162
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Development of new antituberculous agents based on new drug targets and structure–activity relationship

, Phd, Professor
Pages 21-49 | Published online: 19 Dec 2007

Bibliography

  • Frieden TR, Sterling TR, Munsiff SS, et al. Tuberculosis. Lancet 2003;362:887-99
  • World Health Organization. WHO report 2007: Global tuberculosis control-surveillance, Planning, Financing 2007. Available from: URL: http://www.who.int/tb/publications/global report/2007/en/index.html [last accessed 16 November, 2007]
  • Control of XRD-TB. Update on progress since the Global XDR-TB Task Force Meting, 9 – 10 October 2006, WHO 2007. Available from: URL: http://www.stoptb.org/events/world_tb_day/2007/assets/documents/globaltaskforce_update_feb07.pdf [last accessed 16 November 2007]
  • Smith CV, Sharma V, Sacchettini JC. TB drug discovery: addressing issues of persistence and resistance. Tuberculosis 2004;84:45-55
  • Hooper DC, Wolfson JS. The fluoroquinolones: pharmacology, clinical uses, and toxicities in humans. Antimicrob Agents Chemother 1985;28:716-21
  • Ginsburg AS, Grosset JH, Bishai WR. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect Dis 2003;3:432-42
  • Ji B, Lounis N, Maslo C, et al. In vitro and in vivo activities of moxifloxacin and clinafloxacin against Mycobacterium tuberculosis. Antimicrob Agents Chemother 1998;42:2066-9
  • Tomioka H, Sato K, Akaki T, et al. Comparative in vitro antimicrobial activities of the newly synthesized quinolone HSR-903, sitafloxacin (DU-6859a), gatifloxacin (AM-1155), and levofloxacin against Mycobacterium tuberculosis and Mycobacterium avium complex. Antimicrob Agents Chemother 1999;43:3001-4
  • Alvirez-Freites EJ, Carter JL, Cynamon MH. In vitro and in vivo activities of gatifloxacin against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2002;46:1022-5
  • Fattorini L, Tan D, Iona E, et al. Activities of moxifloxacin alone and in combination with other antimicrobial agents against multi-drug resistant Mycobacterium tuberculosis infection in BALB/c mice. Antimicrob Agents Chemother 2003;47:360-2
  • Lu T, Drlica K. In vitro activity of C-8-methoxy fluoroquinolones against mycobacteria when combined with antituberculosis agents. J Antimicrob Chemother 2003;52:1025-8
  • Tomioka H. Current status of some antituberculosis drugs and the development of new antituberculous agents with special reference to their in vitro and in vivo antimicrobial activities. Curr Pharm Des 2006;12:4047-70
  • Nuermberger EL, Yoshimatsu T, Tyagi S, et al. Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis. Am J Respir Crit Care Med 2004;169:42142-6
  • Pletz MW, De Roux A, Roth A, et al. Early bactericidal activity of moxifloxacin in treatment of pulmonary tuberculosis: a prospective, randomized study. Antimicrob Agents Chemother 2004;48:780-2
  • National Library of Medicine, US. Available from: URL: http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed [last accessed 16 November 2007]
  • Hudson A, Imamura T, Gutteridge W, et al. The current anti-TB drug research and development pipeline. Special program for research and training in tropical diseases (TDR), World Health Organization; 2003
  • Stop TB Partnership. Progress report on the global plan to stop tuberculosis. World Health Organization; 2004
  • Ballell L, Field RA, Duncan K, Young RJ. New small-molecule synthetic antimycobacterials. Antimicrob Agents Chemother 2005;49:2153-63
  • Casenghi M. Development of new drugs for TB chemotherapy, analysis of the current drug pipeline. Medecins Sans Frontieres, Campaign for Access to Essential Medicines; 2006
  • Janin YL. Antituberculosis drugs: ten years of research. Bioorg Med Chem 2007;15:2479-513
  • Stop TB Partnership. New technologies for tuberculosis control: a framework for their adoption, introduction and implementation. World Health Organization; 2007
  • Casenghi M. Development of new drugs for TB chemotherapy 2006. Available from: URL: http//www.accessmed-msf.org/documents/TBPipeline.pdf [last accessed 16 November 2007]
  • Barry CE III, Boshoff HI, Dowd CS. Prospects for clinical introduction of nitroimidazole antibiotics for the treatment of tuberculosis. Curr Pharm Des 2004;10:3239-62
  • Stover CK, Warrener P, Vandevanter DR, et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 2000;405:962-6
  • Nuermberger E, Rosenthal I, Tyagi S, et al. Combination chemotherapy with the nitroimidazopyran PA-824 and first-line drugs in a murine model of tuberculosis. Antimicrob Agents Chemother 2006;50:2621-5
  • Matsumoto M, Hashizume H, Tomishige T, et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med 2006;3:2131-44
  • Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 2005;307:223-7
  • Koul A, Dendouga N, Vergauwen K, et al. Diarylquinolines target subunit C of mycobacterial ATP synthase. Nat Chem Biol 2007;3:323-4
  • Petrella S, Cambau E, Chauffour A, et al. Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria. Antimicrob Agents Chemother 2006;50:2853-6
  • Ibrahim M, Andries K, Lounis N, et al. Synergistic activity of R207910 combined with pyrazinamide against murine tuberculosis. Antimicrob Agents Chemother 2007;51:1011-15
  • Lenaerts AJ, Hoff D, Aly S, et al. Location of persisting mycobacteria in the guinea-pig model of tuberculosis revealed by R207910. Antimicrob Agents Chemother 2007;51:3338-45
  • Cynamon MH, Klemens SP, Sharpe CA, Chase S. Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model. Antimicrob Agents Chemother 1999;43:1189-91
  • Sood R, Rao M, Singhal S, Rattan A. Activity of RBx 7644 and RBx 8700, new investigational oxazolidinones, against Mycobacterium tuberculosis infected murine macrophages. Int J Antimicrob Agents 2005;25:464-8
  • Sood R, Bhadauriya T, Rao M, et al. Antimycobacterial activities of oxazolidinones: a review. Infect Disord Drug Targets 2006;6:343-54
  • Vera-Cabrera L, Gonzalez E, Rendon A, et al. In vitro activities of DA-7157 and DA-7218 against Mycobacterium tuberculosis and Nocardia brasiliensis. Antimicrob Agents Chemother 2006;50:3170-2
  • Alcala L, Ruiz-Serrano MJ, Perez-Fernandez G, et al. In vitro activities of linezolid against clinical isolates of Mycobacterium tuberculosis that are susceptible or resistant to first-line antituberculous drugs. Antimicrob Agents Chemother 2003;47:416-17
  • Fortún J, Martín-Dávila P, Navas E, et al. Linezolid for the treatment of multi-drug resistant tuberculosis. J Antimicrob Chemother 2005;56:180-5
  • Vera-Cabrera L, Castro-Garza J, Rendon A, et al. In vitro susceptibility of Mycobacterium tuberculosis clinical isolates to garenoxacin and DA-7867. Antimicrob Agents Chemother 2005;49:4351-3
  • Malhotra S, Gautam R, Bhadauriya T, et al. In vivo activity of RBx 8700 against Mycobacterium tuberculosis. 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL, (14 – 17 September 2003) (Abstract No. F-2106)
  • Amaral L, Kristiansen JE, Viveiros M, Atouguia J. Activity of phenothiazines against antibiotic-resistant Mycobacterium tuberculosis: a review supporting further studies that may elucidate the potential use of thioridazine as antituberculosis therapy. J Antimicrob Chemother 2001;47:505-11
  • Yano T, Li LS, Weinstein E, et al. Steady-state kinetics and inhibitory action of antitubercular phenothiazines on Mycobacterium tuberculosis type-II NADH-menaquinone oxidoreductase (NDH-2). J Biol Chem 2006;281:11456-63
  • Xie Z, Siddiqi N, Rubin EJ. Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 2005;49:4778-80
  • Viveiros M, Amaral L. Enhancement of antibiotic activity against poly-drug-resistant Mycobacterium tuberculosis by phenothiazines. Int J Antimicrob Agents 2001;17:225-8
  • Madrid PB, Polgar WE, Toll L, Tanga MJ. Synthesis and antitubercular activity of phenothiazines with reduced binding to dopamine and serotonin receptors. Bioorg Med Chem Lett 2007;17:3014-17
  • Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998;393:537-44
  • Glickman MS, Jacobs WR. Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 2001;104:477-85
  • Terwilliger TC, Park MS, Waldo GS, et al. The TB structural genomics consortium: a resource for Mycobacterium tuberculosis biology. Tuberculosis 2003;83:223-49
  • Duncan K. Identification and validation of novel drug targets in tuberculosis. Curr Pharm Des 2004;10:3185-94
  • Kantardjieff K, Rupp B. Structural bioinformatic approaches to the discovery of new antimycobacterial drugs. Curr Pharm Des 2004;10:3195-211
  • Kumari S, Ram VJ. Advances in molecular targets and chemotherapy of tuberculosis. Drugs Today (Barc) 2004;40:487-500
  • Tomioka H. Development of new antituberculous drugs: strategies for new drug targets and drug delivery. Drug Des Rev 2005;2:427-34
  • Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 2003;16:463-96
  • Zhang Y. The magic bullets and tuberculosis drug targets. Annu Rev Pharmacol Toxicol 2005;45:529-64
  • Mdluli K, Spigelman M. Novel targets for tuberculosis drug discovery. Curr Opin Pharmacol 2006;6:459-67
  • Williams KJ, Duncan K. Current strategies for identifying and validating targets for new treatment-shortening drugs for TB. Curr Mol Med 2007;7:297-307
  • Wayne LG, Lin KY. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun 1982;37:1042-9
  • Graham JE, Clark-Curtiss JE. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci USA 1999;96:11554-9
  • Höner ZU Bentrup K, Miczak A, Swenson DL, Russell DG. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J Bacteriol 1999;181:7161-7
  • Gould TA, Van de Langemheen H, Muñoz-Elías EJ, et al. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Mol Microbiol 2006;61:940-7
  • Mckinney JD, Höner ZU, Bentrup K, et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 2000;406:735-8
  • Smith CV, Huang CC, Miczak A, et al. Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis. J Biol Chem 2003;278:1735-43
  • Smith CV, Sharma V, Sacchettini JC. TB drug discovery: addressing issues of persistence and resistance. Tuberculosis (Edinb) 2004;84:45-55
  • Glickman MS, Cox JS, Jacobs WR Jr. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 2000;5:717-27
  • Minnikin DE. Lipids: complex lipids. In: The Biology of Mycobacteria. Ratledge C, Stanford J (Eds), Academic Press: San Diego; 1982:95-184
  • Yuan Y, Lee RE, Besra GS, et al. Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 1995;92:6630-4
  • Bhatt A, Fujiwara N, Bhatt K, et al. Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci USA 2007;104:5157-62
  • George KM, Yuan Y, Sherman DR, Barry CE III. The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Identification and functional analysis of CMAS-2. J Biol Chem 1995;270:27292-8
  • Sibley LD, Hunter SW, Brennan PJ, Krahenbuhl JL. Mycobacterial lipoarabinomannan inhibits gamma interferon-mediated activation of macrophages. Infect Immun 1988;56:1232-6
  • Chan J, Fan XD, Hunter SW, et al. Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect Immun 1991;59:1755-61
  • Cox JS, Chen B, McNeil M, Jacobs WR. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999;402:79-83
  • Gurcha SS, Baulard AR, Kremer L, et al. Ppm1, a novel polyprenol monophosphomannose synthase from Mycobacterium tuberculosis. Biochem J 2002;365:441-50
  • Schaeffer ML, Khoo KH, Besra GS, et al. The pimB gene of Mycobacterium tuberculosis encodes a mannosyltransferase involved in lipoarabinomannan biosynthesis. J Biol Chem 1999;274:31625-31
  • Alexander DC, Jones JR, Tan T, et al. PimF, a mannosyltransferase of mycobacteria, is involved in the biosynthesis of phosphatidylinositol mannosides and lipoarabinomannan. J Biol Chem 2004;279:18824-33
  • Buglino J, Onwueme KC, Ferreras JA, et al. Crystal structure of PapA5, a phthiocerol dimycocerosyl transferase from Mycobacterium tuberculosis. J Biol Chem 2004;279:30634-42
  • Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis 2003;83:91-7
  • Ma Y, Stern RJ, Scherman MS, et al. Drug targeting Mycobacterium tuberculosis cell wall synthesis: genetics of dTDP-rhamnose synthetic enzymes and development of a microtiter plate-based screen for inhibitors of conversion of dTDP-glucose to dTDP-rhamnose. Antimicrob Agents Chemother 2001;45:1407-16
  • Li W, Xin Y, McNeil MR, Ma Y. RmlB and rmlC genes are essential for growth of mycobacteria. Biochem Biophys Res Commun 2006;342:170-8
  • Kantardjieff KA, Kim CY, Naranjo C, et al. Mycobacterium tuberculosis RmlC epimerase (Rv3465): a promising drug-target structure in the rhamnose pathway. Acta Crystallogr D Biol Crystallogr 2004;60:895-902
  • Ranjan S, Yellaboina S, Ranjan A. IdeR in mycobacteria: from target recognition to physiological function. Crit Rev Microbiol 2006;32:69-75
  • Wisedchaisri G, Chou CJ, Wu M, et al. Crystal structures, metal activation, and DNA-binding properties of two-domain IdeR from Mycobacterium tuberculosis. Biochemistry 2007;46:436-47
  • Guimarães BG, Souchon H, Honoré N, et al. Structure and mechanism of the alkyl hydroperoxidase AhpC, a key element of the Mycobacterium tuberculosis defense system against oxidative stress. J Biol Chem 2005;280:25735-42
  • Shi S, Ehrt S. Dihydrolipoamide acyltransferase is critical for Mycobacterium tuberculosis pathogenesis. Infect Immun 2006;74:56-63
  • Ballell L, Field RA, Chung GA, Young RJ. New thiopyrazolo[3,4-d]pyrimidine derivatives as antimycobacterial agents. Bioorg Med Chem Lett 2007;17:1736-40
  • Wang Y, Long MC, Ranganathan S, et al. Overexpression, purification and crystallographic analysis of a unique adenosine kinase from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005;61:553-7
  • Long MC, Parker WB. Structure–activity relationship for nucleoside analogs as inhibitors or substrates of adenosine kinase from Mycobacterium tuberculosis. I. Modifications to the adenine moiety. Biochem Pharmacol 2006;71:1671-82
  • Long MC, Allan PW, Luo MZ, et al. Evaluation of 3-deaza-adenosine analogs as ligands for adenosine kinase and inhibitors of Mycobacterium tuberculosis growth. J Antimicrob Chemother 2007;59:118-21
  • Barrow EW, Westbrook L, Bansal N, et al. Antimycobacterial activity of 2-methyl-adenosine. J Antimicrob Chemother 2003;52:801-8
  • Parker WB, Barrow EW, Allan PW, et al. Metabolism of 2-methyladenosine in Mycobacterium tuberculosis. Tuberculosis 2004;84:327-36
  • Aparna V, Jeevan J, Ravi M, et al. 3D-QSAR studies on antitubercular thymidine monophosphate kinase inhibitors based on different alignment methods. Bioorg Med Chem Lett 2006;16:1014-20
  • Nayyar A, Malde A, Coutinho E, Jain R. Synthesis, antituberculosis activity, and 3D-QSAR study of ring-substituted-2/4-quinolinecarbaldehyde derivatives. Bioorg Med Chem 2006;14:7302-10
  • Costa MS, Boechat N, Rangel EA, et al. Synthesis, tuberculosis inhibitory activity, and SAR study of N-substituted-phenyl-1,2,3-triazole derivatives. Bioorg Med Chem 2006;14:8644-53
  • Mekenyan O. Dynamic QSAR techniques: applications in drug design and toxicology. Curr Pharm Des 2002;8:1605-21
  • Dimoglo A, Sim E, Shvets N, Ahsen V. Electronic-topological study of structurally diverse COX-2 inhibitors. Mini Rev Med Chem 2003;3:281-94
  • Bedia KK, Elçin O, Seda U, et al. Synthesis and characterization of novel hydrazide-hydrazones and the study of their structure–antituberculosis activity. Eur J Med Chem 2006;41:1253-61
  • Kandemirli F, Shvets N, Unsalan S, et al. The structure–antituberculosis activity relationships study in a series of 5-(4-aminophenyl)-4-substituted-2,4-dihydro-3H-1,2,4-triazole-3-thione derivatives. A combined electronic-topological and neural networks approach. Med Chem 2006;2:415-22
  • Shagufta, Kumar A, Panda G, Siddiqi MI. CoMFA and CoMSIA 3D-QSAR analysis of diaryloxy-methano-phenanthrene derivatives as antitubercular agents. J Mol Model 2007;13:99-109
  • Gupta RA, Gupta AK, Soni LK, Kaskhedikar SG. Rationalization of physicochemical characters of oxazolyl thiosemicarbazone analogs towards multi-drug resistant tuberculosis: a QSAR approach. Eur J Med Chem 2007;42:1109-16
  • Deidda D, Lampis G, Fioravanti R, et al. Bactericidal activities of the pyrrole derivative BM212 against multi-drug resistant and intramacrophagic Mycobacterium tuberculosis strains. Antimicrob Agents Chemother 1998;42:3035-7
  • McLean KJ, Marshall KR, Richmond A, et al. Azole antifungals are potent inhibitors of cytochrome P450 mono-oxygenases and bacterial growth in mycobacteria and streptomycetes. Microbiology 2002;148:2937-49
  • Biava M. BM 212 and its derivatives as a new class of antimycobacterial active agents. Curr Med Chem 2002;9:1859-69
  • Biava M, Porretta GC, Poce G, et al. Antimycobacterial agents. Novel diarylpyrrole derivatives of BM212 endowed with high activity toward Mycobacterium tuberculosis and low cytotoxicity. J Med Chem 2006;49:4946-52
  • Arora S, Sinha N, Sinha, R, et al. Design, synthesis, modeling and activity of novel antitubercular compounds. 27th American Chemical Society Meeting, Abstract No. 63, Anaheim, CA, (28 March – 1 April 2004)
  • Morgunova E, Meining W, Illarionov B, et al. Crystal structure of lumazine synthase from Mycobacterium tuberculosis as a target for rational drug design: binding mode of a new class of purinetrione inhibitors. Biochemistry 2005;44:2746-58
  • Li De La Sierra I, Munier-Lehmann H, et al. X-ray structure of TMP kinase from Mycobacterium tuberculosis complexed with TMP at 1.95 A resolution. J Mol Biol 2001;311:87-100
  • Aubry A, Pan XS, Fisher LM, et al. Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob Agents Chemother 2004;48:1281-8
  • Davidovich C, Bashan A, Auerbach-Nevo T, et al. Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity. Proc Natl Acad Sci USA 2007;104:4291-6
  • Wayne LG, Sramek HA. Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob Agents Chemother 1994;38:2054-8
  • Tyagi S, Nuermberger E, Yoshimatsu T, et al. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis. Antimicrob Agents Chemother 2005;49:2289-93
  • Lenaerts AJ, Gruppo V, Marietta KS, et al. Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob Agents Chemother 2005;49:2294-301
  • Papadopoulou MV, Bloomer WD, McNeil MR. NLCQ-1 and NLCQ-2, two new agents with activity against dormant Mycobacterium tuberculosis. Int J Antimicrob Agents 2007;29:724-7
  • Tomioka H, Saito H, Sato K. Comparative antimycobacterial activities of the newly synthesized quinolone AM-1155, sparfloxacin, and ofloxacin. Antimicrob Agents Chemother 1993;37:1259-63
  • Miyazaki E, Miyazaki M, Chen JM, et al. Moxifloxacin (BAY12-8039), a new 8-methoxyquinolone, is active in a mouse model of tuberculosis. Antimicrob Agents Chemother 1999;43:85-9
  • Tomioka H, Sato K, Shimizu T, Sano C. Anti-Mycobacterium tuberculosis activities of new fluoroquinolones in combination with other antituberculous drugs. J Infect 2002;44:160-5
  • Gosling RD, Uiso LO, Sam NE, et al. The bactericidal activity of moxifloxacin in patients with pulmonary tuberculosis. Am J Respir Crit Care Med 2003;168:1342-5
  • Cynamon MH, Sklaney M. Gatifloxacin and ethionamide as the foundation for therapy of tuberculosis. Antimicrob Agents Chemother 2003;47:2442-4
  • Zurenko GE, Yagi BH, Schaadt RD, et al. In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob Agents Chemother 1996;40:839-45
  • Rodriguez JC, Ruiz M, Lopez M, Royo G. In vitro activity of moxifloxacin, levofloxacin, gatifloxacin and linezolid against Mycobacterium tuberculosis. Int J Antimicrob Agents 2002;20:464-7
  • Rodriguez JC, Daiz JC, Ruiz M, et al. Synergic activity of fluoroquinolones and linezolid against Mycobacterium tuberculosis. Int J Antimicrob Agents 2003;21:354-6
  • Rodriguez JC, Cebrian L, Lopez M, et al. Mutant prevention concentration: comparison of fluoroquinolones and linezolid with Mycobacterium tuberculosis. J Antimicrob Chemother 2004;53:441-4
  • Oleksijew A, Meulbroek J, Ewing P, et al. In vivo efficacy of ABT-255 against drug-sensitive and – resistant Mycobacterium tuberculosis strains. Antimicrob Agents Chemother 1998;42:2674-7
  • Suling WJ, Reynolds RC, Barrow EW, et al. Susceptibilities of Mycobacterium tuberculosis and Mycobacterium avium complex to lipophilic deazapteridine derivatives, inhibitors of dihydrofolate reductase. J Antimicrob Chemother 1998;42:811-15
  • Artico M, Mai A, Sbardella G, et al. N-[4-(1,1′-biphenyl)methyl]-4-(4-thiomorpholinylmethyl) benzenamines as non-oxazolidinone analogs of antimycobacterial U-100480. Bioorg Med Chem Lett 1998;8:1493-8
  • Sun Z, Zhang Y. Antituberculosis activity of certain antifungal and antihelmintic drugs. Tuber Lung Dis 1999;79:319-20
  • Biava M, Fioravanti R, Porretta GC, et al. Antimycobacterial activity of new ortho-, meta- and para-toluidine derivatives. Farmaco 1999;54:721-7
  • Jagannath C, Reddy VM, Kailasam S, et al. Chemotherapeutic activity of clofazimine and its analogs against Mycobacterium tuberculosis. In vitro, intracellular, and in vivo studies. Am Rev Respir Crit Care Med 1995;151:1083-6
  • Reddy VM, Nadadhur G, Daneluzzi D, et al. Antituberculosis activities of clofazimine and its new analogs B4154 and B4157. Antimicrob Agents Chemother 1996;40:633-6
  • Reddy VM, O'sullivan JF, Gangadharam PRJ. Antimycobacterial activities of riminophenazines. J Antimicrob Chemother 1999;43:615-23
  • Van Rensberg CE, Joone GK, Sirgel FA, et al. In vitro investigation of the antimicrobial activities of novel tetramethylpiperidine-substituted phenazines against Mycobacterium tuberculosis. Chemotherapy 2000;46:43-8
  • Jones PB, Parrish NM, Houston TA, et al. A new class of antituberculosis agents. J Med Chem 2000;43:3304-14
  • Bakkestuen AK, Gundersen LL, Langli G, et al. 9-Benzylpurines with inhibitory activity against Mycobacterium tuberculosis. Bioorg Med Chem Lett 2000;10:1207-10
  • Bakkestuen AK, Gundersen LL, Utenova BT. Synthesis, biological activity, and SAR of antimycobacterial 9-aryl-, 9-arylsulfonyl-, and 9-benzyl-6-(2-furyl)purines. J Med Chem 2005;48:2710-23
  • Amaral L, Kristiansen JE. Phenothiazines: an alternative to conventional therapy for the initial management of suspected multi-drug resistant tuberculosis. A call for studies. Int J Antimicrob Agents 2000;14:173-6
  • Bettencourt MV, Bosne-David S, Amaral L. Comparative in vitro activity of phenothiazines against multi-drug resistant Mycobacterium tuberculosis. Int J Antimicrob Agents 2000;16:69-71
  • Ordway D, Viveiros M, Leandro C, et al. Clinical concentrations of thioridazine kill intracellular multi-drug resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2003;47:917-22
  • Scozzafava A, Mastrolorenzo A, Supuran CT. Antimycobacterial activity of 9-sulfonylated/sulfenylated-6-mercaptopurine derivatives. Bioorg Med Chem Lett 2001;11:1675-78
  • Maccari R, Ottanà R, Monforte F, Vigorita MG. In vitro antimycobacterial activities of 2′-monosubstituted isonicotinohydrazides and their cyanoborane adducts. Antimicrob Agents Chemother 2002;46:294-9
  • Gundersen LL, Nissen-Meyer J, Spilsberg B. Synthesis and antimycobacterial activity of 6-arylpurines: the requirements for the N-9 substituent in active antimycobacterial purines. J Med Chem 2002;45:1383-6
  • Carta A, Paglietti G, Rahbar Nikookar ME, et al. Novel substituted quinoxaline 1,4-dioxides with in vitro antimycobacterial and anticandida activity. Eur J Med Chem 2002;37:355-66
  • Zarranz B, Jaso A, Aldana I, Monge A. Synthesis and antimycobacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives. Bioorg Med Chem 2003;11:2149-56
  • Carta A, Loriga M, Paglietti G, et al. Synthesis, antimycobacterial, antitrichomonas and anticandida in vitro activities of 2-substituted-6,7-difluoro-3-methylquinoxaline 1,4-dioxides. Eur J Med Chem 2004;39:195-203
  • White EL, Suling WJ, Ross LJ, et al. 2-Alkoxycarbonylaminopyridines: inhibitors of Mycobacterium tuberculosis FtsZ. J Antimicrob Chemother 2002;50:111-14
  • Agarwal N, Srivastava P, Raghuwanshi SK, et al. Chloropyrimidines as a new class of antimicrobial agents. Bioorg Med Chem 2002;10:869-74
  • Szymanska E, Kiec-Kononowicz K. Antimycobacterial activity of 5-arylidene aromatic derivatives of hydantoin. Farmaco 2002;57:355-62
  • Kie-Kononowicz K, Szyman´ska E. Antimycobacterial activity of 5-arylidene derivatives of hydantoin. Farmaco 2002;57:909-16
  • Ragno R, Marshall GR, Di Santo R, et al. Antimycobacterial pyrroles: synthesis, anti-Mycobacterium tuberculosis activity and QSAR studies. Bioorg Med Chem 2000;8:1423-32
  • Biava M, Cesare Porretta G, Deidda D, et al. Importance of the thiomorpholine introduction in new pyrrole derivatives as antimycobacterial agents analogs of BM 212. Bioorg Med Chem 2003;11:515-20
  • Cynamon MH, Alvirez-Freites E, Yeo AE. BB-3497, a peptide deformylase inhibitor, is active against Mycobacterium tuberculosis. J Antimicrob Chemother 2004;53:403-5
  • Teo JW, Thayalan P, Beer D, et al. Peptide deformylase inhibitors as potent antimycobacterial agents. Antimicrob Agents Chemother 2006;50:3665-73
  • Gürsoy A, Karali N. 4-(3-coumarinyl)-4-thiazolin-2-one benzylidenehydrazones with antituberculosis activity. Arzneimittelforschung 2000;50:167-72
  • Bonde CG, Gaikwad NJ. Synthesis and preliminary evaluation of some pyrazine containing thiazolines and thiazolidinones as antimicrobial agents. Bioorg Med Chem 2004;12:2151-61
  • Sriram D, Yogeeswari P, Thirumurugan R. Antituberculous activity of some aryl semicarbazone derivatives. Bioorg Med Chem Lett 2004;14:3923-4
  • Lefèvre P, Peirs P, Braibant M, et al. Antimycobacterial activity of synthetic pamamycins. J Antimicrob Chemother 2004;54:824-7
  • Koga T, Fukuoka T, Doi N, et al. Activity of capuramycin analogs against Mycobacterium tuberculosis, Mycobacterium avium and Mycobacterium intracellulare in vitro and in vivo. J Antimicrob Chemother 2004;54:755-60
  • Pucci MJ, Bronson JJ, Barrett JF, et al. Antimicrobial evaluation of nocathiacins, a thiazole peptide class of antibiotics. Antimicrob Agents Chemother 2004;48:3697-701
  • Kazimierczuk Z, Andrzejewska M, Kaustova J, Klimesova V. Synthesis and antimycobacterial activity of 2-substituted halogenobenzimidazoles. Eur J Med Chem 2005;40:203-8
  • Foroumadi A, Soltani F, Moallemzadeh-Haghighi H, Shafiee A. Synthesis, in vitro-antimycobacterial activity and cytotoxicity of some alkyl alpha-(5-aryl-1, 3, 4-thiadiazole-2-ylthio)acetates. Arch Pharm (Weinheim) 2005;338:112-16
  • Foroumadi A, Kargar Z, Sakhteman A, et al. Synthesis and antimycobacterial activity of some alkyl [5-(nitroaryl)-1,3,4-thiadiazol-2-ylthio]propionates. Bioorg Med Chem Lett 2006;16:1164-7
  • Protopopova M, Hanrahan C, Nikonenko B, et al. Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J Antimicrob Chemother 2005;56:968-74
  • Nikonenko BV, Protopopova M, Samala R, et al. Drug therapy of experimental tuberculosis (TB): improved outcome by combining SQ109, a new diamine antibiotic, with existing TB drugs. Antimicrob Agents Chemother 2007;51:1563-5
  • Nayyar A, Monga V, Malde A, et al. Synthesis, antituberculosis activity, and 3D-QSAR study of 4-(adamantan-1-yl)-2-substituted quinolines. Bioorg Med Chem 2007;15:626-40
  • Prado S, Ledeit H, Michel S, et al. Benzofuro[3,2-f][1]benzopyrans: a new class of antitubercular agents. Bioorg Med Chem 2006;14:5423-8
  • Prado S, Janin YL, Saint-Joanis B, et al. Synthesis and antimycobacterial evaluation of benzofurobenzopyran analogs. Bioorg Med Chem 2007;15:2177-86
  • Ballell L, Field RA, Chung GA, Young RJ. New thiopyrazolo[3,4-d]pyrimidine derivatives as antimycobacterial agents. Bioorg Med Chem Lett 2007;17:1736-40
  • Ali MA, Yar MS. Synthesis of novel substituted pyrazolyl-2-toluidinomethanethione and pyrazolyl-2-methoxyanilinomethanethione as potential antitubercular agents. Acta Pol Pharm 2007;64:139-46
  • Owen DJ, Davis CB, Hartnell RD, et al. Synthesis and evaluation of galactofuranosyl N,N-dialkyl sulfenamides and sulfonamides as antimycobacterial agents. Bioorg Med Chem Lett 2007;17:2274227-7
  • Sriram D, Yogeeswari P, Senchani G, Banerjee D. Newer tetracycline derivatives: synthesis, anti-HIV, antimycobacterial activities and inhibition of HIV-1 integrase. Bioorg Med Chem Lett 2007;178:2372-5
  • Sriram D, Yogeeswari P, Dinakaran M, Thirumurugan R. Antimycobacterial activity of novel 1-(5-cyclobutyl-1,3-oxazol-2-yl)-3-(sub)phenyl/pyridylthiourea compounds endowed with high activity toward multi-drug resistant Mycobacterium tuberculosis. J Antimicrob Chemother 2007;59:1194-6
  • Ali MA, Shaharyar M. Oxadiazole mannich bases: synthesis and antimycobacterial activity. Bioorg Med Chem Lett 2007;17:3314-16
  • Cavicchioli M, Leite CQ, Sato DN, Massabni AC. Synthesis, characterization and antimycobacterial activity of Ag(i)-aspartame, Ag(i)-saccharin and Ag(i)-cyclamate complexes. Arch Pharm (Weinheim) 2007;340:538-42
  • Braendvang M, Gundersen LL. Synthesis, biological activity, and SAR of antimycobacterial 2- and 8-substituted 6-(2-furyl)-9-(p-methoxybenzyl)purines. Bioorg Med Chem 2007;15:7144-65
  • Dolezal M, Cmedlova P, Palek L, et al. Synthesis and antimycobacterial evaluation of substituted pyrazinecarboxamides. Eur J Med Chem 2007 (In Press)
  • Gokulan K, Rupp B, Pavelka MS Jr, et al. Crystal structure of Mycobacterium tuberculosis diaminopimelate decarboxylase, an essential enzyme in bacterial lysine biosynthesis. J Biol Chem 2003;278:18588-96
  • Kefala G, Perry LJ, Weiss MS. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of LysA (Rv1293) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005;61:782-4
  • Yang Y, Xu S, Zhang M, et al. Purification and characterization of a functionally active Mycobacterium tuberculosis pyrroline-5-carboxylate reductase. Protein Exp Purif 2006;45:241-8
  • Lee CE, Goodfellow C, Javid-Majd F, et al. The crystal structure of TrpD, a metabolic enzyme essential for lung colonization by Mycobacterium tuberculosis, in complex with its substrate phosphoribosylpyrophosphate. J Mol Biol 2006;355:784-97
  • Khare S, Hondalus MK, Nunes J, et al. Mycobacterium bovis ΔleuD auxotroph-induced protective immunity against tissue colonization, burden and distribution in cattle intranasally challenged with Mycobacterium bovis Ravenel S. Vaccine 2007;25:1743-55
  • Webby CJ, Lott JS, Baker HM, et al. Crystallization and preliminary X-ray crystallographic analysis of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005;61:403-6
  • Oliveira JS, Pinto CA, Basso LA, Santos DS. Cloning and overexpression in soluble form of functional shikimate kinase and 5-enolpyruvylshikimate 3-phosphate synthase enzymes from Mycobacterium tuberculosis. Protein Expr Purif 2001;22:430-5
  • Zhang X, Zhang S, Hao F, et al. Expression, purification and properties of shikimate dehydrogenase from Mycobacterium tuberculosis. J Biochem Mol Biol 2005;38:624-31
  • Fonseca IO, Magalhães ML, Oliveira JS, et al. Functional shikimate dehydrogenase from Mycobacterium tuberculosis H37Rv: purification and characterization. Protein Expr Purif 2006;46:429-37
  • Parish T, Stoker NG. The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis. Microbiology 2002;148:3069-77
  • Errey JC, Blanchard JS. Functional characterization of a novel ArgA from Mycobacterium tuberculosis. J Bacteriol 2005;187:3039-44
  • Gordhan BG, Smith DA, Alderton H, et al. Construction and phenotypic characterization of an auxotropic mutant of Mycobacterium tuberculosis defective in L-arginine biosynthesis. Infect Immun 2002;70:3080-84
  • Zohar Y, Einav M, Chipman DM, Barak Z. Acetohydroxyacid synthase from Mycobacterium avium and its inhibition by sulfonylureas and imidazolinones. Biochim Biophys Acta 2003;1649:97-105
  • Choi KJ, Yu YG, Hahn HG, et al. Characterization of acetohydroxyacid synthase from Mycobacterium tuberculosis and the identification of its new inhibitor from the screening of a chemical library. FEBS Lett 2005;579:4903-10
  • Venos ES, Knodel MH, Radford CL, Berger BJ. Branched-chain amino acid aminotransferase and methionine formation in Mycobacterium tuberculosis. BMC Microbiol 2004;4:39
  • Nopponpunth V, Sirawaraporn W, Greene PJ, Santi DV. Cloning and expression of Mycobacterium tuberculosis and Mycobacterium leprae dihydropteroate synthase in Escherichia coli. J Bacteriol 1999;181:6814-21
  • White EL, Ross LJ, Cunningham A, Escuyer V. Cloning, expression, and characterization of Mycobacterium tuberculosis dihydrofolate reductase. FEMS Microbiol Lett 2004;232:101-5
  • Da Cunha EF, De Castro Ramalho T, et al. Interactions of 5-deazapteridine derivatives with Mycobacterium tuberculosis and with human dihydrofolate reductases. J Biomol Struct Dyn 2004;22:119-30
  • Argyrou A, Vetting MW, Aladegbami B, Blanchard JS. Mycobacterium tuberculosis dihydrofolate reductase is a target for isoniazid. Nat Struct Mol Biol 2006;13:408-13
  • Sambandamurthy VK, Wang X, Chen B, et al. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat Med 2002;8:1171-4
  • White EL, Southworth K, Ross L, et al. A novel inhibitor of Mycobacterium tuberculosis pantothenate synthetase. J Biomol Screen 2007;12:100-5
  • Chopra S, Pai H, Ranganathan A. Expression, purification, and biochemical characterization of Mycobacterium tuberculosis aspartate decarboxylase, PanD. Protein Expr Purif 2002;25:533-40
  • Das S, Kumar P, Bhor V, et al. Invariance and variability in bacterial PanK: a study based on the crystal structure of Mycobacterium tuberculosis PanK. Acta Crystallogr D Biol Crystallogr 2006;62:628-38
  • Das S, Kumar P, Bhor V, et al. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of pantothenate kinase from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005;61:656-7
  • Morgunova E, Meining W, Illarionov B, et al. Crystal structure of lumazine synthase from Mycobacterium tuberculosis as a target for rational drug design: binding mode of a new class of purinetrione inhibitors. Biochemistry 2005;44:2746-58
  • Truglio JJ, Theis K, Feng Y, et al. Crystal structure of Mycobacterium tuberculosis MenB, a key enzyme in vitamin K2 biosynthesis. J Biol Chem 2003;278:42352-60
  • Johnston JM, Arcus VL, Baker EN. Structure of naphthoate synthase (MenB) from Mycobacterium tuberculosis in both native and product-bound forms. Acta Crystallogr D Biol Crystallogr 2005;61:1199-206
  • Weinstein EA, Yano T, Li LS, et al. Inhibitors of type II NADH: menaquinone oxidoreductase represent a class of antitubercular drugs. Proc Natl Acad Sci USA 2005;102:4548-53
  • Yano T, Li LS, Weinstein E, Teh JS, Rubin H. Steady-state kinetics and inhibitory action of antitubercular phenothiazines on Mycobacterium tuberculosis type-II NADH- menaquinone oxidoreductase (NDH-2). J Biol Chem 2006;281:11456-63
  • Williams SJ, Senaratne RH, Mougous JD, et al. 5′-adenosinephosphosulfate lies at a metabolic branch point in mycobacteria. J Biol Chem 2002;277:32606-15
  • Carroll KS, Gao H, Chen H, et al. A conserved mechanism for sulfonucleotide reduction. PLoS Biol 2005;3:E250
  • Senaratne RH, De Silva AD, Williams SJ, et al. 5′-Adenosinephosphosulfate reductase (CysH) protects Mycobacterium tuberculosis against free radicals during chronic infection phase in mice. Mol Microbiol 2006;59:1744-53
  • Gao H, Leary J, Carroll KS, et al. Noncovalent complexes of APS reductase from M. tuberculosis: delineating a mechanistic model using ESI-FTICR MS. J Am Soc Mass Spectrom 2007;18:167-78
  • Sareen D, Newton GL, Fahey RC, Buchmeier NA. Mycothiol is essential for growth of Mycobacterium tuberculosis Erdman. J Bacteriol 2003;185:6736-40
  • Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 2003;48:77-84
  • Newton GL, Ta P, Sareen D, Fahey RC. A coupled spectrophotometric assay for l-cysteine:1-D-myo-inosityl 2-amino-2-deoxy-alpha-D-glucopyranoside ligase and its application for inhibitor screening. Anal Biochem 2006;353:167-73
  • Buchmeier N, Fahey RC. The mshA gene encoding the glycosyltransferase of mycothiol biosynthesis is essential in Mycobacterium tuberculosis Erdman. FEMS Microbiol Lett 2006;264:74-9
  • Newton GL, Av-Gay Y, Fahey RC. N-Acetyl-1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside deacetylase (MshB) is a key enzyme in mycothiol biosynthesis. J Bacteriol 2000;182:6958-63
  • Newton GL, Ko M, Ta P, et al. Purification and characterization of Mycobacterium tuberculosis 1D-myo-inosityl-2-acetamido-2-deoxy-alpha-D-glucopyranoside deacetylase, MshB, a mycothiol biosynthetic enzyme. Protein Expr Purif 2006;47:542-50
  • Maynes JT, Garen C, Cherney MM, et al. The crystal structure of 1-D-myo-inosityl 2-acetamido-2-deoxy-alpha-D-glucopyranoside deacetylase (MshB) from Mycobacterium tuberculosis reveals a zinc hydrolase with a lactate dehydrogenase fold. J Biol Chem 2003;278:47166-70
  • Vetting MW, Roderick SL, Yu M, Blanchard JS. Crystal structure of mycothiol synthase (Rv0819) from Mycobacterium tuberculosis shows structural homology to the GNAT family of N-acetyltransferases. Protein Sci 2003;12:1954-9
  • Buchmeier NA, Newton GL, Fahey RC. A mycothiol synthase mutant of Mycobacterium tuberculosis has an altered thiol-disulfide content and limited tolerance to stress. J Bacteriol 2006;188:6245-52
  • Harrison AJ, Yu M, Gårdenborg T, et al. The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase. J Bacteriol 2006;188:6081-91
  • Zwahlen J, Kolappan S, Zhou R, et al. Structure and mechanism of MbtI, the salicylate synthase from Mycobacterium tuberculosis. Biochemistry 2007;46:954-64
  • Dawes SS, Warner DF, Tsenova L, et al. Ribonucleotide reduction in Mycobacterium tuberculosis: function and expression of genes encoding class Ib and class II ribonucleotide reductases. Infect Immun 2003;71:6124-31
  • Munier-Lehmann H, Chaffotte A, Pochet S, Labesse G. Thymidylate kinase of Mycobacterium tuberculosis: a chimera sharing properties common to eukaryotic and bacterial enzymes. Protein Sci 2001;10:1195-205
  • Vanheusden V, Munier-Lehmann H, Froeyen M, et al. Discovery of bicyclic thymidine analogs as selective and high-affinity inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase. J Med Chem 2004;47:6187-94
  • Gong C, Martins A, Bongiorno P, et al. Biochemical and genetic analysis of the four DNA ligases of mycobacteria. J Biol Chem 2004;279:20594-606
  • Srivastava SK, Tripathi RP, Ramachandran R. NAD+-dependent DNA ligase (Rv3014c) from Mycobacterium tuberculosis. Crystal structure of the adenylation domain and identification of novel inhibitors. J Biol Chem 2005;280:30273-81
  • Srivastava SK, Dube D, Kukshal V, et al. NAD+-dependent DNA ligase (Rv3014c) from Mycobacterium tuberculosis: novel structure-function relationship and identification of a specific inhibitor. Proteins 2007;69:97-111
  • Korycka-Machala M, Rychta E, Brzostek A, et al. Evaluation of NAD+-dependent DNA ligase of mycobacteria as a potential target for antibiotics. Antimicrob Agents Chemother 2007;51:2888-97
  • Takiff HE, Salazar L, Guerrero C, et al. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother 1994;38:773-80
  • Aubry A, Pan XS, Fisher LM, et al. Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob Agents Chemother 2004;48:1281-8
  • Long MC, Escuyer V, Parker WB. Identification and characterization of a unique adenosine kinase from Mycobacterium tuberculosis. J Bacteriol 2003;185:6548-55
  • Petrella S, Cambau E, Chauffour A, et al. Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria. Antimicrob Agents Chemother 2006;50:2853-6
  • Huitric E, Verhasselt P, Andries K, Hoffner SE. In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 2007;51:4202-4
  • Cynamon MH, Alvirez-Freites E, Yeo AE. BB-3497, a peptide deformylase inhibitor, is active against Mycobacterium tuberculosis. J Antimicrob Chemother 2004;53:403-5
  • Saxena R, Chakraborti PK. The carboxy-terminal end of the peptide deformylase from Mycobacterium tuberculosis is indispensable for its enzymatic activity. Biochem Biophys Res Commun 2005;332:418-25
  • Teo JW, Thayalan P, Beer D, et al. Peptide deformylase inhibitors as potent antimycobacterial agents. Antimicrob Agents Chemother 2006;50:3665-73
  • Belanger AE, Besra GS, Ford ME, et al. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci USA 1996;93:11919-24
  • Escuyer VE, Lety MA, Torrelles JB, et al. The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J Biol Chem 2001;276:48854-62
  • Seidel M, Alderwick LJ, Sahm H, et al. Topology and mutational analysis of the single Emb arabinofuranosyltransferase of Corynebacterium glutamicum as a model of Emb proteins of Mycobacterium tuberculosis. Glycobiology 2007;17:210-19
  • Cociorva OM, Gurcha SS, Besra GS, Lowary TL. Oligosaccharides as inhibitors of mycobacterial arabinosyltransferases. Di- and trisaccharides containing C-3 modified arabinofuranosyl residues. Bioorg Med Chem 2005;13:1369-79
  • Alderwick LJ, Seidel M, Sahm H, et al. Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis. J Biol Chem 2006;281:15653-61
  • Seidel M, Alderwick LJ, Birch HL, et al. Identification of a novel arabinofuranosyltransferase AftB involved in a terminal step of cell wall arabinan biosynthesis in Corynebacterianeae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem 2007;282:14729-40
  • Rose NL, Completo GC, Lin SJ, et al. Expression, purification, and characterization of a galactofuranosyltransferase involved in Mycobacterium tuberculosis arabinogalactan biosynthesis. J Am Chem Soc 2006;128:6721-9
  • Pan F, Jackson M, Ma Y, Mcneil M. Cell wall core galactofuran synthesis is essential for growth of mycobacteria. J Bacteriol 2001;183:3991-8
  • Sanders DA, Staines AG, McMahon SA, et al. UDP-galactopyranose mutase has a novel structure and mechanism. Nat Struct Biol 2001;8:858-63
  • Scherman MS, Winans KA, Stern RJ, et al. Drug targeting Mycobacterium tuberculosis cell wall synthesis: development of a microtiter plate-based screen for UDP-galactopyranose mutase and identification of an inhibitor from a uridine-based library. Antimicrob Agents Chemother 2003;47:378-82
  • Huang H, Scherman MS, D'Haeze W, et al. Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho-{alpha}-d-ribose-1-diphosphate: decaprenyl-phosphate 5-phosphoribosyltransferase, the first enzyme committed to decaprenylphosphoryl-d-arabinose synthesis. J Biol Chem 2005;280:24539-43
  • Banerjee A, Dubnau E, Quemard A, et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 1994;263:227-30
  • De Boer GJ, Pielage GJ, Nijkamp HJ, et al. Molecular genetic analysis of enoyl-acyl carrier protein reductase inhibition by diazaborine. Mol Microbiol 1999;31:443-50
  • Slayden RA, Lee RE, Barry CE III. Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis. Mol Microbiol 2000;38:514-25
  • Schaeffer ML, Agnihotri G, Volker C, et al. Purification and biochemical characterization of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthases KasA and KasB. J Biol Chem 2001;276:47029-37
  • Musayev F, Sachdeva S, Scarsdale JN, et al. Crystal structure of a substrate complex of Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthase III (FabH) with lauroyl-coenzyme A. J Mol Biol 2005;346:1313-21
  • Cohen-Gonsaud M, Ducasse S, Hoh F, et al. Crystal structure of MabA from Mycobacterium tuberculosis, a reductase involved in long-chain fatty acid biosynthesis. J Mol Biol 2002;320:249-61
  • Ducasse-Cabanot S, Cohen-Gonsaud M, Marrakchi H, et al. In vitro inhibition of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein reductase MabA by isoniazid. Antimicrob Agents Chemother 2004;48:242-9
  • Boissier F, Bardou F, Guillet V, et al. Further insight into S-adenosylmethionine-dependent methyltransferases: structural characterization of Hma, an enzyme essential for the biosynthesis of oxygenated mycolic acids in Mycobacterium tuberculosis. J Biol Chem 2006;281:4434-45
  • Glickman MS, Cahill SM, Jacobs WR Jr. The Mycobacterium tuberculosis cmaA2 gene encodes a mycolic acid trans-cyclopropane synthetase. J Biol Chem 2001;276:2228-33
  • Glickman MS. The mmaA2 gene of Mycobacterium tuberculosis encodes the distal cyclopropane synthase of the alpha-mycolic acid. J Biol Chem 2003;278:7844-9
  • Guianvarc'h D, Drujon T, Leang TE, et al. Identification of new inhibitors of E. coli cyclopropane fatty acid synthase using a colorimetric assay. Biochim Biophys Acta 2006;1764:1381-8
  • Child CJ, Shoolingin-Jordan PM. Inactivation of the polyketide synthase, 6-methylsalicylic acid synthase, by the specific modification of Cys-204 of the beta-ketoacyl synthase by the fungal mycotoxin cerulenin. Biochem J 1998;330:933-7
  • Portevin D, De Sousa-D'auria C, Houssin C, et al. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci USA 2004;101:314-19
  • Portevin D, De Sousa-D'auria C, Montrozier H, et al. The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components. J Biol Chem 2005;280:8862-74
  • Gago G, Kurth D, Diacovich L, et al. Biochemical and structural characterization of an essential acyl coenzyme A carboxylase from Mycobacterium tuberculosis. J Bacteriol 2006;188:477-86
  • Lin TW, Melgar MM, Kurth D, et al. Structure-based inhibitor design of AccD5, an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2006;103:3072-7
  • Guy MR, Illarionov PA, Gurcha SS, et al. Novel prenyl-linked benzophenone substrate analogs of mycobacterial mannosyltransferases. Biochem J 2004;382:905-12
  • Guerin ME, Buschiazzo A, KorduláKová J, et al. Crystallization and preliminary crystallographic analysis of PimA, an essential mannosyltransferase from Mycobacterium smegmatis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005;61:518-20
  • Dinev Z, Gannon CT, Egan C, et al. Galactose-derived phosphonate analogs as potential inhibitors of phosphatidylinositol biosynthesis in mycobacteria. Org Biomol Chem 2007;5:952-9
  • Cox JS, Chen B, Mcneil M, Jacobs WR Jr. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999;402:79-83
  • Jain M, Cox JS. Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis. PloS Pathog 2005;1:E2
  • Lemagueres P, Im H, Ebalunode J, et al. The 1.9 A crystal structure of alanine racemase from Mycobacterium tuberculosis contains a conserved entryway into the active site. Biochemistry 2005;44:1471-81
  • Feng Z, Barletta RG. Roles of Mycobacterium smegmatis D-alanine:D-alanine ligase and D-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor D-cycloserine. Antimicrob Agents Chemother 2003;47:283-91
  • Höner Zu Bentrup K, Miczak A, Swenson Dl, Russell DG. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J Bacteriol 1999;181:7161-7
  • Sharma V, Sharma S, Hoener Zu Bentrup K, et al. Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis. Nat Struct Biol 2000;7:663-8
  • Muñoz-Elías EJ, McKinney JD. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 2005;11:638-44
  • Kinhikar AG, Vargas D, Li H, et al. Mycobacterium tuberculosis malate synthase is a laminin-binding adhesin. Mol Microbiol 2006;60:999-1013
  • Parish T, Stoker NG. glnE is an essential gene in Mycobacterium tuberculosis. J Bacteriol 2000;182:5715-20
  • Read R, Pashley CA, Smith D, Parish T. The role of GlnD in ammonia assimilation in Mycobacterium tuberculosis. Tuberculosis 2007;87:384-90
  • Zahrt TC, Deretic V. An essential two-component signal transduction system in Mycobacterium tuberculosis. J Bacteriol 2000;182:3832-8
  • Fol M, Chauhan A, Nair NK, et al. Modulation of Mycobacterium tuberculosis proliferation by MtrA, an essential two-component response regulator. Mol Microbiol 2006;60:643-57
  • Rodriguez GM, Voskuil MI, Gold B, et al. ideR, An essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 2002;70:3371-81
  • Chou CJ, Wisedchaisri G, Monfeli RR, et al. Functional studies of the Mycobacterium tuberculosis iron-dependent regulator. J Biol Chem 2004;279:53554-61
  • Boon C, Dick T. Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J Bacteriol 2002;184:6760-7
  • Roupie V, Romano M, Zhang L, et al. Immunogenicity of eight dormancy regulon-encoded proteins of Mycobacterium tuberculosis in DNA-vaccinated and tuberculosis-infected mice. Infect Immun 2007;75:941-9
  • Dahl JL, Arora K, Boshoff HI, et al. The relA homolog of Mycobacterium smegmatis affects cell appearance, viability, and gene expression. J Bacteriol 2005;187:2439-47
  • Jain V, Saleem-Batcha R, China A, Chatterji D. Molecular dissection of the mycobacterial stringent response protein Rel. Protein Sci 2006;15:1449-64
  • Li Z, Kelley C, Collins F, et al. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea-pigs. J Infect Dis 1998;177:1030-5
  • Taylor EH, Walker EM Jr, Bartelt M, et al. In vitro antimicrobial activity of diethyldithiocarbamate and dimethyldithiocarbamate against methicillin-resistant Staphylococcus. Ann Clin Lab Sci 1987;17:171-7
  • Edwards KM, Cynamon MH, Voladri RK, et al. Iron-cofactored superoxide dismutase inhibits host responses to Mycobacterium tuberculosis. Am J Respir Crit Care Med 2001;164:2213-19
  • Master SS, Springer B, Sander P, et al. Oxidative stress response genes in Mycobacterium tuberculosis: role of ahpC in resistance to peroxynitrite and stage-specific survival in macrophages. Microbiology 2002;148:3139-44
  • Bryk R, Lima CD, Erdjument-Bromage H, et al. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 2002;295:1073-7
  • Hillas PJ, Del Alba FS, Oyarzabal J, et al. The AhpC and AhpD antioxidant defense system of Mycobacterium tuberculosis. J Biol Chem 2000;275:18801-9
  • Koshkin A, Nunn CM, Djordjevic S, et al. The mechanism of Mycobacterium tuberculosis alkylhydroperoxidase AhpD as defined by mutagenesis, crystallography, and kinetics. J Biol Chem 2003;278:29502-8
  • Koshkin A, Zhou XT, Kraus CN, et al. Inhibition of Mycobacterium tuberculosis AhpD, an element of the peroxiredoxin defense against oxidative stress. Antimicrob Agents Chemother 2004;48:2424-30
  • Rajashankar KR, Bryk R, Kniewel R, et al. Crystal structure and functional analysis of lipoamide dehydrogenase from Mycobacterium tuberculosis. J Biol Chem 2005;280:33977-83

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.