282
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Anxiolytic drug discovery: what are the novel approaches and how can we improve them?

, PhD &

Bibliography

  • Murphy JM. Trends in depression and anxiety: men and women. Acta Psychiatr Scand 1986;73(2):113-27
  • Twenge JM. The age of anxiety? Birth cohort change in anxiety and neuroticism, 1952 – 1993. J Pers Soc Psychol 2000;79(6):1007-21
  • Koenig HG, George LK, Schneider R. Mental health care for older adults in the year 2020: a dangerous and avoided topic. Gerontologist 1994;34(5):674-9
  • Anu EC, Annamari T-H, Mauri M, et al. A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults. J Affect Disord 2008;106(1):1-27
  • Bisson JI, Ehlers A, Matthews R, et al. Psychological treatments for chronic post-traumatic stress disorder: systematic review and meta-analysis. Br J Psychiatry 2007;190(2):97-104
  • Beghi E, Allais G, Cortelli P, et al. Headache and anxiety–depressive disorder comorbidity: the HADAS study. Neurol Sci 2007;28(0):S217-S9
  • Fawcett J, Cameron RP, Schatzberg AF. Mixed anxiety-depressive disorder: an undiagnosed and undertreated severity spectrum disorder?. In: Stein DJ, Hollander E, Rothbaum BO, editors. Textbook of anxiety disorders. 2nd edition. American Psychiatric Publishing, Inc; Arlington: 2010
  • Kalueff AV, Wheaton M, Murphy DL. What's wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression. Behav Brain Res 2007;179(1):1-18
  • Stewart A, Gaikwad S, Hart P, et al. Experimental models for anxiolytic drug discovery in the era of omes and omics. Expert Opin Drug Discov 2011;6:1-15
  • Kalueff AV, Schmidt MV. Novel experimental models and paradigms for neuropsychiatric disorders: editorial. Prog Neuropsychopharmacol Biol Psychiatry 2011
  • Laporte JL, Ren-Patterson RF, Murphy DL, et al. Refining psychiatric genetics: from ‘mouse psychiatry’ to understanding complex human disorders. Behav Pharmacol 2008;19(5-6):377-84
  • Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 2003;160(4):636-45
  • Gould TD, Gottesman II. Psychiatric endophenotypes and the development of valid animal models. Genes Brain Behav 2006;5(2):113-19
  • Pigott TA, L'Heureux F, Dubbert B, et al. Obsessive compulsive disorder: comorbid conditions. J Clin Psychiatry 1994;55(Suppl):15-27; discussion 8-32
  • Welkowitz LA, Struening EL, Pittman J, et al. Obsessive-compulsive disorder and comorbid anxiety problems in a national anxiety screening sample. J Anxiety Disord 2000;14(5):471-82
  • McGrath MJ, Campbell KM, Veldman MB, et al. Anxiety in a transgenic mouse model of cortical-limbic neuro-potentiated compulsive behavior. Behav Pharmacol 1999;10(5):435-43
  • Sturm V, Lenartz D, Koulousakis A, et al. The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. J Chem Neuroanat 2003;26(4):293-9
  • Schneier FR, Martinez D, Abi-Dargham A, et al. Striatal dopamine D(2) receptor availability in OCD with and without comorbid social anxiety disorder: preliminary findings. Depress Anxiety 2008;25(1):1-7
  • Stamou M, Streifel KM, Goines PE, et al. Neuronal connectivity as a convergent target of gene-environment interactions that confer risk for Autism Spectrum Disorders. Neurotoxicol Teratol 2013;36:3-16
  • Stankovic M, Lakic A, Ilic N. Autism and autistic spectrum disorders in the context of new DSM-V classification, and clinical and epidemiological data. Srp Arh Celok Lek 2012;140(3-4):236-43
  • Myhr G. Autism and other pervasive developmental disorders: exploring the dimensional view. Can J Psychiatry 1998;43(6):589-95
  • Kalueff AV, Ren-Patterson RF, LaPorte JL, et al. Domain interplay concept in animal models of neuropsychiatric disorders: a new strategy for high-throughput neurophenotyping research. Behav Brain Res 2008;188(2):243-9
  • LaPorte JL, Egan RJ, Hart PC, et al. Qui non proficit, deficit: experimental models for ‘integrative’ research of affective disorders. J Affect Disord 2010;121(1-2):1-9
  • Silverman JL, Tolu SS, Barkan CL, et al. Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology 2010;35(4):976-89
  • Silverman JL, Yang M, Turner SM, et al. Low stress reactivity and neuroendocrine factors in the BTBR T+tf/J mouse model of autism. Neuroscience 2010;171(4):1197-208
  • Murphy DL, Uhl GR, Holmes A, et al. Experimental gene interaction studies with SERT mutant mice as models for human polygenic and epistatic traits and disorders. Genes Brain Behav 2003;2(6):350-64
  • Lara DR, Pinto O, Akiskal K, et al. Toward an integrative model of the spectrum of mood, behavioral and personality disorders based on fear and anger traits: I. Clinical implications. J Affect Disord 2006;94(1-3):67-87
  • Akiskal HS. Validating ‘hard' and ‘soft' phenotypes within the bipolar spectrum: continuity or discontinuity? J Affect Disord 2003;73(1-2):1-5
  • Andrus BM, Blizinsky K, Vedell PT, et al. Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol Psychiatry 2012;17(1):49-61
  • Stewart A, Cachat J, Wong K, et al. Phenotyping of zebrafish homebase behaviors in novelty-based tests. In: Kalueff AV, Cachat J, editors. Zebrafish neurobehavioral protocols. Humana Press; New York: 2010
  • Stewart A, Kadri F, DiLeo J, et al. The developing utility of zebrafish in modeling neurobehavioral disorders. Int J Comp Psychol 2010;23(1):104-21
  • Stewart A, Wu N, Cachat J, et al. Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models. Prog Neuropsychopharmacol Biol Psychiatry 2011;35(6):1421-31
  • Cachat J, Stewart A, Grossman L, et al. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc 2010;5(11):1786-99
  • Egan RJ, Bergner CL, Hart PC, et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 2009;205(1):38-44
  • McGonnell IM, Fowkes RC. Fishing for gene function–endocrine modelling in the zebrafish. J Endocrinol 2006;189(3):425-39
  • Alsop D, Vijayan MM. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am J Physiol Regul Integr Comp Physiol 2008;294(3):R711-19
  • Stewart A, Wong K, Cachat J, et al. Zebrafish models to study drug abuse-related phenotypes. Rev Neurosci 2010; In press
  • Lau BY, Mathur P, Gould GG, et al. Identification of a brain center whose activity discriminates a choice behavior in zebrafish. Proc Natl Acad Sci USA 2011;108(6):2581-6
  • Amo R, Aizawa H, Takahoko M, et al. Identification of the zebrafish ventral habenula as a homolog of the mammalian lateral habenula. J Neurosci 2010;30(4):1566-74
  • Eliceiri BP, Gonzalez AM, Baird A. Zebrafish model of the blood-brain barrier: morphological and permeability studies. Methods Mol Biol 2011;686:371-8
  • Jeong JY, Kwon HB, Ahn JC, et al. Functional and developmental analysis of the blood-brain barrier in zebrafish. Brain Res Bull 2008;75(5):619-28
  • Feltenstein M, Sufka K. Screening antidepressants in the chick separation-stress paradigm. Psychopharmacology (Berl) 2005;181(1):153-9
  • Watson GS, Roach JT, Sufka KJ. Benzodiazepine receptor function in the chick social separation-stress procedure. Exp Clin Psychopharmacol 1999;7(2):83-9
  • Warnick JE, Huang CJ, Acevedo EO, et al. Modelling the anxiety-depression continuum in chicks. J Psychopharmacol 2009;23(2):143-56
  • Sufka KJ, Feltenstein MW, Warnick JE, et al. Modeling the anxiety-depression continuum hypothesis in domestic fowl chicks. Behav Pharmacol 2006;17(8):681-9
  • Salmeto AL, Hymel KA, Carpenter EC, et al. Cognitive bias in the chick anxiety-depression model. Brain Res 2010;1373:124-30
  • Carter CS, DeVries AC, Getz LL. Physiological substrates of mammalian monogamy: the prairie vole model. Neurosci Biobehav Rev 1995;19(2):303-14
  • Grippo AJ, Lamb DG, Carter CS, et al. Cardiac regulation in the socially monogamous prairie vole. Physiol Behav 2007;90(2-3):386-93
  • Grippo AJ, Cushing BS, Carter CS. Depression-like behavior and stressor-induced neuroendocrine activation in female prairie voles exposed to chronic social isolation. Psychosom Med 2007;69(2):149-57
  • Grippo AJ, Lamb DG, Carter CS, et al. Social isolation disrupts autonomic regulation of the heart and influences negative affective behaviors. Biol Psychiatry 2007;62(10):1162-70
  • Grippo AJ, Pournajafi-Nazarloo H, Sanzenbacher L, et al. Peripheral oxytocin administration buffers autonomic but not behavioral responses to environmental stressors in isolated prairie voles. Stress 2012;15(2):149-61
  • Carter CS, Grippo AJ, Pournajafi-Nazarloo H, et al. Oxytocin, vasopressin and sociality. Prog Brain Res 2008;170:331-6
  • Cushing BS, Carter CS. Peripheral pulses of oxytocin increase partner preferences in female, but not male, prairie voles. Horm Behav 2000;37(1):49-56
  • Grippo AJ, Trahanas DM, Zimmerman RR II, et al. Oxytocin protects against negative behavioral and autonomic consequences of long-term social isolation. Psychoneuroendocrinology 2009;34(10):1542-53
  • Nutt DJ, King LA, Nichols DE. Effects of Schedule I drug laws on neuroscience research and treatment innovation. Nat Rev Neurosci 2013;14(8):577-85
  • Geyer MA, Vollenweider FX. Serotonin research: contributions to understanding psychoses. Trends Pharmacol Sci 2008;29(9):445-53
  • Hanks JB, Gonzalez-Maeso J. Animal models of serotonergic psychedelics. ACS Chem Neurosci 2013;4(1):33-42
  • Nichols DE. Hallucinogens. Pharmacol Ther 2004;101(2):131-81
  • Winkelman M. Therapeutic effects of hallucinogens. Anthropol Consciousness 1991;2(3-4):15-19
  • Fantegrossi WE, Murnane KS, Reissig CJ. The behavioral pharmacology of hallucinogens. Biochem Pharmacol 2008;75(1):17-33
  • Geyer MA. Why study hallucinogenic drugs in animals? Heffer Rev Psychedelic Res 1998;1:33-8
  • Ray TS. Psychedelics and the human receptorome. PLoS One 2010;5(2):e9019
  • Teitler M, Leonhardt S, Appel NM, et al. Receptor pharmacology of MDMA and related hallucinogens. Ann NY Acad Sci 1990;600:626-38; discussion 38-9
  • Thomasius R, Zapletalova P, Petersen K, et al. Mood, cognition and serotonin transporter availability in current and former ecstasy (MDMA) users: the longitudinal perspective. J Psychopharmacol 2006;20(2):211-25
  • Eveloff HH. The LSD syndrome. A review. Calif Med 1968;109(5):368-73
  • Adams LM, Geyer MA. A proposed animal model for hallucinogens based on LSD's effects on patterns of exploration in rats. Behav Neurosci 1985;99(5):881-900
  • Vollenweider FX, Gamma A, Liechti M, et al. Psychological and cardiovascular effects and short-term sequelae of MDMA ("ecstasy") in MDMA-naive healthy volunteers. Neuropsychopharmacology 1998;19(4):241-51
  • Maldonado E, Navarro JF. Effects of 3,4-methylenedioxy-methamphetamine (MDMA) on anxiety in mice tested in the light-dark box. Prog Neuropsychopharmacol Biol Psychiatry 2000;24(3):463-72
  • Kalueff A, Kyzar E, Cachat J, et al. Novel experimental models of hallucinogenic drug action, anxiety and depression - from fish to humans. 17th Stress and Behavior ISBS Conference; St. Petersburg, Russia; 2012
  • Moreno FA, Wiegand CB, Taitano EK, et al. Safety, tolerability, and efficacy of psilocybin in 9 patients with obsessive-compulsive disorder. J Clin Psychiatry 2006;67(11):1735-40
  • Zghoul T, Blier P. Enhancing action of LSD on neuronal responsiveness to serotonin in a brain structure involved in obsessive-compulsive disorder. Int J Neuropsychopharmacol 2003;6(1):13-21
  • Doblin R. A clinical plan for MDMA (Ecstasy) in the treatment of posttraumatic stress disorder (PTSD): partnering with the FDA. J Psychoactive Drugs 2002;34(2):185-94
  • Mithoefer MC, Wagner MT, Mithoefer AT, et al. The safety and efficacy of {+/-}3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol 2011;25(4):439-52
  • Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000;47(4):351-4
  • Kavalali ET, Monteggia LM. Synaptic mechanisms underlying rapid antidepressant action of ketamine. Am J Psychiatry 2012;169(11):1150-6
  • Majumder I, White JM, Irvine RJ. Antidepressant-like effects of ecstasy in subjects with a predisposition to depression. Addict Behav 2012;37(10):1189-92
  • Parrott AC. The psychotherapeutic potential of MDMA (3,4-methylenedioxymethamphetamine): an evidence-based review. Psychopharmacology (Berl) 2007;191(2):181-93
  • Gonzalez-Maeso J, Weisstaub NV, Zhou M, et al. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 2007;53(3):439-52
  • Schlemmer RF Jr, Davis JM. A primate model for the study of hallucinogens. Pharmacol Biochem Behav 1986;24(2):381-92
  • Kas MJ, Fernandes C, Schalkwyk LC, et al. Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men. Mol Psychiatry 2007;12(4):324-30
  • Stewart AM, Cachat J, Gaikwad S, et al. Perspectives on experimental models of serotonin syndrome in zebrafish. Neurochem Int 2013;62(6):893-902
  • Neelkantan N, Mikhaylova A, Stewart AM, et al. Perspectives on zebrafish models of hallucinogenic drugs and related psychotropic compounds. ACS Chem Neurosci 2013;4(8):1137-50
  • Kaslin J, Panula P. Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J Comp Neurol 2001;440(4):342-77
  • Panula P, Chen YC, Priyadarshini M, et al. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis 2010;40(1):46-57
  • Panula P, Sallinen V, Sundvik M, et al. Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases. Zebrafish 2006;3(2):235-47
  • Grossman L, Utterback E, Stewart A, et al. Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res 2010;214(2):277-84
  • Stewart AM, Cachat J, Green J, et al. Constructing the habituome for phenotype-driven zebrafish research. Behav Brain Res 2012;236C:110-17
  • Sison M, Gerlai R. Behavioral performance altering effects of MK-801 in zebrafish (Danio rerio). Behav Brain Res 2011;220(2):331-7
  • Zakhary SM, Ayubcha D, Ansari F, et al. A behavioral and molecular analysis of ketamine in zebrafish. Synapse 2011;65(2):160-7
  • Cachat J, Kyzar EJ, Collins C, et al. Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research. Behav Brain Res 2013;236(1):258-69
  • Ewald HS. A zebrafish model of schizophrenia and sickness behavior: MK-801 and endogenous NMDAR antagonism. University of Louisville; Louisville: 2009
  • Kim YH, Lee Y, Kim D, et al. Scopolamine-induced learning impairment reversed by physostigmine in zebrafish. Neurosci Res 2010;67(2):156-61
  • Richetti SK, Blank M, Capiotti KM, et al. Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behav Brain Res 2011;217(1):10-15
  • Kyzar EJ, Collins C, Gaikwad S, et al. Effects of hallucinogenic agents mescaline and phencyclidine on zebrafish behavior and physiology. Prog Neuropsychopharmacol Biol Psychiatry 2012;37(1):194-202
  • Stewart A, Riehl R, Wong K, et al. Behavioral effects of MDMA ("Ecstasy") on adult zebrafish. Behav Pharmacol 2011;22(3):275-80
  • Riehl R, Kyzar E, Allain A, et al. Behavioral and physiological effects of acute ketamine exposure in adult zebrafish. Neurotoxicol Teratol 2011;33(6):658-67
  • Lopresti AL, Drummond PD. Obesity and psychiatric disorders: commonalities in dysregulated biological pathways and their implications for treatment. Prog Neuropsychopharmacol Biol Psychiatry 2013;45C:92-9
  • van Reedt Dortland AKB, Giltay EJ, van Veen T, et al. Longitudinal relationship of depressive and anxiety symptoms with dyslipidemia and abdominal obesity. Psychosom Med 2013;75(1):83-9
  • Bornstein SR, Schuppenies A, Wong ML, et al. Approaching the shared biology of obesity and depression: the stress axis as the locus of gene-environment interactions. Mol Psychiatry 2006;11(10):892-902
  • Kuswanto CN, Sum MY, Yang GL, et al. Increased body mass index makes an impact on brain white-matter integrity in adults with remitted first-episode mania. Psychol Med 2013, in press
  • Arkes J. Longitudinal association between marital disruption and child BMI and obesity. Obesity (Silver Spring, Md) 2012;20(8):1696-702
  • Rodriguiz RM, Wilkins JJ, Creson TK, et al. Emergence of anxiety-like behaviours in depressive-like Cpefat/fat mice. Int J Neuropsychopharmacol 2013;16(7):1623-34
  • Uceyler N, Schutt M, Palm F, et al. Lack of the serotonin transporter in mice reduces locomotor activity and leads to gender-dependent late onset obesity. Int J Obes (London) 2010;34(4):701-11
  • Koizumi H, Hashimoto K, Iyo M. Dietary restriction changes behaviours in brain-derived neurotrophic factor heterozygous mice: role of serotonergic system. Eur J Neurosci 2006;24(8):2335-44
  • Rios M, Fan G, Fekete C, et al. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol 2001;15(10):1748-57
  • Ren-Patterson RF, Cochran LW, Holmes A, et al. Loss of brain-derived neurotrophic factor gene allele exacerbates brain monoamine deficiencies and increases stress abnormalities of serotonin transporter knockout mice. J Neurosci Res 2005;79(6):756-71
  • Wachira SJ, Hughes-Darden CA, Nicholas HB Jr, et al. Neural melanocortin receptors are differentially expressed and regulated by stress in rat hypothalamic-pituitary-adrenal axis. Cell Mol Biol (Noisy-le-grand) 2004;50(6):703-13
  • Girardet C, Butler AA. Neural melanocortin receptors in obesity and related metabolic disorders. Biochim Biophys Acta 2013, in press
  • Iemolo A, Blasio A, St Cyr SA, et al. CRF-CRF1 receptor system in the central and basolateral nuclei of the amygdala differentially mediates excessive eating of palatable food. Neuropsychopharmacology 2013;38(12):2456-66
  • Haque Z, Akbar N, Yasmin F, et al. Inhibition of immobilization stress-induced anorexia, behavioral deficits, and plasma corticosterone secretion by injected leptin in rats. Stress 2013;16(3):353-62
  • Nguyen M, Yang E, Neelkantan N, et al. Developing ‘integrative’ zebrafish models of behavioral and metabolic disorders. Behav Brain Res 2013;256C:172-87
  • Xu B, Goulding EH, Zang K, et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci 2003;6(7):736-42
  • Kernie SG, Liebl DJ, Parada LF. BDNF regulates eating behavior and locomotor activity in mice. EMBO J 2000;19(6):1290-300
  • Lohr H, Hammerschmidt M. Zebrafish in endocrine systems: recent advances and implications for human disease. Annu Rev Physiol 2011;73:183-211
  • Cerda-Reverter JM, Agulleiro MJ, R RG, et al. Fish melanocortin system. Eur J Pharmacol 2011;660(1):53-60
  • Matsuda K, Sakashita A, Yokobori E, et al. Neuroendocrine control of feeding behavior and psychomotor activity by neuropeptideY in fish. Neuropeptides 2012;46(6):275-83
  • Matsuda K, Azuma M, Kang KS. Orexin system in teleost fish. Vitam Horm 2012;89:341-61
  • Yokobori E, Kojima K, Azuma M, et al. Stimulatory effect of intracerebroventricular administration of orexin A on food intake in the zebrafish, Danio rerio. Peptides 2011;32(7):1357-62
  • Cruz SA, Tseng YC, Kaiya H, et al. Ghrelin affects carbohydrate-glycogen metabolism via insulin inhibition and glucagon stimulation in the zebrafish (Danio rerio) brain. Comp Biochem Physiol A Mol Integr Physiol 2010;156(2):190-200
  • Gorissen M, Bernier NJ, Nabuurs SB, et al. Two divergent leptin paralogues in zebrafish (Danio rerio) that originate early in teleostean evolution. J Endocrinol 2009;201(3):329-39
  • Oka T, Nishimura Y, Zang L, et al. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol 2010;10:21
  • Wong RY, Oxendine SE, Godwin J. Behavioral and neurogenomic transcriptome changes in wild-derived zebrafish with fluoxetine treatment. BMC Genomics 2013;14:348
  • Clelland JD, Sacco R, Persico A, et al. Genome-wide expression studies in autism-spectrum disorders: moving from neurodevelopment to neuroimmunology. genomics, proteomics, and the nervous system. Springer; New York: 2011. p. 469-87
  • Mirnics K, Middleton FA, Lewis DA, et al. Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 2001;24(8):479-86
  • Pongrac J, Middleton FA, Lewis DA, et al. Gene expression profiling with DNA microarrays: advancing our understanding of psychiatric disorders. Neurochem Res 2002;27(10):1049-63
  • Kim S, Webster MJ. Correlation analysis between genome-wide expression profiles and cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders. Mol Psychiatry 2010;15(3):326-36
  • Armitage JA, Poston L, Taylor PD. Developmental origins of obesity and the metabolic syndrome: the role of maternal obesity. Front Horm Res 2008;36:73-84
  • Taylor PD, Poston L. Developmental programming of obesity in mammals. Exp Physiol 2007;92(2):287-98
  • Li M, Sloboda DM, Vickers MH. Maternal obesity and developmental programming of metabolic disorders in offspring: evidence from animal models. Exp Diabetes Res 2011;2011:592408
  • Langley-Evans SC, Bellinger L, McMullen S. Animal models of programming: early life influences on appetite and feeding behaviour. Matern Child Nutr 2005;1(3):142-8
  • Sasaki A, de Vega WC, St-Cyr S, et al. Perinatal high fat diet alters glucocorticoid signaling and anxiety behavior in adulthood. Neuroscience 2013;240:1-12
  • Chakraborty C, Hsu CH, Wen ZH, et al. Zebrafish: a complete animal model for in vivo drug discovery and development. Curr Drug Metab 2009;10(2):116-24
  • Key B, Devine CA. Zebrafish as an experimental model: strategies for developmental and molecular neurobiology studies. Methods Cell Sci 2003;25(1-2):1-6
  • Macdonald K, Macdonald TM. The peptide that binds: a systematic review of oxytocin and its prosocial effects in humans. Harv Rev Psychiatry 2010;18(1):1-21
  • Wudarczyk OA, Earp BD, Guastella A, et al. Could intranasal oxytocin be used to enhance relationships? Research imperatives, clinical policy, and ethical considerations. Curr Opin Psychiatry 2013;26(5):474-84
  • Striepens N, Kendrick KM, Maier W, et al. Prosocial effects of oxytocin and clinical evidence for its therapeutic potential. Front Neuroendocrinol 2011;32(4):426-50
  • Broadbear JH, Kabel D, Tracy L, et al. Oxytocinergic regulation of endogenous as well as drug-induced mood. Pharmacol Biochem Behav 2013, in press
  • Carson DS, Guastella AJ, Taylor ER, et al. A brief history of oxytocin and its role in modulating psychostimulant effects. J Psychopharmacol 2013;27(3):231-47
  • Matsuzaki M, Matsushita H, Tomizawa K, et al. Oxytocin: a therapeutic target for mental disorders. J Physiol Sci 2012;62(6):441-4
  • Slattery DA, Neumann ID. Chronic icv oxytocin attenuates the pathological high anxiety state of selectively bred Wistar rats. Neuropharmacology 2010;58(1):56-61
  • Amico JA, Mantella RC, Vollmer RR, et al. Anxiety and stress responses in female oxytocin deficient mice. J Neuroendocrinol 2004;16(4):319-24
  • Macdonald K, Feifel D. Helping oxytocin deliver: considerations in the development of oxytocin-based therapeutics for brain disorders. Front Neurosci 2013;7:35
  • Jones PM, Robinson IC. Differential clearance of neurophysin and neurohypophysial peptides from the cerebrospinal fluid in conscious guinea pigs. Neuroendocrinology 1982;34(4):297-302
  • Ermisch A, Ruhle HJ, Landgraf R, et al. Blood-brain barrier and peptides. J Cereb Blood Flow Metab 1985;5(3):350-7
  • Pitt GR, Batt AR, Haigh RM, et al. Non-peptide oxytocin agonists. Bioorg Med Chem Lett 2004;14(17):4585-9
  • Ring RH, Schechter LE, Leonard SK, et al. Receptor and behavioral pharmacology of WAY-267464, a non-peptide oxytocin receptor agonist. Neuropharmacology 2010;58(1):69-77
  • Modi ME, Young LJ. The oxytocin system in drug discovery for autism: animal models and novel therapeutic strategies. Horm Behav 2012;61(3):340-50
  • Jorgensen H, Kjaer A, Knigge U, et al. Serotonin stimulates hypothalamic mRNA expression and local release of neurohypophysial peptides. J Neuroendocrinol 2003;15(6):564-71
  • Sabatier N. Alpha-melanocyte-stimulating hormone and oxytocin: a peptide signalling cascade in the hypothalamus. J Neuroendocrinol 2006;18(9):703-10
  • Rodriguez-Oroz MC, Obeso JA, Lang AE, et al. Bilateral deep brain stimulation in Parkinson's disease: a multicentre study with 4 years follow-up. Brain 2005;128(Pt 10):2240-9
  • Benabid AL, Chabardes S, Mitrofanis J, et al. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease. Lancet Neurol 2009;8(1):67-81
  • Servello D, Porta M, Sassi M, et al. Deep brain stimulation in 18 patients with severe Gilles de la Tourette syndrome refractory to treatment: the surgery and stimulation. J Neurol Neurosurg Psychiatry 2008;79(2):136-42
  • Diamond A, Kenney C, Jankovic J. Effect of vagal nerve stimulation in a case of Tourette's syndrome and complex partial epilepsy. Mov Disord 2006;21(8):1273-5
  • George MS, Ward HE Jr, Ninan PT, et al. A pilot study of vagus nerve stimulation (VNS) for treatment-resistant anxiety disorders. Brain Stimul 2008;1(2):112-21
  • Nahas Z, Marangell LB, Husain MM, et al. Two-year outcome of vagus nerve stimulation (VNS) for treatment of major depressive episodes. J Clin Psychiatry 2005;66(9):1097-104
  • Boggio PS, Rigonatti SP, Ribeiro RB, et al. A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. Int J Neuropsychopharmacol 2008;11(2):249-54
  • Munte TF, Heinze HJ, Visser-Vandewalle V. Deep brain stimulation as a therapy for alcohol addiction. Curr Top Behav Neurosci 2013;13:709-27
  • Halpern CH, Torres N, Hurtig HI, et al. Expanding applications of deep brain stimulation: a potential therapeutic role in obesity and addiction management. Acta Neurochir (Wien) 2011;153(12):2293-306
  • Greenberg BD, Malone DA, Friehs GM, et al. Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacology 2006;31(11):2384-93
  • Giacobbe P, Kennedy SH. Deep brain stimulation for treatment-resistant depression: a psychiatric perspective. Curr Psychiatry Rep 2006;8(6):437-44
  • Schlaepfer TE, Cohen MX, Frick C, et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 2008;33(2):368-77
  • Bewernick BH, Hurlemann R, Matusch A, et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry 2010;67(2):110-16
  • van Dijk A, Klanker M, van Oorschot N, et al. Deep brain stimulation affects conditioned and unconditioned anxiety in different brain areas. Transl Psychiatry 2013;3:e289
  • George MS, Rush AJ, Sackeim HA, et al. Vagus nerve stimulation (VNS): utility in neuropsychiatric disorders. Int J Neuropsychopharmacol 2003;6(1):73-83
  • Furmaga H, Shah A, Frazer A. Serotonergic and noradrenergic pathways are required for the anxiolytic-like and antidepressant-like behavioral effects of repeated vagal nerve stimulation in rats. Biol Psychiatry 2011;70(10):937-45
  • Carreno FR, Frazer A. Activation of signaling pathways downstream of the brain-derived neurotrophic factor receptor, TrkB, in the rat brain by vagal nerve stimulation and antidepressant drugs. Int J Neuropsychopharmacol 2013; in press
  • Groves DA, Brown VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev 2005;29(3):493-500
  • Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 2007;10(9):1116-24
  • Naritoku DK, Terry WJ, Helfert RH. Regional induction of fos immunoreactivity in the brain by anticonvulsant stimulation of the vagus nerve. Epilepsy Res 1995;22(1):53-62
  • Bohning DE, Lomarev MP, Denslow S, et al. Feasibility of vagus nerve stimulation-synchronized blood oxygenation level-dependent functional MRI. Invest Radiol 2001;36(8):470-9
  • Chae JH, Nahas Z, Lomarev M, et al. A review of functional neuroimaging studies of vagus nerve stimulation (VNS). J Psychiatr Res 2003;37(6):443-55
  • Keisala T, Minasyan A, Jarvelin U, et al. Aberrant nest building and prolactin secretion in vitamin D receptor mutant mice. J Steroid Biochem Mol Biol 2007;104(3-5):269-73
  • Cryan JF, Holmes A. The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 2005;4(9):775-90
  • Stewart AM, Kalueff AV. Controlled substances and innovation of biomedicine: a preclinical perspective. Nat Rev Neurosci 2013, in press

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.