3,263
Views
64
CrossRef citations to date
0
Altmetric
Reviews

Targeting intrinsically disordered proteins in rational drug discovery

ORCID Icon &

Bibliography

••A comprehensive overview of multifunctional roles of IDPs.

  • Rezaei-Ghaleh N, Blackledge M, Zweckstetter M. Intrinsically disordered proteins: from sequence and conformational properties toward drug discovery. Chembiochem. 2012;13(7):930–950.

••Detailed review on experimental and computational methods for IDP characterization.

  • Jensen MR, Zweckstetter M, Huang JR, et al. Exploring free-energy landscapes of intrinsically disordered proteins at atomic resolution using NMR spectroscopy. Chem Rev. 2014;114(13):6632–6660.

•Comprehensive review on NMR and experimental techniques for IDP characterization.

••Atomic level study of the phosphorylation induced folding of an IDP.

  • Linding R, Jensen LJ, Diella F, et al. Protein disorder prediction: implications for structural proteomics. Structure. 2003;11(11):1453–1459.
  • Ward JJ, Sodhi JS, McGuffin LJ, et al. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol. 2004;337(3):635–645.
  • Pancsa R, Tompa P. Structural disorder in eukaryotes. PloS One. 2012;7(4):e34687.
  • Theillet FX, Binolfi A, Frembgen-Kesner T, et al. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev. 2014;114(13):6661–6714.
  • Uversky VN, Dave V, Iakoucheva LM, et al. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev. 2014;114(13):6844–6879.

•Systematic review on IDPs and their connection to disease.

  • Oldfield CJ, Cheng Y, Cortese MS, et al. Comparing and combining predictors of mostly disordered proteins. Biochemistry. 2005;44(6):1989–2000.
  • Lobanov MY, Galzitskaya OV. How common is disorder? Occurrence of disordered residues in four domains of life. Int J Mol Sci. 2015;16(8):19490–19507.
  • Prilusky J, Felder CE, Zeev-Ben-Mordehai T, et al. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics. 2005;21(16):3435–3438.
  • Uversky VN, Oldfield CJ, Dunker AK. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys. 2008;37:215–246.
  • Sickmeier M, Hamilton JA, LeGall T, et al. DisProt: the database of disordered proteins. Nucleic Acids Res. 2007;35(Database issue):D786–93.
  • Varadi M, Kosol S, Lebrun P, et al. pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins. Nucleic Acids Res. 2014;42(Database issue):D326–35.
  • Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science. 2006;314(5800):777–781.
  • Romero PR, Zaidi S, Fang YY, et al. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. P Natl Acad Sci USA. 2006;103(22):8390–8395.
  • Hegyi H, Buday L, Tompa P. Intrinsic structural disorder confers cellular viability on oncogenic fusion proteins. PLoS Comput Biol. 2009;5(10):e1000552.
  • Markiv A, Rambaruth ND, Dwek MV. Beyond the genome and proteome: targeting protein modifications in cancer. Curr Opin Pharmacol. 2012;12(4):408–413.
  • Peng Z, Mizianty MJ, Xue B, et al. More than just tails: intrinsic disorder in histone proteins. Mol Biosyst. 2012;8(7):1886–1901.
  • Weatheritt RJ, Gibson TJ. Linear motifs: lost in (pre)translation. Trends Biochem Sci. 2012;37(8):333–341.
  • Babu MM, van der Lee R, de Groot NS, et al. Intrinsically disordered proteins: regulation and disease. Curr Opin Struc Biol. 2011;21(3):432–440.

•Overview about the importance of IDPs for signaling fidelity and drug targeting.

  • Vendruscolo M. Enzymatic activity in disordered states of proteins. Curr Opin Chem Biol. 2010;14(5):671–675.
  • Schulenburg C, Hilvert D. Protein conformational disorder and enzyme catalysis. Top Curr Chem. 2013;337:41–67.
  • Smock RG, Blackburn ME, Gierasch LM. Conserved, disordered C terminus of DnaK enhances cellular survival upon stress and DnaK in vitro chaperone activity. J Biol Chem. 2011;286(36):31821–31829.
  • Tompa P, Csermely P. The role of structural disorder in the function of RNA and protein chaperones. FASEB J. 2004;18(11):1169–1175.
  • Kuznetsova IM, Turoverov KK, Uversky VN. What macromolecular crowding can do to a protein. Int J Mol Sci. 2014;15(12):23090–23140.
  • Greenwald J, Riek R. Biology of amyloid: structure, function, and regulation. Structure. 2010;18(10):1244–1260.
  • Nag S, Sarkar B, Bandyopadhyay A, et al. Nature of the amyloid-beta monomer and the monomer-oligomer equilibrium. J Biol Chem. 2011;286(16):13827–13833.
  • Chakrabortee S, Meersman F, Kaminski Schierle GS, et al. Catalytic and chaperone-like functions in an intrinsically disordered protein associated with desiccation tolerance. Proc Natl Acad Sci USA. 2010;107(37):16084–16089.
  • Uversky VN. Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: another illustration of the D(2) concept. Expert Rev Proteomics. 2010;7(4):543–564.
  • Midic U, Oldfield CJ, Dunker AK, et al. Protein disorder in the human diseasome: unfoldomics of human genetic diseases. BMC Genomics. 2009;10(Suppl 1):S12.
  • Uversky VN, Oldfield CJ, Midic U, et al. Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics. 2009;10(Suppl 1):S7.
  • Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475(7356):324–332.
  • Lee L, Sakurai M, Matsuzaki S, et al. SUMO and Alzheimer’s disease. NeuroMolecular Med. 2013;15(4):720–736.
  • Uversky VN. Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators. Front Mol Biosci. 2014;1:6.
  • Brown CJ, Lain S, Verma CS, et al. Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer. 2009;9(12):862–873.
  • Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014;25(3):304–317.
  • Collavin L, Lunardi A, Del Sal G. p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ. 2010;17(6):901–911.
  • Nair SK, Burley SK. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell. 2003;112(2):193–205.
  • Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999;19(1):1–11.
  • Hammoudeh DI, Follis AV, Prochownik EV, et al. Multiple independent binding sites for small-molecule inhibitors on the oncoprotein c-Myc. J Am Chem Soc. 2009;131(21):7390–7401.
  • Cheng Y, LeGall T, Oldfield CJ, et al. Rational drug design via intrinsically disordered protein. Trends Biotechnol. 2006;24(10):435–442.
  • Abelev GI. Alpha-fetoprotein in ontogenesis and its association with malignant tumors. Adv Cancer Res. 1971;14:295–358.
  • Cooper GJ, Leighton B, Dimitriadis GD, et al. Amylin found in amyloid deposits in human type 2 diabetes mellitus may be a hormone that regulates glycogen metabolism in skeletal muscle. Proc Natl Acad Sci USA. 1988;85(20):7763–7766.
  • Cheng Y, LeGall T, Oldfield CJ, et al. Abundance of intrinsic disorder in protein associated with cardiovascular disease. Biochemistry. 2006;45(35):10448–10460.
  • Derisbourg M, Leghay C, Chiappetta G, et al. Role of the Tau N-terminal region in microtubule stabilization revealed by new endogenous truncated forms. Sci Rep. 2015;5:9659.
  • Chen J, Kanai Y, Cowan NJ, et al. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature. 1992;360(6405):674–677.
  • Kadavath H, Hofele RV, Biernat J, et al. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc Natl Acad Sci USA. 2015;112(24):7501–7506.
  • Kadavath H, Jaremko M, Jaremko L, et al. Folding of the Tau protein on microtubules. Angew Chem. 2015;54(35):10347–10351.

••Study demonstrating the folding of specific regions in microtubule associated protein Tau upon binding to mega-Dalton sized microtubules.

  • Sergeant N, Bretteville A, Hamdane M, et al. Biochemistry of Tau in Alzheimer’s disease and related neurological disorders. Expert Rev Proteomics. 2008;5(2):207–224.
  • Mandelkow EM, Biernat J, Drewes G, et al. Tau domains, phosphorylation, and interactions with microtubules. Neurobiol Aging. 1995;16(3):355–362; discussion 62–3
  • Cripps D, Thomas SN, Jeng Y, et al. Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J Biol Chem. 2006;281(16):10825–10838.
  • Cohen TJ, Guo JL, Hurtado DE, et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun. 2011;2:252.
  • Buee L, Bussiere T, Buee-Scherrer V, et al. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev. 2000;33(1):95–130.
  • Tepper K, Biernat J, Kumar S, et al. Oligomer formation of tau protein hyperphosphorylated in cells. J Biol Chem. 2014;289(49):34389–34407.
  • Lasagna-Reeves CA, Castillo-Carranza DL, Jackson GR, et al. Tau oligomers as potential targets for immunotherapy for Alzheimer’s disease and tauopathies. Curr Alzheimer Res. 2011;8(6):659–665.
  • Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci. 2001;24:1121–1159.

••Comprehensive review on the role of protein Tau in neurodegenerative diseases.

  • Irwin DJ, Lee VM, Trojanowski JQ. Parkinson’s disease dementia: convergence of alpha-synuclein, tau and amyloid-beta pathologies. Nat Rev Neurosci. 2013;14(9):626–636.
  • Akoury E, Gajda M, Pickhardt M, et al. Inhibition of tau filament formation by conformational modulation. J Am Chem Soc. 2013;135(7):2853–2862.
  • Noble W, Planel E, Zehr C, et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci USA. 2005;102(19):6990–6995.
  • Zhang B, Maiti A, Shively S, et al. Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA. 2005;102(1):227–231.
  • Pul R, Dodel R, Stangel M. Antibody-based therapy in Alzheimer’s disease. Expert Opin Biol Ther. 2011;11(3):343–357.
  • Davidson WS, Jonas A, Clayton DF, et al. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem. 1998;273(16):9443–9449.
  • Auluck PK, Caraveo G, Lindquist S. alpha-Synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu Rev Cell Dev Biol. 2010;26:211–233.
  • Goedert M, Spillantini MG, Del Tredici K, et al. 100 years of Lewy pathology. Nat Rev Neurol. 2013;9(1):13–24.
  • Jimenez JL, Guijarro JI, Orlova E, et al. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 1999;18(4):815–821.
  • Wegmann S, Muller DJ, Mandelkow E. Investigating fibrillar aggregates of Tau protein by atomic force microscopy. Methods Mol Biol. 2012;849:169–183.
  • Gibbs EB, Showalter SA. Quantitative biophysical characterization of intrinsically disordered proteins. Biochemistry. 2015;54(6):1314–1326.
  • Galea CA, Nourse A, Wang Y, et al. Role of intrinsic flexibility in signal transduction mediated by the cell cycle regulator, p27 Kip1. J Mol Biol. 2008;376(3):827–838.
  • Ferreon AC, Moran CR, Gambin Y, et al. Single-molecule fluorescence studies of intrinsically disordered proteins. Methods Enzymol. 2010;472:179–204.
  • Ferreon AC, Moosa MM, Gambin Y, et al. Counteracting chemical chaperone effects on the single-molecule alpha-synuclein structural landscape. Proc Natl Acad Sci USA. 2012;109(44):17826–17831.
  • Krishnan R, Goodman JL, Mukhopadhyay S, et al. Conserved features of intermediates in amyloid assembly determine their benign or toxic states. Proc Natl Acad Sci USA. 2012;109(28):11172–11177.
  • Ferreon AC, Ferreon JC, Wright PE, et al. Modulation of allostery by protein intrinsic disorder. Nature. 2013;498(7454):390–394.
  • Lee T, Moran-Gutierrez CR, Deniz AA. Probing protein disorder and complexity at single-molecule resolution. Semin Cell Dev Biol. 2015;37:26–34.
  • Ferreon AC, Gambin Y, Lemke EA, et al. Interplay of alpha-synuclein binding and conformational switching probed by single-molecule fluorescence. Proc Natl Acad Sci USA. 2009;106(14):5645–5650.
  • Ferreon AC, Moran CR, Ferreon JC, et al. Alteration of the alpha-synuclein folding landscape by a mutation related to Parkinson’s disease. Angew Chem. 2010;49(20):3469–3472.
  • Aznauryan M, Nettels D, Holla A, et al. Single-molecule spectroscopy of cold denaturation and the temperature-induced collapse of unfolded proteins. J Am Chem Sci. 2013;135(38):14040–14043.
  • Brucale M, Schuler B, Samori B. Single-molecule studies of intrinsically disordered proteins. Chem Rev. 2014;114(6):3281–3317.
  • Soranno A, Koenig I, Borgia MB, et al. Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments. Proc Natl Acad Sci USA. 2014;111(13):4874–4879.
  • Wuttke R, Hofmann H, Nettels D, et al. Temperature-dependent solvation modulates the dimensions of disordered proteins. Proc Natl Acad Sci USA. 2014;111(14):5213–5218.
  • Konig I, Zarrine-Afsar A, Aznauryan M, et al. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells. Nat Methods. 2015;12(8):773–779.
  • Bernado P, Svergun DI. Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Mol Biosyst. 2012;8(1):151–167.
  • Narayanan RL, Durr UH, Bibow S, et al. Automatic assignment of the intrinsically disordered protein Tau with 441-residues. J Am Chem Sci. 2010;132(34):11906–11907.
  • Felli IC, Pierattelli R. Recent progress in NMR spectroscopy: toward the study of intrinsically disordered proteins of increasing size and complexity. IUBMB Life. 2012;64(6):473–481.

•Detailed description of advances in NMR spectroscopy for IDP characterization.

  • Konrat R. NMR contributions to structural dynamics studies of intrinsically disordered proteins. J Magn Reson. 2014;241:74–85.
  • Yao X, Becker S, Zweckstetter M. A six-dimensional alpha proton detection-based APSY experiment for backbone assignment of intrinsically disordered proteins. J Biomol NMR. 2014;60(4):231–240.
  • Wishart DS, Sykes BD. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR. 1994;4(2):171–180.
  • Mittag T, Forman-Kay JD. Atomic-level characterization of disordered protein ensembles. Curr Opin Struc Biol. 2007;17(1):3–14.

•Description of experimental and computational methods for IDP ensemble description.

  • Jensen MR, Markwick PR, Meier S, et al. Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings. Structure. 2009;17(9):1169–1185.
  • Kosol S, Contreras-Martos S, Cedeno C, et al. Structural characterization of intrinsically disordered proteins by NMR spectroscopy. Molecules. 2013;18(9):10802–10828.
  • Schwalbe M, Kadavath H, Biernat J, et al. Structural impact of Tau phosphorylation at threonine 231. Structure. 2015;23(8):1448–1458.
  • Salmon L, Nodet G, Ozenne V, et al. NMR characterization of long-range order in intrinsically disordered proteins. J Am Chem Sci. 2010;132(24):8407–8418.
  • Bertoncini CW, Jung YS, Fernandez CO, et al. Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proc Natl Acad Sci. 2005;102(5):1430–1435.

••Study revealing critical changes in conformational ensemble of alpha-synuclein, the protein which folds into pathogenic aggregates in Parkinson disease.

  • Dedmon MM, Lindorff-Larsen K, Christodoulou J, et al. Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Sci. 2005;127(2):476–477.
  • Schwalbe M, Ozenne V, Bibow S, et al. Predictive atomic resolution descriptions of intrinsically disordered hTau40 and alpha-synuclein in solution from NMR and small angle scattering. Structure. 2014;22(2):238–249.
  • Mukrasch MD, Bibow S, Korukottu J, et al. Structural polymorphism of 441-residue tau at single residue resolution. PloS Biology. 2009;7(2):e34.

•Study reporting an ensemble description of the full-length Tau protein and its interactions with microtubules.

  • Palmer AG, Massi F. Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem Rev. 2006;106(5):1700–1719.
  • Korzhnev DM, Kay LE. Probing invisible, low-populated states of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding. Acc Chem Res. 2008;41(3):442–451.
  • Allison JR, Varnai P, Dobson CM, et al. Determination of the free energy landscape of alpha-synuclein using spin label nuclear magnetic resonance measurements. J Am Chem Sci. 2009;131(51):18314–18326.
  • Xiang S, Gapsys V, Kim HY, et al. Phosphorylation drives a dynamic switch in serine/arginine-rich proteins. Structure. 2013;21(12):2162–2174.

•Atomic level study of phosphorylation induced dynamic switch in an IDP.

  • Lindorff-Larsen K, Trbovic N, Maragakis P, et al. Structure and dynamics of an unfolded protein examined by molecular dynamics simulation. J Am Chem Sci. 2012;134(8):3787–3791.
  • Piana S, Klepeis JL, Shaw DE. Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr Opin Struc Biol. 2014;24:98–105.

•Assessment of molecular dynamic simulations for the study of IDPs.

  • Patel S, Ramanujam V, Srivastava AK, et al. Conformational propensities and dynamics of a betagamma-crystallin, an intrinsically disordered protein. Phys Chem Chem Phys. 2014;16(25):12703–12718.
  • Rezaei-Ghaleh N, Klama F, Munari F, et al. Predicting the rotational tumbling of dynamic multidomain proteins and supramolecular complexes. Angew Chem. 2013;52(43):11410–11414.
  • Rezaei-Ghaleh N, Klama F, Munari F, et al. HYCUD: a computational tool for prediction of effective rotational correlation time in flexible proteins. Bioinformatics. 2015;31(8):1319–1321.
  • Metallo SJ. Intrinsically disordered proteins are potential drug targets. Curr Opin Chem Biol. 2010;14(4):481–488.
  • Follis AV, Hammoudeh DI, Wang H, et al. Structural rationale for the coupled binding and unfolding of the c-Myc oncoprotein by small molecules. Chem Biol. 2008;15(11):1149–1155.
  • Cuchillo R, Michel J. Mechanisms of small-molecule binding to intrinsically disordered proteins. Biochem Soc Trans. 2012;40(5):1004–1008.
  • Michel J, Cuchillo R. The impact of small molecule binding on the energy landscape of the intrinsically disordered protein C-myc. PloS One. 2012;7(7):e41070.
  • Jin F, Yu C, Lai L, et al. Ligand clouds around protein clouds: a scenario of ligand binding with intrinsically disordered proteins. PLoS Comput Biol. 2013;9(10):e1003249.
  • Krishnan N, Koveal D, Miller DH, et al. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat Chem Biol. 2014;10(7):558–566.
  • Heller GT, Sormanni P, Vendruscolo M. Targeting disordered proteins with small molecules using entropy. Trends Biochem Sci. 2015;40(9):491–496.
  • Fonseca-Ornelas L, Eisbach SE, Paulat M, et al. Small molecule-mediated stabilization of vesicle-associated helical alpha-synuclein inhibits pathogenic misfolding and aggregation. Nat Comm. 2014;5:5857.

•Study describing a novel strategy for inhibition of the pathogenic aggregation of vesical bound alpha-synuclein.

  • Jung KY, Wang H, Teriete P, et al. Perturbation of the c-Myc-Max protein-protein interaction via synthetic alpha-helix mimetics. J Med Chem. 2015;58(7):3002–3024.
  • Schirmer RH, Adler H, Pickhardt M, et al. Lest we forget you–methylene blue. Neurobiol Aging. 2011;32(12):2325, e7–16.
  • Wischik CM, Staff RT, Wischik DJ, et al. Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer’s disease. J Alzheimers Dis. 2015;44(2):705–720.
  • Akoury E, Pickhardt M, Gajda M, et al. Mechanistic basis of phenothiazine-driven inhibition of Tau aggregation. Angew Chem. 2013;52(12):3511–3515.

•NMR-based study elucidating the mechanism of small molecule-mediated inhibition of Tau aggregation.

  • Toth G, Gardai SJ, Zago W, et al. Targeting the intrinsically disordered structural ensemble of alpha-synuclein by small molecules as a potential therapeutic strategy for Parkinson’s disease. PloS One. 2014;9(2):e87133.

•First report on directly targeting IDP ensembles for drug discovery.

  • Weinreb PH, Zhen W, Poon AW, et al. NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry. 1996;35(43):13709–13715.
  • Acharya S, Safaie BM, Wongkongkathep P, et al. Molecular basis for preventing alpha-synuclein aggregation by a molecular tweezer. J Biol Chem. 2014;289(15):10727–10737.
  • Prabhudesai S, Sinha S, Attar A, et al. A novel “molecular tweezer” inhibitor of alpha-synuclein neurotoxicity in vitro and in vivo. Neurotherapeutics. 2012;9(2):464–476.
  • Mangialasche F, Solomon A, Winblad B, et al. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 2010;9(7):702–716.
  • Chene P. Inhibition of the p53-MDM2 interaction: targeting a protein-protein interface. Mol Cancer Res. 2004;2(1):20–28.
  • Khoo KH, Verma CS, Lane DP;. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov. 2014;13(3):217–236.
  • Yin X, Giap C, Lazo JS, et al. Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene. 2003;22(40):6151–6159.
  • Aeluri M, Chamakuri S, Dasari B, et al. Small molecule modulators of protein-protein interactions: selected case studies. Chem Rev. 2014;114(9):4640–4694.
  • Belmar J, Fesik SW. Small molecule Mcl-1 inhibitors for the treatment of cancer. Pharmacol Ther. 2015;145:76–84.
  • Besbes S, Mirshahi M, Pocard M, et al. New dimension in therapeutic targeting of BCL-2 family proteins. Oncotarget. 2015;6(15):12862–12871.