495
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Appropriate models for novel osteoporosis drug discovery and future perspectives

, MD PhD, , MD, , PhD, , MD, , MD & , MD PhD

Bibliography

  • Sambrook P, Cooper C. Osteoporosis. Lancet 2006;367:2010-18
  • Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002;359:1761-7
  • Martin TJ, Seeman E. Bone remodeling: its local regulation and the emergence of bone fragility. Best Pract Res Clin Endo Endocrinol Metab 2008;22:701-22
  • Seeman E, Delmas PD. Bone quality-the material and structural basis of bone strength and fragility. N Engl J Med 2006;354:2250-61
  • Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int 2014;94:25-34
  • Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts and prospects. J Clin Invest 2005;115:3318-25
  • Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fractures. Lancet 1993;341:72-5
  • Hui SL, Slemenda CW, Carey MA, et al. Choosing between predictors of fractures. J Bone Miner Res 1995;10:1816-22
  • Siris ES, Adler R, Bilezikian J, et al. The clinical diagnosis of osteoporosis: a position statement from the National Bone Health Alliance Working Group. Osteoporos Int 2014;25:1439-43
  • Gennari L, Merlotti D, Nuti R. Perspectives in the treatment and prevention of osteoporosis. Drugs Today (Barc) 2009;45:629-47
  • Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet 2011;377:1276-87
  • Schwarz P, Jørgensen NR, Abrahamsen B. Status of drug development for the prevention and treatment of osteoporosis. Expert Opin Drug Discov 2014;9:245-53
  • Rissanen JP, Halleen JM. Models and screening assays for drug discovery in osteoporosis. Expert Opin Drug Discov 2010;5:1163-74
  • Copp DH, Cameron EC, Cheney BA, et al. Evidence for calcitonin--a new hormone from the parathyroid that lowers blood calcium. Endocrinology 1962;70:638-49
  • Gennari C. Basic aspects of calcitonin in skeletal health. In: Orwoll ES, Bilezotes M, editors. Osteoporosis: pathophysiology and clinical management, chapter 20. Humana Press, Inc; Totowa, NJ: 2003. p. 413-35
  • Wallach S, Rousseau G, Martin L, et al. Effects of calcitonin on animal and in vitro models of skeletal metabolism. Bone 1999;25:509-16
  • Chesnut CH, Azria M. Clinical utilization of salmon calcitonin in the treatment of osteoporosis. In: Orwoll ES, Bilezotes M, editors. Osteoporosis: pathophysiology and clinical management, chapter 21. Humana Press, Inc; Totowa, NJ: 2003. p. 437-46
  • Chesnut CHIII, Silverman S, Andriano K, et al. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am J Med 2000;109:267-76
  • Lindsay R, Hart DM, Forrest C, et al. Prevention of spinal osteoporosis in oophorectomised women. Lancet 1980;ii:1151-3
  • Turner RT, Riggs BL, Spelsberg TC. Skeletal effects of estrogen. Endocr Rev 1994;15:275-300
  • Bord S, Beavan S, Ireland D, et al. Mechanisms by which high dose estrogen therapy produces anabolic skeletal effects in postmenopausal women: role of locally produced growth factors. Bone 2001;29:216-22
  • Riggs BL, Khosla S, Melton LJ III. Sex steroids and the construction and conservation of the adult skeleton. Endo Rev 2002;23:279-302
  • Writing Group for the Women’s Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 2002;288:321-33
  • Jackson RD, Shidham S. The role of hormone therapy and calcium plus vitamin D for reduction of bone loss and risk for fractures: lessons learned from the Women’s Health Initiative. Curr Osteoporos Rep 2007;5:153-9
  • Estrogen and progestogen use in postmenopausal women: July 2008 position statement of The North American menopause society. Menopause 2008;15:584-602
  • Rossouw JE, Prentice RL, Manson JE, et al. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA 2007;297:1465-77
  • Manson JE, Hsia J, Johnson KC, et al. Women’s health initiative investigators. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med 2003;349:523-34
  • The Writing Group for the PEPI Trial. Effects of estrogen or estrogen/progestin regimens on heart disease risk factors in postmenopausal women: the Postmenopausal Estrogen/Progestin Interventions (PEPI) Trial. JAMA 1995;273:199-208
  • Komm BS, Mirkin S. An overview of current and emerging SERMs. J Steroid Biochem Mol Biol 2014;143:207-22
  • Gennari L, Merlotti D, Valleggi F, et al. Selective estrogen receptor modulators for postmenopausal osteoporosis: current state of development. Drugs Aging 2007;24:361-79
  • Riggs L, Hartmann LC. Selective estrogen-receptor modulators-mechanisms of action and application to clinical practice. N Engl J Med 2003;348:618-29
  • Mirkin S, Komm BS. Tissue-selective estrogen complexes for postmenopausal women. Maturitas 2013;76:213-20
  • Santen RJ, Kagan R, Altomare CJ, et al. Current and evolving approaches to individualizing estrogen receptor-based therapy for menopausal women. J Clin Endocrinol Metab 2014;99:733-47
  • Russell RG. Bisphosphonates: the first 40 years. Bone 2011;49:2-19
  • Francis MD, Russell RGG, Fleisch H. Diphosphonates inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo. Science 1969;165:1264-6
  • Fleisch H, Russell RGG, Francis MD. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science 1969;165:1262-4
  • Fleisch H, Russell RGG, Simpson B, et al. Prevention by a diphosphonate of immobilisation ‘osteoporosis’ in rats. Nature 1969;223:211-12
  • Rogers MJ, Crockett JC, Coxon FP, et al. Biochemical and molecular mechanisms of action of bisphosphonates. Bone 2011;49:34-41
  • Khosla S, Bilezikian JP, Dempster DW, et al. Benefits and risks of bisphosphonate therapy for osteoporosis. J Clin Endocrinol Metab 2012;97:2272-82
  • Dempster DW, Cosman F, Parisien M, et al. Anabolic actions of parathyroid hormone on bone. Endocr Rev 1993;14:690-709
  • Reeve J, Hesp R, Williams D, et al. Anabolic effect of low doses of a fragment of human parathyroid hormone on the skeleton in postmenopausal osteoporosis. Lancet 1976;1:1035-8
  • Reeve J, Meunier PJ, Parsons JA, et al. Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: a multicentre trial. Br Med J 1980;280:1340-4
  • Vahle JL, Sato M, Long GG, et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1-34) for 2 years and relevance to human safety. Toxicol Pathol 2002;30:312-21
  • Vahle JL, Long GG, Sandusky G, et al. Bone neoplasms in F344 rats given teriparatide [rhPTH(1-34)] are dependent on duration of treatment and dose. Toxicol Pathol 2004;32:426-38
  • Sato M, Vahle J, Schmidt A, et al. Abnormal bone architecture and biomechanical properties with near-lifetime treatment of rats with PTH. Endocrinology 2002;143:3230-42
  • Hodsman AB, Bauer DC, Dempster DW, et al. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev 2005;26:688-703
  • Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001;344:1434-41
  • Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 2007;357:905-16
  • Okazaki M, Potts JT, Gardella TJ. Identification and optimization of residues in PTH and PTHrP that determine altered modes of binding to the PTH/PTHrP receptor. J Bone Miner Res 2008;23:S103
  • Trivedi R, Goswami R, Chattopadhyay N. Investigational anabolic therapies for osteoporosis. Expert Opin Investig Drugs 2010;19:995-1005
  • Feurer E, Chapurlat R. Emerging drugs for osteoporosis. Expert Opin Emeriging Drugs 2014;19:1-11
  • Leder BZ, O’Dea LS, Zanchetta JR, et al. Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 2015;100:697-706
  • Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89:309-19
  • Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165-76
  • Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998;95:3597-602
  • Li J, Sarosi I, Yan XQ, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 2000;97:1566-71
  • Ross AB, Bateman TA, Kostenuik PJ, et al. The effects of osteoprotegerin on the mechanical properties of rat bone. J Mater Sci Mater Med 2001;12:583-8
  • Ominsky MS, Kostenuik PJ, Cranmer P, et al. The RANKL inhibitor OPG-Fc increases cortical and trabecular bone mass in young gonad-intact cynomolgus monkeys. Osteoporosis Int 2007;18:1073-82
  • Bekker PJ, Holloway DL, Rasmussen AS, et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Mineral Res 2004;19:1059-66
  • McClung MR, Lewiecki EM, Cohen SB, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 2006;354:821-31
  • Brown JP, Prince RL, Deal C, et al. Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res 2009;24:153-61
  • Cummings SR, San Martin J, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 2009;361:756-65
  • Bone HG, Chapurlat R, Brandi ML, et al. The effect of three or six years of denosumab exposure in women with postmenopausal osteoporosis: results from the FREEDOM extension. J Clin Endocrinol Metab 2013;98:4483-92
  • Gelb BD, Shi GP, Chapman HA, et al. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 1996;273:1236-8
  • Gowen M, Lazner F, Dodds R, et al. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 1999;14:1654-63
  • Kiviranta R, Morko J, Uusitalo H, et al. Accelerated turnover of metaphyseal trabecular bone in mice overexpressing cathepsin K. J Bone Miner Res 2001;16:1444-52
  • Rodan SB, Duong LT. Cathepsin K-a new molecular target for osteoporosis. IBMS BoneKEy 2008;5:16-24
  • Gauthier JY, Chauret N, Cromlish W, et al. The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett 2008;18:923-8
  • Cusick T, Chen CM, Pennypacker BL, et al. Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey. J Bone Miner Res 2012;27:524-37
  • Williams DS, McCracken PJ, Purcell M, et al. Effect of odanacatib on bone turnover markers, bone density and geometry of the spine and hip of ovariectomized monkeys: a head-to-head comparison with alendronate. Bone 2013;56:489-96
  • Eisman JA, Bone HG, Hosking DJ, et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J Bone Miner Res 2011;26:242-51
  • Langdahl B, Binkley N, Bone H, et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: five years of continued therapy in a phase 2 study. J Bone Miner Res 2012;27:2251-8
  • Bonnick S, De Villiers T, Odio A, et al. Effects of odanacatib on BMD and safety in the treatment of osteoporosis in postmenopausal women previously treated with alendronate: a randomized placebo-controlled trial. J Clin Endocrinol Metab 2013;98:4727-35
  • Bone HG, Dempster DW, Eisman JA, et al. Odanacatib for the treatment of postmenopausal osteoporosis: development history and design and participant characteristics of LOFT, the Long-Term Odanacatib Fracture Trial. Osteoporos Int 2015;26:699-712
  • Gong Y, Slee RB, Fukai N, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001;107:513-23
  • Little RD, Carulli JP, Del Mastro RG, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 2002;70:11-19
  • Boyden LM, Mao J, Belsky J, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002;346:1513-21
  • Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Molec Genet 2001;10:537-43
  • Brunkow M, Gardner JC, Van Ness J, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot- containing protein. Am J Hum Genet 2001;68:577-89
  • Balemans W, Patel N, Ebeling M, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet 2002;39:91-7
  • Manolagas SC. Wnt signaling and osteoporosis. Maturitas 2014;78:233-7
  • Kramer I, Loots GG, Studer A, et al. Parathyroid hormone (PTH)–induced bone gain is blunted in SOST overexpressing and deficient mice. J Bone Miner Res 2010;25:178-89
  • Winkler DG, Sutherland MK, Geoghegan JC, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. Embo J 2003;22:6267-76
  • Papapoulos SE. Targeting sclerostin as potential treatment of osteoporosis. Ann Rheum Dis 2011;70:i119-22
  • Das S, Sakthiswary R. Bone metabolism and histomorphometric changes in murine models treated with sclerostin antibody: a systematic review. Curr Drug Targets 2013;14:1667-74
  • McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 2014;370:412-20
  • Recker RR, Benson CT, Matsumoto T, et al. A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res 2015;30:216-24
  • Chang MK, Kramer I, Huber T, et al. Disruption of Lrp4 function by genetic deletion or pharmacological blockade increases bone mass and serum sclerostin levels. Proc Natl Acad Sci USA 2014;111:E5187-95
  • Kartner N, Manolson MF. Novel techniques in the development of osteoporosis drug therapy: the osteoclast ruffled-border vacuolar H(+)-ATPase as an emerging target. Expert Opin Drug Discov 2014;9:505-22
  • Brommage R. Genetic approaches to identifying novel osteoporosis drug targets. J Cell Biochem 2015. [Epub ahead of print]
  • van Wijnen AJ, van de Peppel J, van Leeuwen JP, et al. MicroRNA functions in osteogenesis and dysfunctions in osteoporosis. Curr Osteoporos Rep 2013;11:72-82
  • Krzeszinski JY, Wei W, Huynh H, et al. miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature 2014;512:431-5
  • Li CJ, Cheng P, Liang MK, et al. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest 2015;125:1509-22
  • Wang Y, Grainger DW. RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Adv Drug Deliv Rev 2012;64:1341-57
  • Wang Y, Grainger DW. Developing siRNA therapies to address osteoporosis. Ther Deliv 2013;4:1239-46
  • Kratchmarova I, Blagoev B, Haack-Sorensen M, et al. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 2005;308:1472-7
  • Zhang H, Recker R, Lee WN, et al. Proteomics in bone research. Expert Rev Proteomics 2010;7:103-11
  • Evans AM, DeHaven CD, Barrett T, et al. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 2009;81:6656-67
  • Liu Y, Wu J, Zhu Y, et al. Therapeutic application of mesenchymal stem cells in boneand joint diseases. Clin Exp Med 2014;14:13-24
  • Marie PJ. Targeting integrins to promote bone formation and repair. Nat Rev Endocrinol 2013;9:288-95
  • Fajardo RJ, Karim L, Calley VI, et al. A review of rodent models of type 2 diabetic skeletal fragility. J Bone Miner Res 2014;29:1025-40
  • Lewiecki EM, Cummings SR, Cosman F. Treat-to-target for osteoporosis: is now the time? J Clin Endocrinol Metab 2013;98:946-53

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.