17
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in molecular diagnostics of myeloproliferative disorders

, MD DM & , MD
Pages 65-80 | Published online: 12 Sep 2007

Bibliography

  • BENNETT JM, CATOVSKY D, DANIEL MT et al.: The chronic myeloid leukaemias: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukaemia. Proposals by the French-American-British Cooperative Leukaemia Group. Br. J. Haematol. (1994) 87(4):746-754.
  • DAMESHEK W: Some speculations on the myeloproliferative syndromes. Blood (1951) 6(4):372-375.
  • VARDIMAN JW, HARRIS NL, BRUNNING RD: The World Health Organization (WHO) classification of the myeloid neoplasms. Blood (2002) 100(7):2292-2302.
  • FIALKOW PJ, GARTLER SM, YOSHIDA A: Clonal origin of chronic myelocytic leukemia in man. Proc. Natl. Acad. Sci. USA (1967) 58(4):1468-1471.
  • ADAMSON JW, FIALKOW PJ, MURPHY S, PRCHAL JF, STEINMANN L: Polycythemia vera: stem-cell and probable clonal origin of the disease. N. Engl. J. Med. (1976) 295(17):913-916.
  • JACOBSON RJ, SALO A, FIALKOW PJ: Agnogenic myeloid metaplasia: a clonal proliferation of hematopoietic stem cells with secondary myelofibrosis. Blood (1978) 51(2):189-194.
  • FIALKOW PJ, FAGUET GB, JACOBSON RJ, VAIDYA K, MURPHY S: Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. Blood (1981) 58(5):916-919.
  • NOWELL PC, HUNGERFORD DA: Chromosome studies on normal and leukemic human leukocytes. J. Natl. Cancer Inst. (1960) 25:85-109.
  • DE KLEIN A, VAN KESSEL AG, GROSVELD G et al.: A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature (1982) 300(5894):765-767.
  • KONOPKA JB, WATANABE SM, WITTE ON: An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell (1984) 37(3):1035-1042.
  • DALEY GQ, VAN ETTEN RA, BALTIMORE D: Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science (1990) 247(4944):824-830.
  • LUGO TG, PENDERGAST AM, MULLER AJ, WITTE ON: Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science (1990) 247(4946):1079-1082.
  • VONCKEN JW, KAARTINEN V, PATTENGALE PK et al.: BCR/ABL P210 and P190 cause distinct leukemia in transgenic mice. Blood (1995) 86(12):4603-4611.
  • COOLS J, DEANGELO DJ, GOTLIB J et al.: A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N. Engl. J. Med. (2003) 348(13):1201-1214.
  • PARDANANI A, BROCKMAN SR, PATERNOSTER SF et al.: FIP1L1-PDGFRA fusion: prevalence and clinicopathologic correlates in 89 consecutive patients with moderate to severe eosinophilia. Blood (2004) 104(10):3038-3045.
  • PARDANANI A, REEDER TL, KIMLINGER TK et al.: Flt-3 and c-kit mutation studies in a spectrum of chronic myeloid disorders including systemic mast cell disease. Leuk. Res. (2003) 27(8):739-742.
  • LONGLEY BJ, REGUERA MJ, MA Y: Classes of c-KIT activating mutations: proposed mechanisms of action and implications for disease classification and therapy. Leuk. Res. (2001) 25(7):571-576.
  • GOLUB TR, BARKER GF, LOVETT M, GILLILAND DG: Fusion of PDGF receptor β to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell (1994) 77(2):307-316.
  • WILKINSON K, VELLOSO ER, LOPES LF et al.: Cloning of the t(1;5)(q23;q33) in a myeloproliferative disorder associated with eosinophilia: involvement of PDGFRB and response to imatinib. Blood (2003) 102(12):4187-4190.
  • STEER EJ, CROSS NC: Myeloproliferative disorders with translocations of chromosome 5q31-35: role of the platelet-derived growth factor receptor β. Acta Haematol. (2002) 107(2):113-122.
  • BAXTER EJ, KULKARNI S, VIZMANOS JL et al.: Novel translocations that disrupt the platelet-derived growth factor receptor β (PDGFRB) gene in BCR-ABL-negative chronic myeloproliferative disorders. Br. J. Haematol. (2003) 120(2):251-256.
  • APPERLEY JF, GARDEMBAS M, MELO JV et al.: Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor β. N. Engl. J. Med. (2002) 347(7):481-487.
  • SOHAL J, CHASE A, MOULD S et al.: Identification of four new translocations involving FGFR1 in myeloid disorders. Genes Chromosomes Cancer (2001) 32(2):155-163.
  • XIAO S, NALABOLU SR, ASTER JC et al.: FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome. Nat. Genet. (1998) 18(1):84-87.
  • KULKARNI S, REITER A, SMEDLEY D, GOLDMAN JM, CROSS NC: The genomic structure of ZNF198 and location of breakpoints in the t(8;13) myeloproliferative syndrome. Genomics (1999) 55(1):118-121.
  • AGUIAR RC, MACDONALD D, MASON PJ, CROSS NC, GOLDMAN JM: Myeloproliferative disorder associated with 8p11 translocations. Blood (1995) 86(2):834-835.
  • TEFFERI A, GILLILAND DG: Oncogenes in myeloproliferative disorders. Cell Cycle (2007) 6(5):550-566.
  • TARTAGLIA M, NIEMEYER CM, FRAGALE A et al.: Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. (2003) 34(2):148-150.
  • LOH ML, VATTIKUTI S, SCHUBBERT S et al.: Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood (2004) 103(6):2325-2331.
  • SIDE LE, EMANUEL PD, TAYLOR B et al.: Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia without clinical evidence of neurofibromatosis, type 1. Blood (1998) 92(1):267-272.
  • BENCH AJ, PAHL HL: Chromosomal abnormalities and molecular markers in myeloproliferative disorders. Semin. Hematol. (2005) 42(4):196-205.
  • JAMES C, UGO V, LE COUEDIC JP et al.: A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature (2005) 434(7037):1144-1148.
  • LEVINE RL, WADLEIGH M, COOLS J et al.: Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell (2005) 7(4):387-397.
  • KRALOVICS R, PASSAMONTI F, BUSER AS et al.: A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. (2005) 352(17):1779-1790.
  • BAXTER EJ, SCOTT LM, CAMPBELL PJ et al.: Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet (2005) 365(9464):1054-1061.
  • ZHAO R, XING S, LI Z et al.: Identification of an acquired JAK2 mutation in polycythemia vera. J. Biol. Chem. (2005) 280(24):22788-22792.
  • STEENSMA DP, DEWALD GW, LASHO TL et al.: The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood (2005) 106(4):1207-1209.
  • JONES AV, KREIL S, ZOI K et al.: Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood (2005) 106(6):2162-2168.
  • TEFFERI A, GILLILAND G: Classification of chronic myeloid disorders: from Dameshek towards a semi-molecular system. Best Pract. Res. Clin. Haematol. (2006) 19(3):365-385.
  • KURZROCK R, GUTTERMAN JU, TALPAZ M: The molecular genetics of Philadelphia chromosome-positive leukemias. N. Engl. J. Med. (1988) 319(15):990-998.
  • MORGAN GJ, WIEDEMANN LM: Molecular biology of the Philadelphia positive leukaemias. Recenti. Prog. Med. (1989) 80(10):508-519.
  • MELO JV: The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood (1996) 88(7):2375-2384.
  • SHEPHERD P, SUFFOLK R, HALSEY J, ALLAN N: Analysis of molecular breakpoint and m-RNA transcripts in a prospective randomized trial of IFN in chronic myeloid leukaemia: no correlation with clinical features, cytogenetic response, duration of chronic phase, or survival. Br. J. Haematol. (1995) 89(3):546-554.
  • HURET JL: Complex translocations, simple variant translocations and Ph-negative cases in chronic myelogenous leukaemia. Hum. Genet. (1990) 85(6):565-568.
  • SAKURAI M, SANDBERG AA: The chromosomes and causation of human cancer and leukemia. XVIII. The missing Y in acute myeloblastic leukemia (AML) and Ph1-positive chronic myelocytic leukemia (CML). Cancer (1976) 38(2):762-769.
  • HEIM S, BILLSTROM R, KRISTOFFERSSON U et al.: Variant Ph translocations in chronic myeloid leukemia. Cancer Genet. Cytogenet. (1985) 18(3):215-227.
  • ENGEL E, MCGEE BJ, FLEXNER JM, RUSSELL MT, MYERS BJ: Letter: Philadelphia chromosome (Ph1) translocation in an apparently Ph1 negative, minus G22, case of chronic myeloid leukemia. N. Engl. J. Med. (1974) 291(3):154.
  • EPNER DE, KOEFFLER HP: Molecular genetic advances in chronic myelogenous leukemia. Ann. Intern. Med. (1990) 113(1):3-6.
  • MORRIS CM, HEISTERKAMP N, KENNEDY MA, FITZGERALD PH, GROFFEN J: Ph-negative chronic myeloid leukemia: molecular analysis of ABL insertion into M-BCR on chromosome 22. Blood (1990) 76(9):1812-1818.
  • DEWALD GW, SCHAD CR, CHRISTENSEN ER et al.: The application of fluorescent in situ hybridization to detect Mbcr/abl fusion in variant Ph chromosomes in CML and ALL. Cancer Genet. Cytogenet. (1993) 71(1):7-14.
  • YANAGI M, SHINJO K, TAKESHITA A et al.: Simple and reliably sensitive diagnosis and monitoring of Philadelphia chromosome-positive cells in chronic myeloid leukemia by interphase fluorescence in situ hybridization of peripheral blood cells. Leukemia (1999) 13(4):542-552.
  • SCHOCH C, SCHNITTGER S, BURSCH S et al.: Comparison of chromosome banding analysis, interphase- and hypermetaphase-FISH, qualitative and quantitative PCR for diagnosis and for follow-up in chronic myeloid leukemia: a study on 350 cases. Leukemia (2002) 16(1):53-59.
  • COX MC, MAFFEI L, BUFFOLINO S et al.: A comparative analysis of FISH, RT-PCR, and cytogenetics for the diagnosis of bcr-abl-positive leukemias. Am. J. Clin. Pathol. (1998) 109(1):24-31.
  • MELO JV, YAN XH, DIAMOND J et al.: Reverse transcription/polymerase chain reaction (RT/PCR) amplification of very small numbers of transcripts: the risk in misinterpreting negative results. Leukemia (1996) 10(7):1217-1221.
  • WELLS SJ, PHILLIPS CN, WINTON EF, FARHI DC: Reverse transcriptase-polymerase chain reaction for bcr/abl fusion in chronic myelogenous leukemia. Am. J. Clin. Pathol. (1996) 105(6):756-760.
  • FRENOY N, CHABLI A, SOL O et al.: Application of a new protocol for nested PCR to the detection of minimal residual bcr/abl transcripts. Leukemia (1994) 8(8):1411-1414.
  • MORGAN GJ, HUGHES T, JANSSEN JW et al.: Polymerase chain reaction for detection of residual leukaemia. Lancet (1989) 1(8644):928-929.
  • HUGHES TP, MORGAN GJ, MARTIAT P, GOLDMAN JM: Detection of residual leukemia after bone marrow transplant for chronic myeloid leukemia: role of polymerase chain reaction in predicting relapse. Blood (1991) 77(4):874-878.
  • CROSS NC, FENG L, CHASE A et al.: Competitive polymerase chain reaction to estimate the number of BCR-ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood (1993) 82(6):1929-1936.
  • LIN F, VAN RHEE F, GOLDMAN JM, CROSS NC: Kinetics of increasing BCR-ABL transcript numbers in chronic myeloid leukemia patients who relapse after bone marrow transplantation. Blood (1996) 87(10):4473-4478.
  • THOMPSON JD, BRODSKY I, YUNIS JJ: Molecular quantification of residual disease in chronic myelogenous leukemia after bone marrow transplantation. Blood (1992) 79(6):1629-1635.
  • NAGEL S, SCHMIDT M, THIEDE C, HUHN D, NEUBAUER A: Quantification of Bcr-Abl transcripts in chronic myelogenous leukemia (CML) using standardized, internally controlled, competitive differential PCR (CD-PCR). Nucleic Acids Res. (1996) 24(20):4102-4103.
  • HOCHHAUS A, LIN F, REITER A et al.: Quantification of residual disease in chronic myelogenous leukemia patients on IFN-α therapy by competitive polymerase chain reaction. Blood (1996) 87(4):1549-1555.
  • FREEMAN WM, WALKER SJ, VRANA KE: Quantitative RT-PCR: pitfalls and potential. Biotechniques (1999) 26(1):112-122, 124-125.
  • EMIG M, SAUSSELE S, WITTOR H et al.: Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia (1999) 13(11):1825-1832.
  • KANTARJIAN HM, TALPAZ M, CORTES J et al.: Quantitative polymerase chain reaction monitoring of BCR-ABL during therapy with imatinib mesylate (STI571; gleevec) in chronic-phase chronic myelogenous leukemia. Clin. Cancer Res. (2003) 9(1):160-166.
  • STENTOFT J, PALLISGAARD N, KJELDSEN E et al.: Kinetics of BCR-ABL fusion transcript levels in chronic myeloid leukemia patients treated with STI571 measured by quantitative real-time polymerase chain reaction. Eur. J. Haematol. (2001) 67(5-6):302-308.
  • LANGE T, BUMM T, OTTO S et al.: Quantitative reverse transcription polymerase chain reaction should not replace conventional cytogenetics for monitoring patients with chronic myeloid leukemia during early phase of imatinib therapy. Haematologica (2004) 89(1):49-57.
  • GABERT J, BEILLARD E, VAN DER VELDEN VH et al.: Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe against cancer program. Leukemia (2003) 17(12):2318-2357.
  • BEILLARD E, PALLISGAARD N, VAN DER VELDEN VH et al.: Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) – a Europe against cancer program. Leukemia (2003) 17(12):2474-2486.
  • VAN DER VELDEN VH, HOCHHAUS A, CAZZANIGA G et al.: Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia (2003) 17(6):1013-1034.
  • HUGHES T, BRANFORD S: Molecular monitoring of chronic myeloid leukemia. Semin. Hematol. (2003) 40(2 Suppl. 2):62-68.
  • HUGHES T, DEININGER M, HOCHHAUS A et al.: Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood (2006) 108(1):28-37.
  • SHAH NP, NICOLL JM, NAGAR B et al.: Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell (2002) 2(2):117-125.
  • BRANFORD S, RUDZKI Z, WALSH S et al.: High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood (2002) 99(9):3472-3475.
  • BRANFORD S, RUDZKI Z, WALSH S et al.: Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood (2003) 102(1):276-283.
  • GAMBACORTI-PASSERINI CB, GUNBY RH, PIAZZA R et al.: Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol. (2003) 4(2):75-85.
  • ROCHE-LESTIENNE C, SOENEN-CORNU V, GRARDEL-DUFLOS N et al.: Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood (2002) 100(3):1014-1018.
  • SOVERINI S, COLAROSSI S, GNANI A et al.: Resistance to dasatinib in Philadelphia-positive leukemia patients and the presence or the selection of mutations at residues 315 and 317 in the BCR-ABL kinase domain. Haematologica (2007) 92(3):401-404.
  • SOVERINI S, MARTINELLI G, ROSTI G et al.: ABL mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival: a study by the GIMEMA working party on chronic myeloid leukemia. J. Clin. Oncol. (2005) 23(18):4100-4109.
  • SOVERINI S, COLAROSSI S, GNANI A et al.: Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA working party on chronic myeloid leukemia. Clin. Cancer Res. (2006) 12(24):7374-7379.
  • HUGHES T: ABL kinase inhibitor therapy for CML: baseline assessments and response monitoring. Hematol. Am. Soc. Hematol. Educ. Program (2006):211-218.
  • IRVING JA, O'BRIEN S, LENNARD AL et al.: Use of denaturing HPLC for detection of mutations in the BCR-ABL kinase domain in patients resistant to imatinib. Clin. Chem. (2004) 50(7):1233-1237.
  • SOVERINI S, MARTINELLI G, AMABILE M et al.: Denaturing-HPLC-based assay for detection of ABL mutations in chronic myeloid leukemia patients resistant to imatinib. Clin. Chem. (2004) 50(7):1205-1213.
  • KHORASHAD JS, ANAND M, MARIN D et al.: The presence of a BCR-ABL mutant allele in CML does not always explain clinical resistance to imatinib. Leukemia (2006) 20(4):658-663.
  • SOREL N, CHAZELAS F, BRIZARD A, CHOMEL JC: Double-gradient-denaturing-gradient gel electrophoresis for mutation screening of the BCR-ABL tyrosine kinase domain in chronic myeloid leukemia patients. Clin. Chem. (2005) 51(7):1263-1266.
  • KREUZER KA, LE COUTRE P, LANDT O et al.: Preexistence and evolution of imatinib mesylate-resistant clones in chronic myelogenous leukemia detected by a PNA-based PCR clamping technique. Ann. Hematol. (2003) 82(5):284-289.
  • WILLIS SG, LANGE T, DEMEHRI S et al.: High-sensitivity detection of BCR-ABL kinase domain mutations in imatinib-naive patients: correlation with clonal cytogenetic evolution but not response to therapy. Blood (2005) 106(6):2128-2137.
  • WHITE D, SAUNDERS V, LYONS AB et al.: In vitro sensitivity to imatinib-induced inhibition of ABL kinase activity is predictive of molecular response in patients with de novo CML. Blood (2005) 106(7):2520-2526.
  • WHITE DL, SAUNDERS VA, DANG P et al.: OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood (2006) 108(2):697-704.
  • ZHENG C, LI L, HAAK M et al.: Gene expression profiling of CD34+ cells identifies a molecular signature of chronic myeloid leukemia blast crisis. Leukemia (2006) 20(6):1028-1034.
  • MCLEAN LA, GATHMANN I, CAPDEVILLE R, POLYMEROPOULOS MH, DRESSMAN M: Pharmacogenomic analysis of cytogenetic response in chronic myeloid leukemia patients treated with imatinib. Clin. Cancer Res. (2004) 10(1 Part 1):155-165.
  • RADICH JP, DAI H, MAO M et al.: Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc. Natl. Acad. Sci. USA (2006) 103(8):2794-2799.
  • CROSSMAN LC, MORI M, HSIEH YC et al.: In chronic myeloid leukemia white cells from cytogenetic responders and non-responders to imatinib have very similar gene expression signatures. Haematologica (2005) 90(4):459-464.
  • RANE SG, REDDY EP: JAKs, STATs and Src kinases in hematopoiesis. Oncogene (2002) 21(21):3334-3358.
  • RANE SG, REDDY EP: Janus kinases: components of multiple signaling pathways. Oncogene (2000) 19(49):5662-5679.
  • PARGANAS E, WANG D, STRAVOPODIS D et al.: Jak2 is essential for signaling through a variety of cytokine receptors. Cell (1998) 93(3):385-395.
  • SCOTT LM, SCOTT MA, CAMPBELL PJ, GREEN AR: Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood (2006) 108(7):2435-2437.
  • SCOTT LM, TONG W, LEVINE RL et al.: JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N. Engl. J. Med. (2007) 356(5):459-468.
  • PARDANANI AD, LEVINE RL, LASHO T et al.: MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood (2006) 108(10):3472-3476.
  • TEFFERI A: Classification, diagnosis and management of myeloproliferative disorders in the JAK2V617F era. Hematol. Am. Soc. Hematol. Educ. Program (2006) :240-245.
  • TEFFERI A: JAK2 mutations in polycythemia vera – molecular mechanisms and clinical applications. N. Engl. J. Med. (2007) 356(5):444-445.
  • TEFFERI A, GILLILAND DG: The JAK2V617F tyrosine kinase mutation in myeloproliferative disorders: status report and immediate implications for disease classification and diagnosis. Mayo Clin. Proc. (2005) 80(7):947-958.
  • JONES AV, SILVER RT, WAGHORN K et al.: Minimal molecular response in polycythemia vera patients treated with imatinib or interferon a. Blood (2006) 107(8):3339-3341.
  • KILADJIAN JJ, CASSINAT B, TURLURE P et al.: High molecular response rate of polycythemia vera patients treated with pegylated IFN-α-2a. Blood (2006) 108(6):2037-2040.
  • LEVINE RL, BELISLE C, WADLEIGH M et al.: X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hematopoiesis. Blood (2006) 107(10):4139-4141.
  • CAMPBELL PJ, GRIESSHAMMER M, DOHNER K et al.: V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. Blood (2006) 107(5):2098-2100.
  • MESA RA, POWELL H, LASHO T et al.: JAK2(V617F) and leukemic transformation in myelofibrosis with myeloid metaplasia. Leuk. Res. (2006) 30(11):1457-1460.
  • WOLANSKYJ AP, LASHO TL, SCHWAGER SM et al.: JAK2 mutation in essential thrombocythaemia: clinical associations and long-term prognostic relevance. Br. J. Haematol. (2005) 131(2):208-213.
  • CAMPBELL PJ, SCOTT LM, BUCK G et al.: Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet (2005) 366(9501):1945-1953.
  • TEFFERI A, LASHO TL, SCHWAGER SM et al.: The JAK2(V617F) tyrosine kinase mutation in myelofibrosis with myeloid metaplasia: lineage specificity and clinical correlates. Br. J. Haematol. (2005) 131(3):320-328.
  • HELLER PG, LEV PR, SALIM JP et al.: JAK2V617F mutation in platelets from essential thrombocythemia patients: correlation with clinical features and analysis of STAT5 phosphorylation status. Eur. J. Haematol. (2006) 77(3):210-216.
  • CHEUNG B, RADIA D, PANTELIDIS P, YADEGARFAR G, HARRISON C: The presence of the JAK2 V617F mutation is associated with a higher haemoglobin and increased risk of thrombosis in essential thrombocythaemia. Br. J. Haematol. (2006) 132(2):244-245.
  • SPELETAS M, KATODRITOU E, DAIOU C et al.: Correlations of JAK2-V617F mutation with clinical and laboratory findings in patients with myeloproliferative disorders. Leuk. Res. (2007) 31(8):1053-1062.
  • ANTONIOLI E, GUGLIELMELLI P, PANCRAZZI A et al.: Clinical implications of the JAK2 V617F mutation in essential thrombocythemia. Leukemia (2005) 19(10):1847-1849.
  • PEMMARAJU N, MOLITERNO AR, WILLIAMS D, ROGERS O, SPIVAK JL: Heterogeneous JAK2V617F allele burden in essential thrombocytosis: gender and clinical correlates. ASH Ann. Meeting. Abstr. (2006) 108(11):2679.
  • VANNUCCHI AM, ANTONIOLI E, GUGLIELMELLI P et al.: Clinical profile of homozygous JAK2V617F mutation in patients with polycythemia vera or essential thrombocythemia. Blood (2007) 110(3):840-846.
  • VANNUCCHI AM, ANTONIOLIM E, GUGLIELMELLI P et al.: Influence of the Jak2V617F mutational load at diagnosis on major clinical aspects in patients with polycythemia vera. ASH Ann. Meeting Abstr. (2006) 108(11):5.
  • KILADJIAN JJ, CASADEVALL N, VAINCHENKER W, FENAUX P: The first international meeting on V617F JAK2 mutation and its relevance in Philadelphia-negative myeloproliferative disorders. Pathol. Biol. (Paris) (2007) 55(2):85-87.
  • TEFFERI A, STRAND JJ, LASHO TL et al.: Respective clustering of unfavorable and favorable cytogenetic clones in myelofibrosis with myeloid metaplasia with homozygosity for JAK2(V617F) and response to erythropoietin therapy. Cancer (2006) 106(8):1739-1743.
  • VANNUCCHI AM, PANCRAZZI A, BOGANI C, ANTONIOLI E, GUGLIELMELLI P: A quantitative assay for JAK2(V617F) mutation in myeloproliferative disorders by ARMS-PCR and capillary electrophoresis. Leukemia (2006) 20(6):1055-1060.
  • MCCLURE R, MAI M, LASHO T: Validation of two clinically useful assays for evaluation of JAK2 V617F mutation in chronic myeloproliferative disorders. Leukemia (2006) 20(1):168-171.
  • KILADJIAN J-J, CASSINAT B, TURLURE P et al.: Peg IFN{α}-2a in polycythemia vera (PV). Results of a Phase II study by the French “PV-NORD” group. ASH Ann. Meeting Abstr. (2006) 108(11):670.
  • MARKOVA J, PRUKOVA D, VOLKOVA Z, SCHWARZ J: A new allelic discrimination assay using locked nucleic acid-modified nucleotides (LNA) probes for detection of JAK2 V617F mutation. Leuk. Lymphoma (2007) 48(3):636-639.
  • OLSEN RJ, TANG Z, FARKAS DH et al.: Detection of the JAK2(V617F) mutation in myeloproliferative disorders by melting curve analysis using the LightCycler system. Arch. Pathol. Lab. Med. (2006) 130(7):997-1003.
  • JAMES C, DELHOMMEAU F, MARZAC C et al.: Detection of JAK2 V617F as a first intention diagnostic test for erythrocytosis. Leukemia (2006) 20(2):350-353.
  • TEFFERI A, MESA RA, SCHROEDER G et al.: Cytogenetic findings and their clinical relevance in myelofibrosis with myeloid metaplasia. Br. J. Haematol. (2001) 113(3):763-771.
  • REILLY JT: Cytogenetic and molecular genetic abnormalities in agnogenic myeloid metaplasia. Semin. Oncol. (2005) 32(4):359-364.
  • DIEZ-MARTIN JL, GRAHAM DL, PETITT RM, DEWALD GW: Chromosome studies in 104 patients with polycythemia vera. Mayo Clin. Proc. (1991) 66(3):287-299.
  • SESSAREGO M, DEFFERRARI R, DEJANA AM et al.: Cytogenetic analysis in essential thrombocythemia at diagnosis and at transformation. A 12-year study. Cancer Genet. Cytogenet. (1989) 43(1):57-65.
  • STEENSMA DP, TEFFERI A: Cytogenetic and molecular genetic aspects of essential thrombocythemia. Acta Haematol. (2002) 108(2):55-65.
  • BACHER U, HAFERLACH T, KERN W et al.: Conventional cytogenetics of myeloproliferative diseases other than CML contribute valid information. Ann. Hematol. (2005) 84(4):250-257.
  • DINGLI D, GRAND FH, MAHAFFEY V et al.: Der(6)t(1;6)(q21-23;p21.3): a specific cytogenetic abnormality in myelofibrosis with myeloid metaplasia. Br. J. Haematol. (2005) 130(2):229-232.
  • TEFFERI A, DINGLI D, LI CY, DEWALD GW: Prognostic diversity among cytogenetic abnormalities in myelofibrosis with myeloid metaplasia. Cancer (2005) 104(8):1656-1660.
  • DINGLI D, SCHWAGER SM, MESA RA et al.: Presence of unfavorable cytogenetic abnormalities is the strongest predictor of poor survival in secondary myelofibrosis. Cancer (2006) 106(9):1985-1989.
  • MESA RA, LI CY, KETTERLING RP et al.: Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. Blood (2005) 105(3):973-977.
  • CHEN Z, SANDBERG AA: Molecular cytogenetic aspects of hematological malignancies: clinical implications. Am. J. Med. Genet. (2002) 115(3):130-141.
  • ZAMORA L, ESPINET B, FLORENSA L et al.: Is fluorescence in situ hybridization a useful method in diagnosis of polycythemia vera patients? Cancer Genet. Cytogenet. (2004) 151(2):139-145.
  • NAJFELD V, MONTELLA L, SCALISE A, FRUCHTMAN S: Exploring polycythaemia vera with fluorescence in situ hybridization: additional cryptic 9p is the most frequent abnormality detected. Br. J. Haematol. (2002) 119(2):558-566.
  • TEMERINAC S, KLIPPEL S, STRUNCK E et al.: Cloning of PRV-1, a novel member of the uPAR receptor superfamily, which is overexpressed in polycythemia rubra vera. Blood (2000) 95(8):2569-2576.
  • TEOFILI L, MARTINI M, LUONGO M et al.: Overexpression of the polycythemia rubra vera-1 gene in essential thrombocythemia. J. Clin. Oncol. (2002) 20(20):4249-4254.
  • MARTINI M, TEOFILI L, LAROCCA LM: Overexpression of PRV-1 gene in polycythemia rubra vera and essential thrombocythemia. Methods Mol. Med. (2006) 125:265-273.
  • GRIESSHAMMER M, KLIPPEL S, STRUNCK E et al.: PRV-1 mRNA expression discriminates two types of essential thrombocythemia. Ann. Hematol. (2004) 83(6):364-370.
  • KRALOVICS R, BUSER AS, TEO SS et al.: Comparison of molecular markers in a cohort of patients with chronic myeloproliferative disorders. Blood (2003) 102(5):1869-1871.
  • KLIPPEL S, STRUNCK E, TEMERINAC S et al.: Quantification of PRV-1 mRNA distinguishes polycythemia vera from secondary erythrocytosis. Blood (2003) 102(10):3569-3574.
  • TEFFERI A, LASHO TL, WOLANSKYJ AP, MESA RA: Neutrophil PRV-1 expression across the chronic myeloproliferative disorders and in secondary or spurious polycythemia. Blood (2004) 103(9):3547-3548.
  • PASSAMONTI F, PIETRA D, MALABARBA L et al.: Clinical significance of neutrophil CD177 mRNA expression in Ph-negative chronic myeloproliferative disorders. Br. J. Haematol. (2004) 126(5):650-656.
  • MASTERS GS, BAINES P, JACOBS A: Erythroid colony growth from peripheral blood and bone marrow in polycythaemia. J. Clin. Pathol. (1990) 43(11):937-941.
  • WEINBERG RS: In vitro erythropoiesis in polycythemia vera and other myeloproliferative disorders. Semin. Hematol. (1997) 34(1):64-69.
  • FLORENSA L, BESSES C, WOESSNER S et al.: Endogenous megakaryocyte and erythroid colony formation from blood in essential thrombocythaemia. Leukemia (1995) 9(2):271-273.
  • REID CD, FIDLER J, KIRK A: Endogenous erythroid clones (EEC) in polycythaemia and their relationship to diagnosis and the response to treatment. Br. J. Haematol. (1988) 68(4):395-400.
  • REID CD: The significance of endogenous erythroid colonies (EEC) in haematological disorders. Blood Rev. (1987) 1(2):133-140.
  • DOBO I, DONNARD M, GIRODON F et al.: Standardization and comparison of endogenous erythroid colony assays performed with bone marrow or blood progenitors for the diagnosis of polycythemia vera. Hematol. J. (2004) 5(2):161-167.
  • DOBO I, MOSSUZ P, CAMPOS L et al.: Comparison of four serum-free, cytokine-free media for analysis of endogenous erythroid colony growth in polycythemia vera and essential thrombocythemia. Hematol. J. (2001) 2(6):396-403.
  • HORIKAWA Y, MATSUMURA I, HASHIMOTO K et al.: Markedly reduced expression of platelet c-mpl receptor in essential thrombocythemia. Blood (1997) 90(10):4031-4038.
  • MOLITERNO AR, HANKINS WD, SPIVAK JL: Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. N. Engl. J. Med. (1998) 338(9):572-580.
  • YOON SY, LI CY, TEFFERI A: Megakaryocyte c-Mpl expression in chronic myeloproliferative disorders and the myelodysplastic syndrome: immunoperoxidase staining patterns and clinical correlates. Eur. J. Haematol. (2000) 65(3):170-174.
  • LE BLANC K, ANDERSSON P, SAMUELSSON J: Marked heterogeneity in protein levels and functional integrity of the thrombopoietin receptor c-mpl in polycythaemia vera. Br. J. Haematol. (2000) 108(1):80-85.
  • DUENSING S, DUENSING A, MERAN JG et al.: Molecular detection of c-mpl thrombopoietin receptor gene expression in chronic myeloproliferative disorders. Mol. Pathol. (1999) 52(3):146-150.
  • TEFFERI A, YOON SY, LI CY: Immunohistochemical staining for megakaryocyte c-mpl may complement morphologic distinction between polycythemia vera and secondary erythrocytosis. Blood (2000) 96(2):771-772.
  • KLIPPEL S, PAHL HL: Molecular markers for the diagnosis of Philadelphia chromosome negative myeloproliferative disorders. Pathol. Biol. (Paris) (2004) 52(5):267-274.
  • TRANZER JP, DA PRADA M, PLETSCHER A: Storage of 5-hydroxytryptamine in megakaryocytes. J. Cell Biol. (1972) 52(1):191-197.
  • CHAUVEAU J, FERT V, MOREL AM, DELAAGE MA: Rapid and specific enzyme immunoassay of serotonin. Clin. Chem. (1991) 37(7):1178-1184.
  • MAURER-SPUREJ E, DYKER K, GAHL WA, DEVINE DV: A novel immunocytochemical assay for the detection of serotonin in platelets. Br. J. Haematol. (2002) 116(3):604-611.
  • KOCH CA, LASHO TL, TEFFERI A: Platelet-rich plasma serotonin levels in chronic myeloproliferative disorders: evaluation of diagnostic use and comparison with the neutrophil PRV-1 assay. Br. J. Haematol. (2004) 127(1):34-39.
  • TEFFERI A, ELLIOTT MA, PARDANANI A: Atypical myeloproliferative disorders: diagnosis and management. Mayo Clin. Proc. (2006) 81(4):553-563.
  • COOLS J, STOVER EH, GILLILAND DG: Detection of the FIP1L1-PDGFRA fusion in idiopathic hypereosinophilic syndrome and chronic eosinophilic leukemia. Methods Mol. Med. (2006) 125:177-187.
  • TREMPAT P, VILLALVA C, LAURENT G et al.: Chronic myeloproliferative disorders with rearrangement of the platelet-derived growth factor α receptor: a new clinical target for STI571/Glivec. Oncogene (2003) 22(36):5702-5706.
  • SAFLEY AM, SEBASTIAN S, COLLINS TS et al.: Molecular and cytogenetic characterization of a novel translocation t(4;22) involving the breakpoint cluster region and platelet-derived growth factor receptor-α genes in a patient with atypical chronic myeloid leukemia. Genes Chromosomes Cancer (2004) 40(1):44-50.
  • PARDANANI A, KETTERLING RP, BROCKMAN SR et al.: CHIC2 deletion, a surrogate for FIP1L1-PDGFRA fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapy. Blood (2003) 102(9):3093-3096.
  • VANDENBERGHE P, WLODARSKA I, MICHAUX L et al.: Clinical and molecular features of FIP1L1-PDFGRA (+) chronic eosinophilic leukemias. Leukemia (2004) 18(4):734-742.
  • GRANJO E, LIMA M, LOPES JM et al.: Chronic eosinophilic leukaemia presenting with erythroderma, mild eosinophilia and hyper-IgE: clinical, immunological and cytogenetic features and therapeutic approach. A case report. Acta Haematol. (2002) 107(2):108-112.
  • GUPTA R, KNIGHT CL, BAIN BJ: Receptor tyrosine kinase mutations in myeloid neoplasms. Br. J. Haematol. (2002) 117(3):489-508.
  • GREIPP PT, DEWALD GW, TEFFERI A: Prevalence, breakpoint distribution, and clinical correlates of t(5;12). Cancer Genet. Cytogenet. (2004) 153(2):170-172.
  • MAGNUSSON MK, MEADE KE, NAKAMURA R, BARRETT J, DUNBAR CE: Activity of STI571 in chronic myelomonocytic leukemia with a platelet-derived growth factor β receptor fusion oncogene. Blood (2002) 100(3):1088-1091.
  • MACDONALD D, REITER A, CROSS NC: The 8p11 myeloproliferative syndrome: a distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol. (2002) 107(2):101-107.
  • WALZ C, CHASE A, SCHOCH C et al.: The t(8;17)(p11;q23) in the 8p11 myeloproliferative syndrome fuses MYO18A to FGFR1. Leukemia (2005) 19(6):1005-1009.
  • AKIN C, FUMO G, YAVUZ AS et al.: A novel form of mastocytosis associated with a transmembrane c-kit mutation and response to imatinib. Blood (2004) 103(8):3222-3225.
  • TAN A, WESTERMAN D, MCARTHUR GA et al.: Sensitive detection of KIT D816V in patients with mastocytosis. Clin. Chem. (2006) 52(12):2250-2257.
  • TEFFERI A, PARDANANI A: Clinical, genetic, and therapeutic insights into systemic mast cell disease. Curr. Opin. Hematol. (2004) 11(1):58-64.
  • MA Y, ZENG S, METCALFE DD et al.: The c-KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. Blood (2002) 99(5):1741-1744.
  • FROST MJ, FERRAO PT, HUGHES TP, ASHMAN LK: Juxtamembrane mutant V560GKit is more sensitive to Imatinib (STI571) compared with wild-type c-kit whereas the kinase domain mutant D816VKit is resistant. Mol. Cancer Ther. (2002) 1(12):1115-1124.
  • ZERMATI Y, DE SEPULVEDA P, FEGER F et al.: Effect of tyrosine kinase inhibitor STI571 on the kinase activity of wild-type and various mutated c-kit receptors found in mast cell neoplasms. Oncogene (2003) 22(5):660-664.
  • PARDANANI A, ELLIOTT M, REEDER T et al.: Imatinib for systemic mast-cell disease. Lancet (2003) 362(9383):535-536.
  • GARCIA-MONTERO AC, JARA-ACEVEDO M, TEODOSIO C et al.: KIT mutation in mast cells and other bone marrow hematopoietic cell lineages in systemic mast cell disorders: a prospective study of the Spanish Network on Mastocytosis (REMA) in a series of 113 patients. Blood (2006) 108(7):2366-2372.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.