 51st Intersci Conf Antimicrob Agents Chemother; Chicago, IL; 2011. p. F1-751a
  • Hirosawa S, Hashizume H, Kobayashi Y, In vitro antimicrobial activity and in vivo efficacy in a mouse staphylococcal-septicemia model of water-soluble tripropeptin C analogs. 52nd Intersci Conf Antimicrob Agents Chemother; San Francisco, CA; 2012. p. F-1509
  • Ding R, Wu XC, Qian CD, Isolation and identification of lipopeptide antibiotics from Paenibacillus elgii B69 with inhibitory activity against methicillin-resistant Staphylococcus aureus. J Microbiol 2011;49:942-9
  • Vaara M. Polymyxins and their novel derivatives. Curr Opin Microbiol 2010;13:574-81
  • Velkov T, Thompson PE, Nation RL, Li J. Structure-activity relationships of polymyxin antibiotics. J Med Chem 2010;53:1898-916
  • Mingeot-Leclercq MP, Tulkens PM, Denamur S, Novel polymyxin derivatives are less cytotoxic than polymyxin B to renal proximal tubular cells. Peptides 2012;35:248-52
  • Quale J, Shah N, Kelly P, Activity of polymyxin B and the novel polymyxin analogue CB-182-804 against contemporary Gram-negative pathogens in New York City. Microb Drug Resist 2012;18:132-6
  • Qian CD, Wu XC, Teng Y, Battacin (octapeptin B5), a new cyclic lipopeptide antibiotic from Paenibacillus tianmuensis active against multidrug-resistant Gram-negative bacteria. Antimicrob Agents Chemother 2012;56:1458-65
  • Shaheen M, Li J, Ross AC, Paenibacillus polymyxa PKB1 produces variants of polymyxin B-type antibiotics. Chem Biol 2011;18:1640-8
  • Deng Y, Lu Z, Bi H, Isolation and characterization of peptide antibiotics LI-F04 and polymyxin B6 produced by Paenibacillus polymyxa strain JSa-9. Peptides 2011;32:1917-23
  • Febbraro S, Hancock A, Boyd A, Dawson MJ. A phase I, double-blind, randomised, placebo-controlled, dose escalating study to assess the safety, tolerability, and pharmacokinetics of single and multiple doses of NVB302 administered orally to healthy volunteers. 52nd Intersci Conf Antimicrob Agents Chemother; San Francisco, CA; 2012. p. F-1540c
  • Trzasko A, Leeds JA, Praestgaard J, Efficacy of LFF571 in a hamster model of Clostridium difficile infection. Antimicrob Agents Chemother 2012;56:4459-62
  • Leeds JA, LaMarche MJ, Brewer JT, In vitro and in vivo activities of novel, semisynthetic thiopeptide inhibitors of bacterial elongation factor Tu. Antimicrob Agents Chemother 2011;55:5277-83
  • Zou Y, Liu Q, Deiters A. Synthesis of the pyridine core of cyclothiazomycin. Org Lett 2011;13:4352-5
  • Aulakh VS, Ciufolini MA. Total synthesis and complete structural assignment of thiocillin I. J Am Chem Soc 2011;133:5900-4
  • Mahajan G, Mishra PD, Sonawane S, PM181108A, A novel antibacterial compound from Streptomycetes sp. isolated from Antarctic soil. 51st Intersci Conf Antimicrob Agents Chemother; Chicago, IL; 2011; p. F1-157a
  • Zhang F, Kelly WL. In vivo production of thiopeptide variants. Methods Enzymol 2012;516:3-24
  • Al-Mahrous MM, Upton M. Discovery and development of lantibiotics: antimicrobial agents that have significant potential for medical application. Expert Opin Drug Discov 2011;6:155-70
  • Ross AC, Vederas JC. Fundamental functionality: recent developments in understanding the structure-activity relationships of lantibiotic peptides. J Antibiot 2011;64:27-34
  • Jabes D, Donadio S. Strategies for the isolation and characterization of antibacterial lantibiotics. In: Giuliani A, Rinaldi AC, editors. Antimicrobial peptides, methods in molecular biology 618. Humana Press; New York, NY: 2010. p. 31-45
  • Montalban-Lopez M, Zhou L, Buivydas A, Increasing the success rate of lantibiotic drug discovery by synthetic biology. Expert Opin Drug Discov 2012;7:695-709
  • Knerr PJ, van der Donk WA. Discovery, biosynthesis, and engineering of lantipeptides. Annu Rev Biochem 2012;81:479-505
  • Jabes D, Candiani G, Romano G, NAI-107: superior efficacy in animal models of MDR Gram positive infections. 49th Intersci Conf Antimicrob Agents Chemother; San Francisco, CA; 2009. p. F1-1503
  • Dawson MJ, Scott RW. New horizons for host defense peptides and lantibiotics. Curr Opin Pharmacol 2012;12:545-50
  • Hammami R, Fernandez B, Lacroix C, Fliss I. Anti-infective properties of bacteriocins: an update. Cell Mol Life Sci 2012; DOI: 10.1007/s00018-012-1202-3
  • Quinn RJ, Carroll AR, Pham NB, Developing a drug-like natural product library. J Nat Prod 2008;71:464-8
  • Vasilevich NI, Kombarov RV, Genis GV, Kirpichenok MA. Lessons from natural products chemistry can offer novel approaches for synthetic chemistry in drug discovery. J Med Chem 2012;55:7003-9
  • Ganesan A. The impact of natural products upon modern drug discovery. Curr Opin Chem Biol 2008;12:306-17
  • Stepanic V, Kostrun S, Mainar I, Modeling cellular pharmacokinetics of 14- and 15-membered macrolides with physico-chemical properties. J Med Chem 2011;54:719-33
  • O'Shea R, Moser HE. Physicochemical properties of antibacterial compounds: implications for drug discovery. J Med Chem 2008;51:2871-8
  • Arnott JA, Planey SL. The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov 2012;7:863-75
  • Waring MJ. Lipophilicity in drug discovery. Expert Opin Drug Discov 2010;5:235-48
  • Kirst HA. Expanding the role of macrolide compounds as therapeutic agents. Chapter 1. In: Choudhary MI, editor. Progress in Medicinal Chemistry. Volume 1 Studies in Medicinal Chemistry. Harwood Academic Publishers; Amsterdam, The Netherlands: 1996. p. 1-47
  • Lachance H, Wetzel S, Kumar K, Waldmann H. Charting, navigating, and populating natural product chemical space for drug discovery. J Med Chem 2012;55:5989-6001
  • Camp D, Davis RA, Campitelli M, Drug-like properties: guiding principles for the design of natural product libraries. J Nat Prod 2012;75:72-81
  • Gualtieri M, Baneres-Roquet F, Villain-Guillot P, The antibiotics in chemical space. Curr Med Chem 2009;16:390-3
  • Rosen J, Gottfries J, Muresan S, Novel chemical space exploration via natural products. J Med Chem 2009;52:1953-62
  • Over B, Wetzel S, Grutter C, Natural-product-derived fragments for fragment-based ligand discovery. Nat Chem 2013;5:21-8
  • Genis D, Kirpichenok M, Kombarov R. A minimalist fragment approach for the design of natural-product-like synthetic scaffolds. Drug Discov Today 2012;17:1170-4
  • Agarwal AK, Fishwick CWG. Structure-based design of anti-infectives. Ann NY Acad Sci 2010;1213:20-45
  • Finn J. Application of SBDD to the discovery of new antibacterial drugs. Methods Mol Biol 2012;841:291-319
  • Wilson DN. On the specificity of antibiotics targeting the large ribosomal subunit. Ann NY Acad Sci 2011;1241:1-16
  • Dunkle JA, Xiong L, Mankin AS, Cate JHD. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc Nat Acad Sci USA 2010;107:17152-7
  • McCoy LS, Xie Y, Tor Y. Antibiotics that target protein synthesis. WIREs RNA 2011;2:209-32
  • Trylska J. Simulating activity of the bacterial ribosome. Q Rev Biophys 2009;42:301-16
  • Steitz TA, Moore PB, Sutcliffe JA, Ribosome structure and protein synthesis inhibitors. US7666849; 2010
  • Kanyo Z, Devivo M, Bhattacharjee A, Structural basis for the binding of RX-04, a novel broad spectrum antibacterial class, to bacterial ribosomes. 51st Intersci Conf Antimicrob Agents Chemother; Chicago, IL; 2011. p. F1-1842
  • Available from: http://www.rib-x.com
  • Bush K, Macielag MJ. New β-lactam antibiotics and β-lactamase inhibitors. Expert Opin Ther Patents 2010;20:1277-93
  • Nelson ML, Levy SB. The history of the tetracyclines. Annals NY Acad Sci 2011;1241:17-32
  • Grossman TH, Starosta AL, Fyfe C, Target- and resistance-based mechanistic studies with TP-434, a novel fluorocycline antibiotic. Antimicrob Agents Chemother 2012;56:2559-64
  • Available from: http://tphase.com
  • Bortolon E, Molstad D, DelGorge C, Novel ribosome inhibitors are efficacious in a murine respiratory tract infection model caused by Streptococcus pneumoniae. 52st Intersci Conf Antimicrob Agents Chemother; San Francisco, CA; 2012. p. F-1523
  • Chen DZ, Patel DV, Hackbarth CJ. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 2000;39:1256-62
  • Suckling CJ, Breen D, Khalaf AI, Antimicrobial lexitropsins containing amide, amidine, and alkene linking groups. J Med Chem 2007;50:6116-25
  • Ravic M, Suckling C, Hunter I, Disposition of MGB-BP-3, a new class of antibacterial agent, after oral administration in a hamster model of severe Clostridium difficile associated diarrhoea (CDAD). 52st Intersci Conf Antimicrob Agents Chemother; San Francisco, CA; 2012. p. F-1530
  • Yang K, Fang H, Gong J, An overview of highly optically pure chloramphenicol bases: applications and modifications. Mini Rev Med Chem 2009;9:1329-41
  • Kirst HA, Szymanski EF, Dorman DE, Structure of althiomycin. J Antibiot 1975;28:286-91
  • Zarantonello P, Leslie CP, Ferritto R, Kazmiereski M. Total synthesis and semi-synthetic approaches to analogues of antibacterial natural product althiomycin. Bioorg Med Chem Lett 2002;12:561-5
  • Kirst HA, Dorman DE, Occolowitz JL, The structure of A201A, a novel nucleoside antibiotic. J Antibiot 1985;38:575-86
  • Hecker SJ, Lilley SC, Minich ML, Werner KM. Application of hygromycin A structure activity relationships to the antibiotic area. Bioorg Med Chem Lett 1993;3:295-8
  • Brogden NK, Brogden KA. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 2011;38:217-25
  • Fjell CD, Hiss JA, Hancock RE, Schneider G. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 2012;11:37-51
  • Baltz RH, Seno ET. Genetics of Streptomyces fradiae and tylosin biosynthesis. Ann Rep Microbiol 1988;42:547-74
  • Wong FT, Khosla C. Combinatorial biosynthesis of polyketides—a perspective. Curr Opin Chem Biol 2012;16:117-23
  • Nikolouli K, Mossialos D. Bioactive compounds synthesized by non-ribosomal peptide synthetases and type-1 polyketide synthases discovered through genome-mining and metagenomics. Biotech Lett 2012;34:1393-403
  • Meier JL, Burkart MD. The chemical biology of modular biosynthetic enzymes. Chem Soc Rev 2009;38:2012-45
  • Jenke-Kodama H, Dittmann E. Bioinformatic perspectives on NRPS/PKS megasynthases: advances and challenges. Nat Prod Rep 2009;26:874-83
  • Keasling JD, Mendoza A, Baran PS. A constructive debate. Nature 2012;492:188-9
  • Takano E, Bovenberg RAL, Breitling R. A turning point for natural product discovery – ESF-EMBO research conference: synthetic biology of antibiotic production. Mol Microbiol 2012;83:884-93
  • Bansal AK. Role of bioinformatics in the development of new antibacterial therapy. Expert Rev Anti Infect Ther 2008;6:51-65
  • Demain AL, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot 2009;62:5-16
  • Mahajan GB, Balachandran L. Antibacterial agents from actinomycetes – a review. Front Biosci 2012;4:240-53
  • Tiwari K, Gupta RK. Rare actinomycetes: a potential storehouse for novel antibiotics. Crit Rev Biotechnol 2012;32:108-32
  • Tiwari K, Gupta RK. Diversity and isolation of rare actinomycetes: an overview. Crit Rev Microbiol 2012; DOI: 10.3.3109/1040841X.2012.709819
  • Genilloud O, Gonzalez I, Salazar O, Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 2011;38:375-89
  • Baltz RH. Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 2008;8:557-63
  • Singh BK, Macdonald CA. Drug discovery from uncultivable microorganisms. Drug Discov Today 2010;15:792-9
  • Davies J. How to discover new antibiotics: harvesting the parvome. Curr Opin Chem Biol 2011;15:5-10
  • Piel J. Approaches to capturing and designing biologically active small molecules produced by uncultured microbes. Annu Rev Microbiol 2011;65:431-53
  • Tulp M, Boblin L. Rediscovery of known natural compounds: nuisance or goldmine? Bioorg Med Chem 2005;13:5274-82
  • Sarker SD, Nahar L. An introduction to natural products isolation. Methods Mol Biol 2012;864:1-25
  • Nielsen KF, Mansson M, Rank C, Dereplication of microbial natural products by LC-DAD-TOFMS. J Nat Prod 2011;74:2338-48
  • Roemer T, Xu D, Singh SB, Confronting the challenges of natural product-based antifungal discovery. Chem Biol 2011;18:148-64
  • Kirst HA. The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot 2010;63:101-11
  • Lage OM, Bondoso J. Bringing Planctomycetes into pure culture. Front Microbiol 2012;3(article 405):1-6
  • Monastersky R. Ancient fungi found in deep-sea mud. Nature 2012;492:163
  • Moir DT, Opperman TJ, Butler MM, Bowlin TL. New classes of antibiotics. Curr Opin Pharmacol 2012;12:535-44
  • Falconer SB, Brown ED. New screens and targets in antibacterial drug discovery. Curr Opin Microbiol 2009;12:497-504
  • Umland TC, Schultz LW, MacDonald U, In vivo-validated essential genes identified in Acinetobacter baumannii by using human ascites overlap poorly with essential genes detected on laboratory media. MBio 2012;3:e00113-12
  • Besnard J, Ruda GF, Setola V, Automated design of ligands to polypharmacological profiles. Nature 2012;492:215-20
  • Odendaal AY, Trader DJ, Carlson EE. Chemoselective enrichment for natural products discovery. Chem Sci 2011;2:760-4
  • Wong WR, Oliver AG, Linington RG. Development of antibiotic activity profile screening for the classification and discovery of natural product antibiotics. Chem Biol 2012;19:1483-95
  • Prakash Singh M. Rapid test for distinguishing membrane-active antibacterial agents. J Microbiol Methods 2006;67:125-30
  • Koehn FE. High impact technologies for natural products screening. Prog Drug Res 2008;65:175-210
  • Mitova MI, Murphy AC, Lang G, Evolving trends in the dereplication of natural product extracts. J Nat Prod 2008;71:1600-3
  • Banik JJ, Brady SF. Recent application of metagenomic approaches towards the discovery of antimicrobials and other bioactive small molecules. Curr Opin Microbiol 2010;13:603-9
  • Simon C, Daniel R. Metagenomic analyses: past and future trends. Appl Environ Microbiol 2011;77:1153-61
  • Ekkers DM, Cretoiu MS, Kielak AM, Elsas JD. The great screen anomaly—a new frontier in product discovery through functional metagenomics. Appl Microbiol Biotechnol 2012;93:1005-20
  • Zotchev SB, Sekurova ON, Katz L. Genome-based bioprospecting of microbes for new therapeutics. Curr Opin Biotechnol 2012;23:941-7
  • Scheffler RJ, Colmer S, Tynan H, Antimicrobials, drug discovery, and genome mining. Appl Microbiol Biotechnol 2013;97:969-78
  • Baltz RH. Function of MbtH homologs in nonribosomal peptide biosynthesis and applications in secondary metabolite discovery. J Ind Microbiol Biotechnol 2011;38:1747-60
  • Radulovic NS, Blagojevic PD, Stojanovic ZZ, Stojanovic NM. Antimicrobial plant metabolites: structural diversity and mechanism of action. Curr Med Chem 2012;20:932-52
  • Queiroz EF, Wolfender JL, Hostettmann K. Modern approaches in the search for new lead antiparasitic compounds from higher plants. Curr Drug Targets 2009;10:202-11
  • Jaiganesh R, Sampath Kumar NS. Marine bacterial sources of bioactive compounds. Adv Food Nutr Res 2012;65:389-408
  • Liu X, Ashforth E, Ren B, Bioprospecting microbial natural product libraries from the marine environment for drug discovery. J Antibiot 2010;63:415-22
  • Dobrindt U, Hacker J. Targeting virulence traits: potential strategies to combat extraintestinal pathogenic E. coli infections. Curr Opin Microbiol 2008;11:409-13
  • Klemm P, Vejborg RM, Hancock V. Prevention of bacterial adhesion. Appl Microbiol Biotechnol 2010;88:451-9
  • Cohen J. Non-antibiotic strategies for sepsis. Clin Microbiol Infect 2009;15:302-7
  • Kak V, Sundareshan V, Modi J, Khardori NM. Immunotherapies in infectious diseases. Med Clin North Am 2012;96:455-74
  • Ronald PC. Small protein-mediated quorum sensing in a gram-negative bacterium: novel targets for control of infectious diseases. Discov Med 2011;12:461-70
  • Kiedrowski MR, Horswill AR. New approaches for treating staphylococcal biofilm infections. Ann NY Acad Sci 2011;1241:104-21
  • Foley TL, Simeonov A. Targeting iron assimilation to develop new antibacterials. Expert Opin Drug Discov 2012;7:831-47
  • Kaiser D, Losick R. How and why bacteria talk to each other. Cell 1993;73:873-5
  • Romero D, Traxler MF, Lopez D, Kolter R. Antibiotics as signal molecules. Chem Rev 2011;111:5492-505
  • El-Halfawy OM, Valvano MA. Non-genetic mechanisms communicating antibiotic resistance: rethinking strategies for antimicrobial drug design. Expert Opin Drug Discov 2010;7:923-33
  • Planson A-G, Carbonell P, Grigoras I, Faulon J-L. Engineering antibiotic production and overcoming bacterial resistance. Biotechnol J 2011;6:812-25
  • Duncan MC, Linington RG, Auerbuch V. Chemical inhibitors of the type three secretion system disarming bacterial pathogens. Antimicrob Agents Chemother 2013;56:5433-41
  • Escaich S. Novel agents to inhibit microbial virulence and pathogenicity. Expert Opin Ther Patents 2010;20:1401-18
  • Demain AL. Antibiotics: natural products essential to human health. Med Res Rev 2009;29:821-42
  • Ōmura S. Microbial metabolites: 45 years of wandering, wondering and discovering. Tetrahedron 2011;67:6420-59
  • Genilloud O. Current challenges in the discovery of novel antibacterials from microbial natural products. Recent Patents Anti Infect Drug Discov 2012;7:189-204

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.