52
Views
10
CrossRef citations to date
0
Altmetric
Reviews

MRI biomarkers for evaluation of treatment efficacy in preclinical diabetic retinopathy

, PhD, , , , &
Pages 393-403 | Published online: 21 Jun 2013

Bibliography

  • Kiss B, Polska E, Dorner G, et al. Retinal blood flow during hyperoxia in humans revisited: concerted results using different measurement techniques. Microvasc Res 2002;64:75-85
  • Higashi S, Clermont AC, Dhir V, Bursell SE. Reversibility of retinal flow abnormalities is disease-duration dependent in diabetic rats. Diabetes 1998;47:653-9
  • Konno S, Feke GT, Yoshida A, et al. Retinal blood flow changes in type I diabetes – a long-term, follow-up study. Invest Ophthalmol Vis Sci 1996;37:1140-8
  • Bursell SE, Clermont AC, Oren B, King GL. The in vivo effect of endothelins on retinal circulation in nondiabetic and diabetic rats. Invest Ophthalmol Vis Sci 1995;36:596-607
  • Kern TS, Tang J, Berkowitz BA. Validation of structural and functional lesions of diabetic retinopathy in mice. Mol Vis 2010;16:2121-31
  • Guan K, Hudson C, Wong T, et al. Retinal hemodynamics in early diabetic macular edema. Diabetes 2006;55:813-18
  • Lorenzi M, Feke GT, Pitler L, et al. Defective myogenic response to posture change in retinal vessels of well-controlled type 1 diabetic patients with no retinopathy. Invest Ophthalmol Vis Sci 2010;51:6770-5
  • Lorenzi M, Feke GT, Cagliero E, et al. Retinal haemodynamics in individuals with well-controlled type 1 diabetes. Diabetologia 2008;51:361-4
  • Berkowitz BA, Roberts R. Prognostic MRI biomarkers of treatment efficacy for retinopathy. NMR Biomed 2008;21:957-67
  • Trick GL, Burde RM, Gordon MO, et al. The relationship between hue discrimination and contrast sensitivity deficits in patients with diabetes mellitus. Ophthalmology 1988;95:693-8
  • Jackson G, Barber A. Visual dysfunction associated with diabetic retinopathy. Curr Diab Rep 2010;10:380-4
  • Tang J, Mohr S, Du YD, Kern TS. Non-uniform distribution of lesions and biochemical abnormalities within the retina of diabetic humans. Curr Eye Res 2003;27:7-13
  • Adams AJ, Bearse MA Jr. Retinal neuropathy precedes vasculopathy in diabetes: a function-based opportunity for early treatment intervention? Clin Exp Optom 2012;95:256-65
  • Ball SL, Petry HM. Noninvasive assessment of retinal function in rats using multifocal electroretinography. Invest Ophthalmol Vis Sci 2000;41:610-17
  • Nusinowitz S, Ridder WH, Heckenlively JR. Rod multifocal electroretinograms in mice. Invest Ophthalmol Vis Sci 1999;40:2848-58
  • Cogan DG, Kuwabara T. Comparison of retinal and cerebral vasculature in trypsin digest preparations. Br J Ophthalmol 1984;68:10-12
  • Shih YY, Muir ER, Li G, et al. High-resolution 3D MR microangiography of the rat ocular circulation. Radiology 2012;264:234-41
  • Berkowitz BA, Bissig D, Patel P, et al. Acute systemic 11-cis-retinal intervention improves abnormal outer retinal ion channel closure in diabetic mice. Mol Vis 2012;18:372-6
  • Li X, McClellan ME, Tanito M, et al. Loss of caveolin-1 impairs retinal function due to disturbance of subretinal microenvironment. J Biol Chem 2012;287:16424-34
  • Berkowitz BA, Gradianu M, Bissig D, et al. Retinal ion regulation in a mouse model of diabetic retinopathy: natural history and the effect of Cu/Zn superoxide dismutase overexpression. Invest Ophthalmol Vis Sci 2009;50:2351-8
  • Berkowitz BA, Roberts R, Luan H, et al. Manganese-enhanced MRI studies of alterations of intraretinal ion demand in models of ocular injury. Invest Ophthalmol Vis Sci 2007;48:3796-804
  • Berkowitz BA, Roberts R, Stemmler A, et al. Impaired apparent ion demand in experimental diabetic retinopathy: correction by lipoic acid. Invest Ophthalmol Vis Sci 2007;48:4753-8
  • Berkowitz BA, Roberts R, Goebel DJ, Luan H. Noninvasive and simultaneous imaging of layer-specific retinal functional adaptation by manganese-enhanced MRI. Invest Ophthalmol Vis Sci 2006;47:2668-74
  • Ames A III, Li YY, Heher EC, Kimble CR. Energy metabolism of rabbit retina as related to function: high cost of Na+ transport. J Neurosci 1992;12:840-53
  • Linton JD, Holzhausen LC, Babai N, et al. Flow of energy in the outer retina in darkness and in light. PNAS 2010;107:8599-604
  • Tofts PS, Porchia A, Jin Y, et al. Toward clinical application of manganese-enhanced MRI of retinal function. Brain Res Bull 2010;81:333-8
  • Berkowitz BA, Roberts R, Luan H, et al. Manganese-enhanced MRI studies of alterations of intraretinal ion demand in models of ocular injury. Invest Ophthalmol Vis Sci 2007;48:3796-804
  • Berkowitz BA, Roberts R, Penn JS, Gradianu M. High-resolution manganese-enhanced MRI of experimental retinopathy of prematurity. Invest Ophthalmol Vis Sci 2007;48:4733-40
  • Bissig D, Berkowitz BA. Same-session functional assessment of rat retina and brain with manganese-enhanced MRI. Neuroimage 2011;58:749-60
  • Au C, Benedetto A, Aschner M. Manganese transport in eukaryotes: the role of DMT1. Neurotoxicology 2008;29:569-76
  • Wang CY, Jenkitkasemwong S, Duarte S, et al. ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J Biol Chem 2012;287:34032-43
  • Schmitz Y, Witkovsky P. Dependence of photoreceptor glutamate release on a dihydropyridine-sensitive calcium channel. Neuroscience 1997;78:1209-16
  • Nachman-Clewner M, Jules R, Townes-Anderson E. L-type calcium channels in the photoreceptor ribbon synapse: localization and role in plasticity. J Comp Neurol 1999;415:1-16
  • Avendano G, Butler BJ, Michael Iuvone P. K+-evoked depolarization induces serotonin N-acetyltransferase activity in photoreceptor-enriched retinal cell cultures. Involvement of calcium influx through l-type channels. Neurochem Int 1990;17:117-26
  • Drapeau P, Nachshen DA. Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain. J Physiol 1984;348:493-510
  • Carlson RO, Masco D, Brooker G, Spiegel S. Endogenous ganglioside GM1 modulates L-type calcium channel activity in N18 neuroblastoma cells. J Neurosci 1994;14:2272-81
  • Cross DJ, Flexman JA, Anzai Y, et al. In vivo manganese MR imaging of calcium influx in spontaneous rat pituitary adenoma. AJNR Am J Neuroradiol 2007;28:1865-71
  • Berkowitz BA, Bissig D, Bergman D, et al. Intraretinal calcium channels and retinal morbidity in experimental retinopathy of prematurity. Mol Vis 2011;17:2516-26
  • Pritschow B, Lange T, Kasch J, et al. Functional TRPV4 channels are expressed in mouse skeletal muscle and can modulate resting Ca2+ influx and muscle fatigue. Pflugers Arch Eur J Physiol 2011;461:115-22
  • Itoh K, Sakata M, Watanabe M, et al. The entry of manganese ions into the brain is accelerated by the activation of N-methyl-d-aspartate receptors. Neuroscience 2008;154:732-40
  • Berkowitz BA, Roberts R, Oleske DA, et al. Quantitative mapping of ion channel regulation by visual cycle activity in rodent photoreceptors in vivo. Invest Ophthalmol Vis Sci 2009;1880-5
  • Berkowitz BA, Roberts R, Bissig D. Light-dependant intraretinal ion regulation by melanopsin in young awake and free moving mice evaluated with manganese-enhanced MRI. Mol Vis 2010;16:1776-80
  • Ivanova E, Roberts R, Bissig D, et al. Retinal channelrhodopsin-2-mediated activity in vivo evaluated with manganese-enhanced magnetic resonance imaging. Mol Vis 2010;16:1059-67
  • Crosson CE, Willis JA, Potter DE. Effect of the calcium antagonist, nifedipine, on ischemic retinal dysfunction. J Ocul Pharmacol 1990;6:293-9
  • Toriu N, Akaike A, Yasuyoshi H, et al. Lomerizine, a Ca2+ channel blocker, reduces glutamate-induced neurotoxicity and ischemia/reperfusion damage in rat retina. Exp Eye Res 2000;70:475-84
  • Hirooka K, Kelly MEM, Baldridge WH, Barnes S. Suppressive actions of betaxolol on ionic currents in retinal ganglion cells may explain its neuroprotective effects. Exp Eye Res 2000;70:611-21
  • Massote P, Pinheiro A, Fonseca C, et al. Protective Effect of retinal ischemia by blockers of voltage-dependent calcium channels and intracellular calcium stores. Cell Mol Neurobiol 2008;28:847-56
  • Berkowitz BA, Gradianu M, Schafer S, et al. Ionic dysregulatory phenotyping of pathologic retinal thinning with manganese-enhanced MRI. Invest Ophthalmol Vis Sci 2008;49:3178-84
  • Zheng L, Gong B, Hatala DA, Kern TS. Retinal Ischemia and reperfusion causes capillary degeneration: similarities to diabetes. Invest Ophthalmol Vis Sci 2007;48:361-7
  • Zhu Y, Zhang Y, Ojwang BA, et al. Long-term tolerance to retinal ischemia by repetitive hypoxic preconditioning: role of HIF-1alpha and heme oxygenase-1. Invest Ophthalmol Vis Sci 2007;48:1735-43
  • Anthuber M, Farkas S, Rihl M, et al. Angiotensin-converting enzyme inhibition by enalapril: a novel approach to reduce ischemia/reperfusion damage after experimental liver transplantation. Hepatology 1997;25:648-51
  • Fischer S, MacLean AA, Liu M, et al. Inhibition of angiotensin-converting enzyme by captopril: a novel approach to reduce ischemia-reperfusion injury after lung transplantation. J Thorac Cardiovasc Surg 2000;120:573-80
  • Flynn JD, Akers WS. Effects of the Angiotensin II subtype 1 receptor antagonist losartan on functional recovery of isolated rat hearts undergoing global myocardial ischemia-reperfusion. Pharmacotherapy 2003;23:1401-10
  • Messadi-Laribi E, Griol-Charhbili V, Gaies E, et al. Cardioprotection and kallikreingçôkinin system in acute myocardial ischaemia in mice. Clin Exp Pharmacol Physiol 2008;35:489-93
  • Køber L, Torp-Pedersen C, Carlsen JE, et al. A clinical trial of the angiotensin-convertingg-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 1995;333:1670-6
  • Morris SD, Yellon DM. Angiotensin-converting enzyme inhibitors potentiate preconditioning through bradykinin B2 receptor activation in human heart. J Am Coll Cardiol 1997;29:1599-606
  • Leesar MA, Jneid H, Tang XL, Bolli R. Pretreatment with intracoronary enalaprilat protects human myocardium during percutaneous coronary angioplasty. J Am Coll Cardiol 2007;49:1607-10
  • Alvin Z, Laurence GG, Coleman BR, et al. Regulation of L-type inward calcium channel activity by captopril and angiotensin II via the phosphatidyl inositol 3-kinase pathway in cardiomyocytes from volume-overload hypertrophied rat hearts. Can J Physiol Pharmacol 2011;89:206-15
  • Bryant SM, Ryder KO, Hart G. Effects of captopril on membrane current and contraction in single ventricular myocytes from guinea-pig. Br J Pharmacol 1991;102:462-6
  • Wang J, Zhang L, Qi JH, et al. Effects of captopril and enalaprilat on intracellular Ca2+ content in isolated cardiomyocytes from rats. Zhongguo Yao Li Xue Bao 1996;17:233-5
  • Bartosz M, Kedziora J, Bartosz G. Antioxidant and prooxidant properties of captopril and enalapril. Free Radic Biol Med 1997;23:729-35
  • de Cavanagh EM, Fraga CG, Ferder L, Inserra F. Enalapril and captopril enhance antioxidant defenses in mouse tissues. Am J Physiol 1997;272:R514-18
  • Scribner AW, Loscalzo J, Napoli C. The effect of angiotensin-converting enzyme inhibition on endothelial function and oxidant stress. Eur J Pharmacol 2003;482:95-9
  • Sugimoto KI, Tsuruoka S, Fujimura A. Effect of enalapril on diabetic nephropathy in oletf rats: the role of an anti-oxidative action in its protective properties. Clin Exp Pharmacol Physiol 2001;28:826-30
  • Kedziora-Kornatowska K. Effect of angiotensin convertase inhibitors and AT1 angiotensin receptor antagonists on the development of oxidative stress in the kidney of diabetic rats. Clin Chim Acta 1999;287:19-27
  • Yamasaki T, Kawahara M, Akiyama Y, et al. Effect of enalaprilat, an angiotensin converting enzyme inhibitor, on the membrane potential of cultured neuroblastoma-glioma hybrid NG108-15 cells. No To Shinkei 1993;45:1039-44
  • De Mello WC, Cherry RC, Manivannan S. Electrophysiologic and morphologic abnormalities in the failing heart: effect of enalapril on the electrical properties. J Card Fail 1997;3:53-61
  • De Mello WC. Electrical activity of the heart and angiotensin-converting enzyme inhibitors on the hyperpolarising action of enalapril. J Hum Hypertens 2002;16(Suppl 1):S89-92
  • Fukuda K, Hirooka K, Mizote M, et al. Neuroprotection against retinal ischemia-reperfusion injury by blocking the angiotensin II type 1 receptor. Invest Ophthalmol Vis Sci 2010;51:3629-38
  • Zhang JZ, Xi X, Gao L, Kern TS. Captopril inhibits capillary degeneration in the early stages of diabetic retinopathy. Curr Eye Res 2007;32:883-9
  • Peng PH, Huang HS, Lee YJ, et al. Novel role for the delta-opioid receptor in hypoxic preconditioning in rat retinas. J Neurochem 2009;108:741-54
  • Benzie IF, Tomlinson B. Antioxidant power of angiotensin-converting enzyme inhibitors in vitro. Br J Clin Pharmacol 1998;45:168-9
  • De NF, D'Armiento FP, Somma P, et al. Chronic treatment with sulfhydryl angiotensin-converting enzyme inhibitors reduce susceptibility of plasma LDL to in vitro oxidation, formation of oxidation-specific epitopes in the arterial wall, and atherogenesis in apolipoprotein E knockout mice. Int J Cardiol 2001;81:107-15
  • Goldschmidt JE, Tallarida RJ. Pharmacological evidence that captopril possesses an endothelium-mediated component of vasodilation: effect of sulfhydryl groups on endothelium-derived relaxing factor. J Pharmacol Exp Ther 1991;257:1136-45
  • de Cavanagh EMV, Inserra F, Toblli J, et al. Enalapril attenuates oxidative stress in diabetic rats. Hypertension 2001;38:1130-6
  • Agostinho P, Duarte CB, Carvalho AP, Oliveira CR. Oxidative stress affects the selective ion permeability of voltage-sensitive Ca2+ channels in cultured retinal cells. Neurosci Res 1997;27:323-34
  • Shirotani K, Katsura M, Higo A, et al. Suppression of Ca2+ influx through L-type voltage-dependent calcium channels by hydroxyl radical in mouse cerebral cortical neurons. Brain Res Mol Brain Res 2001;92:12-18
  • Pulukuri S, Sitaramayya A. Retinaldehyde, a potent inhibitor of gap junctional intercellular communication. Cell Commun Adhes 2004;11:25-33
  • Long AC, Bomser JA, Grzybowski DM, Chandler HL. All-trans retinoic acid regulates cx43 expression, gap junction communication and differentiation in primary lens epithelial cells. Curr Eye Res 2010;35:670-9
  • Zhang DQ, McMahon DG. Direct gating by retinoic acid of retinal electrical synapses. Proc Natl Acad Sci USA 2000;97:14754-9
  • Bissig D, Goebel D, Berkowitz BA. Diminished vision in healthy aging is associated with increased retinal l-type voltage gated calcium channel ion influx. PLoS ONE 2013;8:e56340
  • Mauer M, Zinman B, Gardiner R, et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med 2009;361:40-51
  • Salido EM, Dorfman D, Bordone M, et al. Ischemic conditioning protects the rat retina in an experimental model of early type 2 diabetes. Exp Neurol 2013;240:1-8
  • Fernandez DC, Sande PH, Chianelli MS, et al. Induction of ischemic tolerance protects the retina from diabetic retinopathy. Am J Pathol 2011;178:2264-74
  • Zheng Z, Chen H, Ke G, et al. Protective effect of perindopril on diabetic retinopathy is associated with decreased vascular endothelial growth factor-to-pigment epithelium-derived factor ratio: involvement of a mitochondria-reactive oxygen species pathway. Diabetes 2009;58:954-64
  • Ebrahimian TG, Tamarat R, Clergue M, et al. Dual effect of angiotensin-converting enzyme inhibition on angiogenesis in type 1 diabetic mice. Arterioscler Thromb Vasc Biol 2005;25:65-70
  • Zheng Z, Chen H, Xu X, et al. Effects of angiotensin-converting enzyme inhibitors and beta-adrenergic blockers on retinal vascular endothelial growth factor expression in rat diabetic retinopathy. Exp Eye Res 2007;84:745-52
  • Barnett J, Yanni S, Penn J. The development of the rat model of retinopathy of prematurity. Doc Ophthalmol 2010;120:3-12
  • Smith LE, Wesolowski E, McLellan A, et al. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 1994;35:101-11
  • Berkowitz BA, Penn JS. Abnormal panretinal response pattern to carbogen inhalation in experimental retinopathy of prematurity. Invest Ophthalmol Vis Sci 1998;39:840-5
  • Penn JS, Henry MM, Wall PT, Tolman BL. The range of PaO2 variation determines the severity of oxygen-induced retinopathy in newborn rats. Invest Ophthalmol Vis Sci 1995;36:2063-70
  • Penn JS, Henry MM, Tolman BL. Exposure to alternating hypoxia and hyperoxia causes severe proliferative retinopathy in the newborn rat. Pediatr Res 1994;36:724-31
  • Berkowitz BA, McDonald C, Ito Y, et al. Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: eliminating blinking artifacts and demonstrating proof of concept. Magn Reson Med 2001;46:412-16

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.