2,567
Views
84
CrossRef citations to date
0
Altmetric
Review

Advances in phage display technology for drug discovery

&
Pages 651-669 | Received 28 Dec 2014, Accepted 01 Apr 2015, Published online: 24 Apr 2015

Bibliography

  • FitzGerald K. In vitro display technologies - new tools for drug discovery. Drug Discov Today 2000;5(6):253-8
  • Rothe A, Hosse RJ, Power BE. In vitro display technologies reveal novel biopharmaceutics. FASEB J 2006;20(10):1599-610
  • Luzi S, Kondo Y, Bernard E, et al. Subunit disassembly and inhibition of TNFalpha by a semi-synthetic bicyclic peptide. Protein Eng Des Sel 2015;28(2):45-52
  • Kahle J, Orlowski A, Stichel D, et al. Epitope mapping via selection of anti-FVIII antibody-specific phage-presented peptide ligands that mimic the antibody binding sites. Thromb Haemost 2015;113(2):396-405
  • Koerber JT, Hornsby MJ, Wells JA. An improved single-chain fab platform for efficient display and recombinant expression. J Mol Biol 2015;427(2):576-86
  • Lee Y-C, Hsiao N-W, Tseng T-S, et al. Phage display–mediated discovery of novel tyrosinase-targeting tetrapeptide inhibitors reveals the significance of n-terminal preference of cysteine residues and their functional sulfur atom. Mol Pharmacol 2015;87(2):218-30
  • Evazalipour M, D’Huyvetter M, Tehrani BS, et al. Generation and characterization of nanobodies targeting PSMA for molecular imaging of prostate cancer. Contrast Media Mol Imaging 2014;9(3):211-20
  • Omidfar K, Amjad Zanjani FS, Hagh AG, et al. Efficient growth inhibition of EGFR over-expressing tumor cells by an anti-EGFR nanobody. Mol Biol Rep 2013;40(12):6737-45
  • Nixon AE, Sexton DJ, Ladner RC. Drugs derived from phage display: from candidate identification to clinical practice. MAbs 2014;6(1):73-85
  • Pande J, Szewczyk MM, Grover AK. Phage display: concept, innovations, applications and future. Biotechnol Adv 2010;28(6):849-58
  • Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985;228(4705):1315-17
  • Bass S, Greene R, Wells JA. Hormone phage: an enrichment method for variant proteins with altered binding properties. Proteins 1990;8(4):309-14
  • Bratkovic T. Progress in phage display: evolution of the technique and its application. Cell Mol Life Sci 2010;67(5):749-67
  • Arap MA. Phage display technology: applications and innovations. Genet Mol Biol 2005;28(1):1-9
  • Mutuberria R, Arends JW, Griffioen AW, et al. Phage display technology for target discovery in drug delivery research. In: Molema G, Meijer DKF, editors. Drug targeting organ-specific strategies. Wiley-VCH Verlag GmbH; 2001
  • Takakusagi Y, Kuramochi K, Takagi M, et al. Efficient one-cycle affinity selection of binding proteins or peptides specific for a small-molecule using a T7 phage display pool. Bioorg Med Chem 2008;16(22):9837-46
  • Sternberg N, Hoess RH. Display of peptides and proteins on the surface of bacteriophage lambda. Proc Natl Acad Sci USA 1995;92(5):1609-13
  • Efimov VP, Nepluev IV, Mesyanzhinov VV. Bacteriophage T4 as a surface display vector. Virus Genes 1995;10(2):173-7
  • Huang JX, Bishop-Hurley SL, Cooper MA. Development of anti-infectives using phage display: biological agents against bacteria, viruses, and parasites. Antimicrob Agents Chemother 2012;56(9):4569-82
  • Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, et al. Phage display as a technology delivering on the promise of peptide drug discovery. Drug Discov Today 2013;18(23):1144-57
  • Sidhu SS, Weiss GA, Wells JA. High copy display of large proteins on phage for functional selections. J Mol Biol 2000;296(2):487-95
  • Webster R. Filamentous phage biology. In: Barbas CF, Burton DR, Scott JK, Silverman GJ, editors. Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY: 2001. p. 1.1-1.37
  • Smith GP, Petrenko VA. Phage display. Chem Rev 1997;97(2):391-410
  • Scott J. Phage display Vectors. In: Barbas CFIII, Burton DR, Scott JK, Silverman GJ, editors. Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, USA: 2001
  • Rader C, Barbas CFIII. Phage display of combinatorial antibody libraries. Curr Opin Biotechnol 1997;8(4):503-8
  • Scott J. Peptide libraries. In: Barbas CFIII, Burton DR, Scott JK, Silverman GJ, editors. Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, USA: 2001
  • Burton D. Antibody libraries. In: Barbas CFIII, Burton DR, Scott JK, Silverman GJ, editors. Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, USA: 2001
  • Molek P, Strukelj B, Bratkovic T. Peptide phage display as a tool for drug discovery: targeting membrane receptors. Molecules 2011;16(1):857-87
  • Derda R, Tang SK, Li SC, et al. Diversity of phage-displayed libraries of peptides during panning and amplification. Molecules 2011;16(2):1776-803
  • Fellouse F, Pal G. Methods for the construction of phage-displayed libraries. In: Sidhu SS, editors. Phage display in biotechnology and drug discovery. CRC Press; Boca Raton, FL. 2005. p. 112-14
  • Omidfar K, Shirvani Z. Single domain antibodies: a new concept for epidermal growth factor receptor and EGFRvIII targeting. DNA Cell Biol 2012;31(6):1015-26
  • Hoogenboom HR, de Bruine AP, Hufton SE, et al. Antibody phage display technology and its applications. Immunotechnology 1998;4(1):1-20
  • Andris-Widhopf J, Steinberger P, Fuller R, et al. Generation of human Fab antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences. Cold Spring Harb Protoc 2011;2011:(9):1051-65
  • Andris-Widhopf J, Steinberger P, Fuller R, et al. Generation of human scFv antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences. Cold Spring Harb Protoc 2011;2011:(9):1139-50
  • Huse WD, Sastry L, Iverson SA, et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 1989;246(4935):1275-81
  • McCafferty J, Griffiths AD, Winter G, et al. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990;348(6301):552-4
  • Barbas CFIII, Kang AS, Lerner RA, et al. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci USA 1991;88(18):7978-82
  • Winter G, Milstein C. Man-made antibodies. Nature 1991;349(6307):293-9
  • Schirrmann T, Meyer T, Schutte M, et al. Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules 2011;16(1):412-26
  • Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol 2005;23(9):1105-16
  • Ponsel D, Neugebauer J, Ladetzki-Baehs K, et al. High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules 2011;16(5):3675-700
  • Omidfar K, Khorsand F, Darziani Azizi M. New analytical applications of gold nanoparticles as label in antibody based sensors. Biosens Bioelectron 2013;43:336-47
  • Ward ES, Gussow D, Griffiths AD, et al. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 1989;341(6242):544-6
  • Omidfar K, Rasaee MJ, Modjtahedi H, et al. Production of a novel camel single-domain antibody specific for the type III mutant EGFR. Tumour Biol 2004;25(5-6):296-305
  • Goodchild SA, Dooley H, Schoepp RJ, et al. Isolation and characterisation of Ebolavirus-specific recombinant antibody fragments from murine and shark immune libraries. Mol Immunol 2011;48(15):2027-37
  • Clementi N, Mancini N, Solforosi L, et al. Phage Display-based Strategies for Cloning and Optimization of Monoclonal Antibodies Directed against Human Pathogens. Int J Mol Sci 2012;13(7):8273-92
  • Dantas-Barbosa C, de Macedo Brigido M, Maranhao AQ. Antibody phage display libraries: contributions to oncology. Int J Mol Sci 2012;13(5):5420-40
  • Clackson T, Hoogenboom HR, Griffiths AD, et al. Making antibody fragments using phage display libraries. Nature 1991;352(6336):624-8
  • Pelat T, Hust M, Hale M, et al. Isolation of a human-like antibody fragment (scFv) that neutralizes ricin biological activity. BMC Biotechnol 2009;9(1):60
  • de Haard HJ, van Neer N, Reurs A, et al. A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 1999;274(26):18218-30
  • Hust M, Meyer T, Voedisch B, et al. A human scFv antibody generation pipeline for proteome research. J Biotechnol 2011;152(4):159-70
  • Griffiths AD, Williams SC, Hartley O, et al. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J 1994;13(14):3245-60
  • Pini A, Viti F, Santucci A, et al. Design and use of a phage display library Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 1998;273(34):21769-76
  • Davern SM, Foote LJ, Lankford TK, et al. Identification of an antilaminin-1 scFv that preferentially homes to vascular solid tumors. Cancer Biother Radiopharm 2005;20(5):524-33
  • van Wyngaardt W, Malatji T, Mashau C, et al. A large semi-synthetic single-chain Fv phage display library based on chicken immunoglobulin genes. BMC Biotechnol 2004;4:6
  • Davies J, Riechmann L. Single antibody domains as small recognition units: design and in vitro antigen selection of camelized, human VH domains with improved protein stability. Protein Eng 1996;9(6):531-7
  • Davies J, Riechmann L. ‘Camelising’ human antibody fragments: NMR studies on VH domains. FEBS Lett 1994;339(3):285-90
  • Riechmann L. Rearrangement of the former VL interface in the solution structure of a camelised, single antibody VH domain. J Mol Biol 1996;259(5):957-69
  • Hawlisch H, Muller M, Frank R, et al. Site-specific anti-C3a receptor single-chain antibodies selected by differential panning on cellulose sheets. Anal Biochem 2001;293(1):142-5
  • Breitling F, Dubel S, Seehaus T, et al. A surface expression vector for antibody screening. Gene 1991;104(2):147-53
  • Moghaddam A, Borgen T, Stacy J, et al. Identification of scFv antibody fragments that specifically recognise the heroin metabolite 6-monoacetylmorphine but not morphine. J Immunol Methods 2003;280(1):139-55
  • Hust M, Maiss E, Jacobsen H-J, et al. The production of a genus-specific recombinant antibody (scFv) using a recombinant potyvirus protease. J Virol Methods 2002;106(2):225-33
  • Yoon H, Song JM, Ryu CJ, et al. An efficient strategy for cell-based antibody library selection using an integrated vector system. BMC Biotechnol 2012;12(1):62
  • Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature 1996;380(6572):364-6
  • Trepel M, Arap W, Pasqualini R. In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr Opin Chem Biol 2002;6(3):399-404
  • Tonelli RR, Colli W, Alves MJM. Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro. Front Immunol 2012;3:419
  • Koivunen E, Arap W, Valtanen H, et al. Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 1999;17(8):768-74
  • Kolonin MG, Pasqualini R, Arap W. Teratogenicity induced by targeting a placental immunoglobulin transporter. Proc Natl Acad Sci USA 2002;99(20):13055-60
  • Kolonin MG, Saha PK, Chan L, et al. Reversal of obesity by targeted ablation of adipose tissue. Nat Med 2004;10(6):625-32
  • Mintz PJ, Kim J, Do KA, et al. Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat Biotechnol 2003;21(1):57-63
  • Franzini RM, Neri D, Scheuermann J. DNA-encoded chemical libraries: advancing beyond conventional small-molecule libraries. Acc Chem Res 2014;47(4):1247-55
  • Levin AM, Weiss GA. Optimizing the affinity and specificity of proteins with molecular display. Mol Biosyst 2006;2(1):49-57
  • Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 2010;9(10):767-74
  • Soendergaard M, Newton-Northup JR, Palmier MO, Deutscher SL. Peptide phage display for discovery of novel biomarkers for imaging and therapy of cell subpopulations in ovarian cancer. J Mol Biomark Diagn 2011;S2004:1-8
  • Wang H, Han M, Han Z. Phage-displayed recombinant peptides for non-invasive imaging assessment of tumor responsiveness to ionizing radiation and tyrosine kinase inhibitors. In: Nenoi M, editors. INTECH Open Access Publisher, 2012. Available from: http://www.intechopen.com/books/current-topics-in-ionizing-radiation-research/phage-displayed-recombinant-peptides-for-non-invasive-imaging-assessment-of-tumor-responsiveness-to-
  • Schirrmann T, Hust M. Construction of human antibody gene libraries and selection of antibodies by phage display. Methods Mol Biol 2010;651:177-209
  • Thie H, Meyer T, Schirrmann T, et al. Phage display derived therapeutic antibodies. Curr Pharm Biotechnol 2008;9(6):439-46
  • Vaughan TJ, Williams AJ, Pritchard K, et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 1996;14(3):309-14
  • Dimitrov DS, Marks JD. Therapeutic antibodies: current state and future trends–is a paradigm change coming soon?. Therapeutic Antibodies; Springer: 2009. p. 1-27
  • Yang J, Chang C-Y, Safi R, et al. Identification of ligand-selective peptide antagonists of the mineralocorticoid receptor using phage display. Mol Endocrinol 2011;25(1):32-43
  • Liu JK, Lubelski D, Schonberg DL, et al. Phage display discovery of novel molecular targets in glioblastoma-initiating cells. Cell Death Differ 2014;21(8):1325-39
  • Peng L, Oganesyan V, Wu H, et al. Molecular basis for the antagonistic activity of an anti- interferon alpha receptor 1 antibody. MAbs 2015;7(2):428-39
  • Oldenburg KR, Loganathan D, Goldstein IJ, et al. Peptide ligands for a sugar-binding protein isolated from a random peptide library. Proc Natl Acad Sci USA 1992;89(12):5393-7
  • Scott JK, Loganathan D, Easley RB, et al. A family of concanavalin A-binding peptides from a hexapeptide epitope library. Proc Natl Acad Sci USA 1992;89(12):5398-402
  • Marino P, Norreel JC, Schachner M, et al. A polysialic acid mimetic peptide promotes functional recovery in a mouse model of spinal cord injury. Exp Neurol 2009;219(1):163-74
  • Deutscher SL. Phage display in molecular imaging and diagnosis of cancer. Chem Rev 2010;110(5):3196-211
  • Cochran R, Cochran F. Phage display and molecular imaging: expanding fields of vision in living subjects. Biotechnol Genet Eng Rev 2010;27:57-94
  • Dubel S. Recombinant therapeutic antibodies. Appl Microbiol Biotechnol 2007;74(4):723-9
  • Mazumdar S. Raxibacumab. MAbs 2009;1(6):531-8
  • Milstein C. The hybridoma revolution: an offshoot of basic research. Bioessays 1999;21(11):966-73
  • Wang S. Advances in the production of human monoclonal antibodies. Antibody Technol J 2011;1:1-4
  • Baker KP, Edwards BM, Main SH, et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum 2003;48(11):3253-65
  • Thie H, Toleikis L, Li J, et al. Rise and fall of an anti-MUC1 specific antibody. PLoS One 2011;6(1):e15921
  • Wallace DJ, Stohl W, Furie RA, et al. A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum 2009;61(9):1168-78
  • Kashanian S, Rasaee MJ, Paknejad M, et al. Preparation and characterization of monoclonal antibody against digoxin. Hybrid Hybridomics 2002;21(5):375-9
  • Omidfar K, Kashanian S, Paknejad M, et al. Production and characterization of monoclonal antibody against human serum albumin. Hybridoma (Larchmt) 2007;26(4):217-22
  • Meibodi ES, Azizi MD, Paknejad M, et al. Development of an enhanced chemiluminescence immunoassay (CLIA) for detecting urinary albumin. Mol Biol Rep 2012;39(12):10851-8
  • Mohammadnejad J, Rasaee MJ, Saqhafi B, et al. A new competitive enzyme linked immunosorbent assay (MRP83-CA15-3) for MUC1 measurement in breast cancer. J Immunoassay Immunochem 2006;27(2):139-49
  • Omidfar K, Kia S, Kashanian S, et al. Colloidal nanogold-based immunochromatographic strip test for the detection of digoxin toxicity. Appl Biochem Biotechnol 2010;160(3):843-55
  • Omidfar K, Kia S, Larijani B. Development of a colloidal gold-based immunochromatographic test strip for screening of microalbuminuria. Hybridoma (Larchmt) 2011;30(2):117-24
  • Omidfar K, Dehdast A, Zarei H, et al. Development of urinary albumin immunosensor based on colloidal AuNP and PVA. Biosens Bioelectron 2011;26(10):4177-83
  • Ahmadi A, Shirazi H, Pourbagher N, et al. An electrochemical immunosensor for digoxin using core–shell gold coated magnetic nanoparticles as labels. Mol Biol Rep 2014;41(3):1659-68
  • Omidfar K, Zarei H, Gholizadeh F, et al. A high-sensitivity electrochemical immunosensor based on mobile crystalline material-41-polyvinyl alcohol nanocomposite and colloidal gold nanoparticles. Anal Biochem 2012;421(2):649-56
  • Eyer L, Hruska K. Single-domain antibody fragments derived from heavy-chain antibodies: a review. Vet Med 2012;57(9):439-513
  • Welch B. Adalimumab (Humira) for the treatment of rheumatoid arthritis. Am Fam Physician 2008;78(12):1406-8
  • Steinbrook R. The price of sight – ranibizumab, bevacizumab, and the treatment of macular degeneration. N Engl J Med 2006;355(14):1409-12
  • Schmucker C, Ehlken C, Agostini HT, et al. A safety review and meta-analyses of bevacizumab and ranibizumab: off-label versus goldstandard. PLoS One 2012;7(8):e42701
  • Carlo-Stella C, Di Nicola M, Turco MC, et al. The anti-human leukocyte antigen-DR monoclonal antibody 1D09C3 activates the mitochondrial cell death pathway and exerts a potent antitumor activity in lymphoma-bearing nonobese diabetic/severe combined immunodeficient mice. Cancer Res 2006;66(3):1799-808
  • Carlo-Stella C, Guidetti A, Di Nicola M, et al. IFN-gamma enhances the antimyeloma activity of the fully human anti-human leukocyte antigen-DR monoclonal antibody 1D09C3. Cancer Res 2007;67(7):3269-75
  • Belyanskaya LL, Marti TM, Hopkins-Donaldson S, et al. Human agonistic TRAIL receptor antibodies Mapatumumab and Lexatumumab induce apoptosis in malignant mesothelioma and act synergistically with cisplatin. Mol Cancer 2007;6:66
  • Luster TA, Carrell JA, McCormick K, et al. Mapatumumab and lexatumumab induce apoptosis in TRAIL-R1 and TRAIL-R2 antibody-resistant NSCLC cell lines when treated in combination with bortezomib. Mol Cancer Ther 2009;8(2):292-302
  • Kreitman RJ, Tallman MS, Robak T, et al. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol 2012;30(15):1822-8
  • Oude Munnink TH, Arjaans ME, Timmer-Bosscha H, et al. PET with the 89Zr-labeled transforming growth factor-beta antibody fresolimumab in tumor models. J Nucl Med 2011;52(12):2001-8
  • Morris JC, Tan AR, Olencki TE, et al. Phase I study of GC1008 (Fresolimumab): a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One 2014;9(3):e90353
  • McKian KP, Haluska P. Cixutumumab. Expert Opin Investig Drugs 2009;18(7):1025-33
  • Weickhardt A, Doebele R, Oton A, et al. A phase I/II study of erlotinib in combination with the anti-insulin-like growth factor-1 receptor monoclonal antibody IMC-A12 (cixutumumab) in patients with advanced non-small cell lung cancer. J Thorac Oncol 2012;7(2):419-26
  • Younes A, Vose JM, Zelenetz AD, et al. A Phase 1b/2 trial of mapatumumab in patients with relapsed/refractory non-Hodgkin’s lymphoma. Br J Cancer 2010;103(12):1783-7
  • Trarbach T, Moehler M, Heinemann V, et al. Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer 2010;102(3):506-12
  • Dienstmann R, Tabernero J. Necitumumab, a fully human IgG1 mAb directed against the EGFR for the potential treatment of cancer. Curr Opin Investig Drugs 2010;11(12):1434-41
  • Kuenen B, Witteveen PO, Ruijter R, et al. A phase I pharmacologic study of necitumumab (IMC-11F8), a fully human IgG1 monoclonal antibody directed against EGFR in patients with advanced solid malignancies. Clin Cancer Res 2010;16(6):1915-23
  • Dienstmann R, Felip E. Necitumumab in the treatment of advanced non-small cell lung cancer: translation from preclinical to clinical development. Expert Opin Biol Ther 2011;11(9):1223-31
  • Spratlin JL, Cohen RB, Eadens M, et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol 2010;28(5):780-7
  • Wilke H, Muro K, Van Cutsem E, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol 2014;15(11):1224-35
  • Chyung Y, Vince B, Iarrobino R, et al. A phase 1 study investigating DX-2930 in healthy subjects. Ann Allergy Asthma Immunol 2014;113(4):460-6.e2
  • Kenniston JA, Faucette RR, Martik D, et al. Inhibition of plasma kallikrein by a highly specific active site blocking antibody. J Biol Chem 2014;289(34):23596-608
  • Pepinsky RB, Shao Z, Ji B, et al. Exposure levels of anti-LINGO-1 Li81 antibody in the central nervous system and dose-efficacy relationships in rat spinal cord remyelination models after systemic administration. J Pharmacol Exp Ther 2011;339(2):519-29
  • Tran JQ, Rana J, Barkhof F, et al. Randomized phase I trials of the safety/tolerability of anti-LINGO-1 monoclonal antibody BIIB033. Neurol Neuroimmunol Neuroinflamm 2014;1(2):e18
  • Omidfar K, Moinfar Z, Sohi AN, et al. Expression of EGFRvIII in thyroid carcinoma: immunohistochemical study by camel antibodies. Immunol Invest 2009;38(2):165-80
  • Omidfar K, Rasaee MJ, Kashanian S, et al. Studies of thermostability in Camelus bactrianus (Bactrian camel) single-domain antibody specific for the mutant epidermal-growth-factor receptor expressed by Pichia. Biotechnol Appl Biochem 2007;46(Pt 1):41-9
  • Bartunek J, Barbato E, Heyndrickx G, et al. Novel antiplatelet agents: ALX-0081, a Nanobody directed towards von Willebrand factor. J Cardiovasc Transl Res 2013;6(3):355-63
  • Ulrichts H, Silence K, Schoolmeester A, et al. Antithrombotic drug candidate ALX-0081 shows superior preclinical efficacy and safety compared with currently marketed antiplatelet drugs. Blood 2011;118(3):757-65
  • Brown KC. Peptidic tumor targeting agents: the road from phage display peptide selections to clinical applications. Curr Pharm Des 2010;16(9):1040-54
  • Bidwell GLIII, Raucher D. Therapeutic peptides for cancer therapy. Part I - peptide inhibitors of signal transduction cascades. Expert Opin Drug Deliv 2009;6(10):1033-47
  • Raucher D, Moktan S, Massodi I, et al. Therapeutic peptides for cancer therapy. Part II - cell cycle inhibitory peptides and apoptosis-inducing peptides. Expert Opin Drug Deliv 2009;6(10):1049-64
  • Peptide Therapeutics Market. 13 March 2013. Available from: http://www.transparencymarketresearch.com/
  • Morozov VA, Morozov AV, Schurmann D, et al. Transmembrane protein polymorphisms and resistance to T-20 (Enfuvirtide, Fuzeon) in HIV-1 infected therapy-naive seroconverters and AIDS patients under HAART-T-20 therapy. Virus Genes 2007;35(2):167-74
  • Takagi T, Arisawa T, Yamamoto K, et al. Identification of ligands binding specifically to inflammatory intestinal mucosa using phage display. Clin Exp Pharmacol Physiol 2007;34(4):286-9
  • Shimamoto G, Gegg C, Boone T, et al. Peptibodies: a flexible alternative format to antibodies. MAbs 2012;4(5):586-91
  • Oliner JD, Bready J, Nguyen L, et al. AMG 386, a selective angiopoietin 1/2-neutralizing peptibody, inhibits angiogenesis in models of ocular neovascular diseases. Invest Ophthalmol Vis Sci 2012;53(4):2170-80
  • Nixon AE. Phage display as a tool for protease ligand discovery. Curr Pharm Biotechnol 2002;3(1):1-12
  • Clark JR, March JB. Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol 2006;24(5):212-18
  • Fernandez-Gacio A, Uguen M, Fastrez J. Phage display as a tool for the directed evolution of enzymes. Trends Biotechnol 2003;21(9):408-14
  • Yin H. Constrained peptides as miniature protein structures. ISRN Biochem 2012;2012:1-5
  • Craik DJ, Clark RJ, Daly NL. Potential therapeutic applications of the cyclotides and related cystine knot mini-proteins. Expert Opin Investig Drugs 2007;16(5):595-604
  • Smith AB, Daly NL, Craik DJ. Cyclotides: a patent review. Expert Opin Ther Pat 2011;21(11):1657-72
  • Starovasnik MA, Braisted AC, Wells JA. Structural mimicry of a native protein by a minimized binding domain. Proc Natl Acad Sci USA 1997;94(19):10080-5
  • Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nat Rev Drug Discov 2003;2(10):790-802
  • Li B, Tom JY, Oare D, et al. Minimization of a polypeptide hormone. Science 1995;270(5242):1657-60
  • Hosse RJ, Rothe A, Power BE. A new generation of protein display scaffolds for molecular recognition. Protein Sci 2006;15(1):14-27
  • Lofblom J, Feldwisch J, Tolmachev V, et al. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett 2010;584(12):2670-80
  • Kronqvist N, Malm M, Gostring L, et al. Combining phage and staphylococcal surface display for generation of ErbB3-specific Affibody molecules. Protein Eng Des Sel 2011;24(4):385-96
  • Friedman M, Stahl S. Engineered affinity proteins for tumour-targeting applications. Biotechnol Appl Biochem 2009;53(Pt 1):1-29
  • Sorensen J, Sandberg D, Sandstrom M, et al. First-in-human molecular imaging of HER2 expression in breast cancer metastases using the 111In-ABY-025 affibody molecule. J Nucl Med 2014;55(5):730-5
  • Ahlgren S, Orlova A, Wallberg H, et al. Targeting of HER2-expressing tumors using 111In-ABY-025, a second-generation affibody molecule with a fundamentally reengineered scaffold. J Nucl Med 2010;51(7):1131-8
  • Gebauer M, Skerra A. Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 2009;13(3):245-55
  • Tovey MG, Lallemand C. Immunogenicity and other problems associated with the use of biopharmaceuticals. Ther Adv Drug Saf 2011;2(3):113-28
  • Bartelds GM, Krieckaert CL, Nurmohamed MT, et al. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. Jama 2011;305(14):1460-8
  • Bhogal N. Immunotoxicity and immunogenicity of biopharmaceuticals: design concepts and safety assessment. Curr Drug Saf 2010;5(4):293-307
  • Maas C, Hermeling S, Bouma B, et al. A role for protein misfolding in immunogenicity of biopharmaceuticals. J Biol Chem 2007;282(4):2229-36
  • Klug A. Towards therapeutic applications of engineered zinc finger proteins. FEBS Lett 2005;579(4):892-4
  • Rader C, Cheresh DA, Barbas CFIII. A phage display approach for rapid antibody humanization: designed combinatorial V gene libraries. Proc Natl Acad Sci USA 1998;95(15):8910-15
  • Jamieson AC, Miller JC, Pabo CO. Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov 2003;2(5):361-8
  • Holt N, Wang J, Kim K, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 2010;28(8):839-47
  • Pawson EJ, Duran-Jimenez B, Surosky R, et al. Engineered zinc finger protein-mediated VEGF-a activation restores deficient VEGF-a in sensory neurons in experimental diabetes. Diabetes 2010;59(2):509-18
  • Papworth M, Kolasinska P, Minczuk M. Designer zinc-finger proteins and their applications. Gene 2006;366(1):27-38
  • Wang S, Sim TB, Kim YS, et al. Tools for target identification and validation. Curr Opin Chem Biol 2004;8(4):371-7
  • van Beijnum JR, Moerkerk P, Gerbers AJ, et al. Target validation for genomics using peptide-specific phage antibodies: a study of five gene products overexpressed in colorectal cancer. Int J Cancer 2002;101(2):118-27
  • Jeon J, Nim S, Teyra J, et al. A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Med 2014;6(7):57
  • Sioud M. Main approaches to target discovery and validation. Methods Mol Biol 2007;360:1-12
  • de Almeida SS, Magalhaes AA, de Castro Soares S, et al. The phage display technique: advantages and recent patents. Recent Pat DNA Gene Seq 2011;5(2):136-48
  • Cutler CS, Chanda N, Shukla R, et al. Nanoparticles and phage display selected peptides for imaging and therapy of cancer. Recent Results Cancer Res 2013;194:133-47
  • Lee JW, Song J, Hwang MP, et al. Nanoscale bacteriophage biosensors beyond phage display. Int J Nanomedicine 2013;8:3917-25
  • Lee S, Xie J, Chen X. Peptides and peptide hormones for molecular imaging and disease diagnosis. Chem Rev 2010;110(5):3087-111
  • Loi M, Di Paolo D, Soster M, et al. Novel phage display-derived neuroblastoma-targeting peptides potentiate the effect of drug nanocarriers in preclinical settings. J Control Release 2013;170(2):233-41
  • Ryan EM, Gorman SP, Donnelly RF, et al. Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy. J Pharm Pharmacol 2011;63(10):1253-64
  • Singh A, Poshtiban S, Evoy S. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors (Basel) 2013;13(2):1763-86
  • Palaniappan KK, Ramirez RM, Bajaj VS, et al. Molecular imaging of cancer Cells Using a Bacteriophage-Based 129Xe NMR Biosensor. Angew Chem 2013;125(18):4949-53
  • Tlili C, Sokullu E, Safavieh M, et al. Bacteria screening, viability, and confirmation assays using bacteriophage-impedimetric/loop-mediated isothermal amplification dual-response biosensors. Anal Chem 2013;85(10):4893-901
  • Haque A, Tonks NK. The use of phage display to generate conformation-sensor recombinant antibodies. Nat Protoc 2012;7(12):2127-43
  • Moradpour Z, Ghasemian A. Modified phages: novel antimicrobial agents to combat infectious diseases. Biotechnol Adv 2011;29(6):732-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.