408
Views
109
CrossRef citations to date
0
Altmetric
Reviews

Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs

, PhD & , PharmD PhD
Pages 1117-1126 | Published online: 06 Jun 2013

Bibliography

  • Brown GD, Denning DW, Gow NA, et al. Hidden killers: human fungal infections. Sci Transl Med 2012;4(165):165rv13
  • Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007;20(1):133-63
  • Calderone RA. Candida and candidiasis. ASM Press, Washington; 2002
  • Lopez-Martinez R. Candidosis, a new challenge. Clin Dermatol 2010;28(2):178-84
  • Redding SW, Zellars RC, Kirkpatrick WR, et al. Epidemiology of oropharyngeal Candida colonization and infection in patients receiving radiation for head and neck cancer. J Clin Microbiol 1999;37(12):3896-900
  • Thompson GR III, Patel PK, Kirkpatrick WR, et al. Oropharyngeal candidiasis in the era of antiretroviral therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109(4):488-95
  • Fidel PL Jr. Vaginal candidiasis: review and role of local mucosal immunity. AIDS Patient Care STDS 1998;12(5):359-66
  • Edmond MB, Wallace SE, McClish DK, et al. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 1999;29(2):239-44
  • Gudlaugsson O, Gillespie S, Lee K, et al. Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis 2003;37(9):1172-7
  • Pappas PG, Kauffman CA, Andes D, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 2009;48(5):503-35
  • Pittet D, Li N, Woolson RF, et al. Microbiological factors influencing the outcome of nosocomial bloodstream infections: a 6-year validated, population-based model. Clin Infect Dis 1997;24(6):1068-78
  • Zaoutis TE, Argon J, Chu J, et al. The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis. Clin Infect Dis 2005;41(9):1232-9
  • Wilson LS, Reyes CM, Stolpman M, et al. The direct cost and incidence of systemic fungal infections. Value Health 2002;5(1):26-34
  • Ostrosky-Zeichner L, Casadevall A, Galgiani JN, et al. An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 2010;9(9):719-27
  • Odds FC, Brown AJ, Gow NA. Antifungal agents: mechanisms of action. Trends Microbiol 2003;11(6):272-9
  • Perea S, Lopez-Ribot JL, Kirkpatrick WR, et al. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 2001;45(10):2676-84
  • Kuhn DM, Ghannoum MA. Candida biofilms: antifungal resistance and emerging therapeutic options. Curr Opin Investig Drugs 2004;5(2):186-97
  • Ramage G, Vande Walle K, Wickes BL, et al. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 2001;45(9):2475-9
  • Hernandez S, Lopez-Ribot JL, Najvar LK, et al. Caspofungin resistance in Candida albicans: correlating clinical outcome with laboratory susceptibility testing of three isogenic isolates serially obtained from a patient with progressive Candida esophagitis. Antimicrob Agents Chemother 2004;48(4):1382-3
  • Wiederhold NP, Grabinski JL, Garcia-Effron G, et al. Pyrosequencing to detect mutations in FKS1 that confer reduced echinocandin susceptibility in Candida albicans. Antimicrob Agents Chemother 2008;52(11):4145-8
  • Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 2007;3(9):541-8
  • Gauwerky K, Borelli C, Korting HC. Targeting virulence: a new paradigm for antifungals. Drug Discov Today 2009;14(3-4):214-22
  • Casadevall A, Pirofski LA. The damage-response framework of microbial pathogenesis. Nat Rev Microbiol 2003;1(1):17-24
  • Casadevall A, Pirofski LA. Microbial virulence results from the interaction between host and microorganism. Trends Microbiol 2003;11(4):157-8; author reply 58-9
  • Casadevall A, Pirofski L. Host-pathogen interactions: the attributes of virulence. J Infect Dis 2001;184(3):337-44; Epub 2001 Jun 27
  • Casadevall A, Pirofski LA. Host-pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. Infect Immun 2000;68(12):6511-18
  • Casadevall A, Pirofski LA. What is a pathogen? Ann Med 2002;34(1):2-4
  • Calderone RA, Cihlar RL. Fungal pathogenesis. Principles and Clinical Applications. Marcel Decker, New York; 2002
  • Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol 2001;9(7):327-35
  • Davis D. Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr Genet 2003;44(1):1-7; Epub 2003 Jun 18
  • Soll DR. Candida commensalism and virulence: the evolution of phenotypic plasticity. Acta Trop 2002;81(2):101-10
  • Chaffin WL, Lopez-Ribot JL, Casanova M, et al. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 1998;62(1):130-80
  • Cutler JE. Putative virulence factors of Candida albicans. Annu Rev Microbiol 1991;45:187-218
  • Odds FC, Gow NA, Brown AJ. Fungal virulence studies come of age. Genome Biol 2001;2:1009.1-4
  • Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Microbiol 2011;9(10):737-48
  • Banerjee M, Thompson DS, Lazzell A, et al. UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol Biol Cell 2008;19(4):1354-65
  • Braun BR, Johnson AD. Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 1997;277(5322):105-9
  • Braun BR, Johnson AD. TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 2000;155(1):57-67
  • Braun BR, Kadosh D, Johnson AD. NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction. Embo J 2001;20(17):4753-61
  • Carlisle PL, Banerjee M, Lazzell A, et al. Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. Proc Natl Acad Sci USA 2009;106(2):599-604
  • Ernst JF. Transcription factors in Candida albicans - environmental control of morphogenesis. Microbiology 2000;146(Pt 8):1763-74
  • Murad AM, Leng P, Straffon M, et al. NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. Embo J 2001;20(17):4742-52
  • Saville SP, Lazzell AL, Monteagudo C, et al. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2003;2(5):1053-60
  • Zheng X, Wang Y. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. Embo J 2004;23(8):1845-56
  • MacCallum DM, Odds FC. Temporal events in the intravenous challenge model for experimental Candida albicans infections in female mice. Mycoses 2005;48(3):151-61
  • Phan QT, Belanger PH, Filler SG. Role of hyphal formation in interactions of Candida albicans with endothelial cells. Infect Immun 2000;68(6):3485-90
  • Lo HJ, Kohler JR, DiDomenico B, et al. Nonfilamentous C. albicans mutants are avirulent. Cell 1997;90(5):939-49
  • Chaturvedi AK, Lazzell AL, Saville SP, et al. Validation of the tetracycline regulatable gene expression system for the study of the pathogenesis of infectious disease. PLoS One 2011;6(5):e20449
  • Nakayama H, Mio T, Nagahashi S, et al. Tetracycline-regulatable system to tightly control gene expression in the pathogenic fungus Candida albicans. Infect Immun 2000;68(12):6712-19
  • Saville SP, Lazzell AL, Bryant AP, et al. Inhibition of filamentation can be used to treat disseminated candidiasis. Antimicrob Agents Chemother 2006;50(10):3312-16
  • Chang W, Li Y, Zhang L, et al. Retigeric acid B attenuates the virulence of Candida albicans via inhibiting adenylyl cyclase activity targeted by enhanced farnesol production. PLoS ONE 2012;7(7):e41624
  • Gibson J, Sood A, Hogan DA. Pseudomonas aeruginosa-Candida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl Environ Microbiol 2009;75(2):504-13
  • Hogan DA, Vik A, Kolter R. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 2004;54(5):1212-23
  • Hornby JM, Jensen EC, Lisec AD, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 2001;67(7):2982-92
  • Joyner PM, Liu J, Zhang Z, et al. Mutanobactin A from the human oral pathogen Streptococcus mutans is a cross-kingdom regulator of the yeast-mycelium transition. Org Biomol Chem 2010;8(24):5486-9
  • Martins M, Henriques M, Azeredo J, et al. Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. Eukaryot Cell 2007;6(12):2429-36
  • Murzyn A, Krasowska A, Stefanowicz P, et al. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PLoS One 2010;5(8):e12050
  • Zhang L, Chang W, Sun B, et al. Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans. PLoS ONE 2011;6(12):e28953
  • Midkiff J, Borochoff-Porte N, White D, et al. Small molecule inhibitors of the Candida albicans budded-to-hyphal transition act through multiple signaling pathways. PLoS One 2011;6(9):e25395
  • Toenjes KA, Munsee SM, Ibrahim AS, et al. Small-molecule inhibitors of the budded-to-hyphal-form transition in the pathogenic yeast Candida albicans. Antimicrob Agents Chemother 2005;49(3):963-72
  • Shareck J, Belhumeur P. Modulation of morphogenesis in Candida albicans by various small molecules. Eukaryot Cell 2011;3:3
  • Navarathna DH, Hornby JM, Krishnan N, et al. Effect of farnesol on a mouse model of systemic candidiasis, determined by use of a DPP3 knockout mutant of Candida albicans. Infect Immun 2007;75(4):1609-18
  • Martins M, Lazzell AL, Lopez-Ribot JL, et al. Effect of exogenous administration of Candida albicans autoregulatory alcohols in a murine model of hematogenously disseminated candidiasis. J Basic Microbiol 2012;52(4):487-91
  • Cheng SC, Joosten LA, Kullberg BJ, et al. Interplay between Candida albicans and the mammalian innate host defense. Infect Immun 2012;80(4):1304-13
  • Netea MG, Brown GD, Kullberg BJ, et al. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 2008;6(1):67-78
  • Fidel PL Jr, Barousse M, Espinosa T, et al. An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect Immun 2004;72(5):2939-46
  • Moyes DL, Runglall M, Murciano C, et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 2010;8(3):225-35
  • Lorenz MC, Fink GR. The glyoxylate cycle is required for fungal virulence. Nature 2001;412(6842):83-6
  • MacCallum DM, Castillo L, Brown AJ, et al. Early-expressed chemokines predict kidney immunopathology in experimental disseminated Candida albicans infections. PLoS One 2009;4(7):e6420
  • Costerton JW, Cheng KJ, Geesey GG, et al. Bacterial biofilms in nature and disease. Annu Rev Microbiol 1987;41:435-64
  • Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis 2002;8(9):881-90
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;284(5418):1318-22
  • Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med 2004;350(14):1422-9
  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002;15(2):167-93
  • Kojic EM, Darouiche RO. Candida infections of medical devices. Clin Microbiol Rev 2004;17(2):255-67
  • Nett J, Andes D. Candida albicans biofilm development, modeling a host-pathogen interaction. Curr Opin Microbiol 2006;9(4):340-5
  • Ramage G, Martinez JP, Lopez-Ribot JL. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 2006;6(7):979-86
  • Ramage G, Mowat E, Jones B, et al. Our current understanding of fungal biofilms. Crit Rev Microbiol 2009;35(4):340-55
  • Ramage G, Saville SP, Thomas DP, et al. Candida biofilms: an update. Eukaryot Cell 2005;4(4):633-8
  • Crump JA, Collignon PJ. Intravascular catheter-associated infections. Eur J Clin Microbiol Infect Dis 2000;19(1):1-8
  • Raad I. Intravascular-catheter-related infections. Lancet 1998;351(9106):893-8
  • Viudes A, Peman J, Canton E, et al. Candidemia at a tertiary-care hospital: epidemiology, treatment, clinical outcome and risk factors for death. Eur J Clin Microbiol Infect Dis 2002;21(11):767-74
  • Chandra J, Kuhn DM, Mukherjee PK, et al. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 2001;183(18):5385-94
  • Nobile CJ, Mitchell AP. Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol 2006;8(9):1382-91
  • Uppuluri P, Chaturvedi AK, Srinivasan A, et al. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 2010;6(3):e1000828
  • Ramage G, Saville SP, Wickes BL, et al. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 2002;68(11):5459-63
  • Ramage G, VandeWalle K, Lopez-Ribot JL, et al. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett 2002;214(1):95-100
  • Lopez-Ribot JL. Candida albicans biofilms: more than filamentation. Curr Biol 2005;15(12):R453-5
  • Nobile CJ, Fox EP, Nett JE, et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 2012;148(1-2):126-38
  • Cateau E, Rodier MH, Imbert C. In vitro efficacies of caspofungin or micafungin catheter lock solutions on Candida albicans biofilm growth. J Antimicrob Chemother 2008;62(1):153-5
  • Redding S, Bhatt B, Rawls HR, et al. Inhibition of Candida albicans biofilm formation on denture material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107(5):669-72
  • Pierce CG, Uppuluri P, Tristan AR, et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc 2008;3(9):1494-500
  • Robbins N, Uppuluri P, Nett J, et al. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 2011;7(9):e1002257
  • Uppuluri P, Nett J, Heitman J, et al. Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob Agents Chemother 2008;52(3):1127-32
  • Sardi JC, Scorzoni L, Bernardi T, et al. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 2013;62(Pt 1):10-24
  • LaFleur MD, Lucumi E, Napper AD, et al. Novel high-throughput screen against Candida albicans identifies antifungal potentiators and agents effective against biofilms. J Antimicrob Chemother 2011;66(4):820-6
  • Siles S, Srinivasan A, Pierce CP, et al. High-throughput screening of a collection of known pharmacologically active small compounds for the identification of Candida albicans biofilm inhibitors. Antimicrob Agents Chemother 2013; [Epub ahead of print]
  • Martins M, Henriques M, Lopez-Ribot JL, et al. Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses 2012;55(1):80-5
  • Martins M, Uppuluri P, Thomas DP, et al. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia 2010;169(5):323-31
  • Srinivasan A, Uppuluri P, Lopez-Ribot J, et al. Development of a High-Throughput Candida albicans Biofilm Chip. PLoS ONE 2011;6(4):e19036
  • Braun BR, van Het Hoog M, d'Enfert C, et al. A human-curated annotation of the Candida albicans genome. PLoS Genet 2005;1(1):36-57
  • Saville SP, Thomas DP, Lopez-Ribot JL. Use of genome information for the study of the pathogenesis of fungal infections and the development of diagnostic tools. Rev Iberoam Micol 2005;22(4):238-41
  • Letscher-Bru V, Herbrecht R. Caspofungin: the first representative of a new antifungal class. J Antimicrob Chemother 2003;51(3):513-21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.