92
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Diagnosis of skeletal muscle channelopathies

, &
Pages 517-529 | Published online: 26 Sep 2013

Bibliography

  • Horga A, Raja Rayan DL, Matthews E, et al. Prevalence study of genetically defined skeletal muscle channelopathies in England. Neurology 2013;80(16):1472-5
  • Raja Rayan DL, Hanna MG. Skeletal muscle channelopathies: nondystrophic myotonias and periodic paralysis. Curr Opin Neurol 2010;23(5):466-76
  • Matthews E, Fialho D, Tan SV, et al. The non-dystrophic myotonias: molecular pathogenesis, diagnosis and treatment. Brain 2010;133(Pt 1):9-22
  • Emery AE. Population frequencies of inherited neuromuscular diseases--a world survey. Neuromuscul Disord 1991;1(1):19-29
  • Thomsen DJ. Tonische Krämpfe in willkürlich beweglichen Muskeln in Folge von ererbter psychischer Disposition. Archiv für. Psychiatrie 1876;6(3):702-18
  • Colding-Jørgensen E. Phenotypic variability in myotonia congenita. Muscle Nerve 2005;32(1):19-34
  • Matthews E, Tan SV, Fialho D, et al. What causes paramyotonia in the United Kingdom? Common and new SCN4A mutations revealed. Neurology 2008;70(1):50-3
  • Ptáĉek LJ, Tawil R, Griggs RC, et al. Sodium channel mutations in acetazolamide-responsive myotonia congenita, paramyotonia congenita, and hyperkalemic periodic paralysis. Neurology 1994;44(8):1500-3
  • Lerche H, Heine R, Pika U, et al. Human sodium channel myotonia: slowed channel inactivation due to substitutions for a glycine within the III-IV linker. J Physiol 1993;470(1):13-22
  • Colding-Jørgensen E, Duno M, Vissing J. Autosomal dominant monosymptomatic myotonia permanens. Neurology 2006;67(1):153-5
  • Kubota T, Kinoshita M, Sasaki R, et al. New mutation of the Na channel in the severe form of potassium-aggravated myotonia. Muscle Nerve 2009;39(5):666-73
  • Stunnenberg BC, Ginjaar HB, Trip J, et al. Isolated eyelid closure myotonia in two families with sodium channel myotonia. Neurogenetics 2010;11(2):257-60
  • Miller TM, Dias da Silva MR, Miller HA, et al. Correlating phenotype and genotype in the periodic paralyses. Neurology 2004;63(9):1647-55
  • Fontaine B, Fournier E, Sternberg D, et al. Hypokalemic periodic paralysis: a model for a clinical and research approach to a rare disorder. Neurotherapeutics 2007;4(2):225-32
  • Venance SL, Cannon SC, Fialho D, et al. The primary periodic paralyses: diagnosis, pathogenesis and treatment. Brain 2006;129(Pt 1):8-17
  • Sternberg D, Maisonobe T, Jurkat-Rott K, et al. Hypokalaemic periodic paralysis type 2 caused by mutations at codon 672 in the muscle sodium channel gene SCN4A. Brain 2001;124(Pt 6):1091-9
  • Links TP, Zwarts MJ, Wilmink JT, et al. Permanent muscle weakness in familial hypokalaemic periodic paralysis. Clinical, radiological and pathological aspects. Brain 1990;113(Pt 6):1873-89
  • Fouad G, Dalakas M, Servidei S, et al. Genotype-phenotype correlations of DHP receptor alpha 1-subunit gene mutations causing hypokalemic periodic paralysis. Neuromuscul Disord 1997;7(1):33-8
  • Fontaine B, Vale-Santos J, Jurkat-Rott K, et al. Mapping of the hypokalemic periodic paralysis (HypoPP) locus to chormosone 1q31-32 in three European families. Nat Genet 1994;6(3):267-72
  • Elbaz A, Vale-Santos J, Jurkat-Rott K, et al. Hypokalemic periodic paralysis and the dihydropyridine receptor (CACNL1A3): genotype/phenotype correlations for two predominant mutations and evidence for the absence of a founder effect in 16 caucasian families. Am. J. Hum. Genet 1995;56(2):374-80
  • Chinnery PF, Walls TJ, Hanna MG, et al. Normokalemic periodic paralysis revisited: does it exist? Ann Neurol 2002;52(2):251-2
  • Fontaine B, Khurana TS, Hoffman EP, et al. Hyperkalemic periodic paralysis and the adult muscle sodium channel alpha-subunit gene. Science 1990;250(4983):1000-2
  • Koch MC, Ricker K, Otto M, et al. Confirmation of linkage of hyperkalaemic periodic paralysis to chromosome 17. J Med Genet 1991;28(9):583-6
  • Ptacek LJ, Tyler F, Trimmer JS, et al. Analysis in a large hyperkalemic periodic paralysis pedigree supports tight linkage to a sodium channel locus. Am J Hum Genet 1991;49(2):378-82
  • Andersen ED, Krasilnikoff PA, Overvad H. Intermittent muscular weakness, extrasystoles, and multiple developmental anomalies. A new syndrome? Acta Paediatr Scand 1971;60(5):559-64
  • Tawil R, Ptacek LJ, Pavlakis SG, et al. Andersen's syndrome: potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features. Ann Neurol 1994;35(3):326-30
  • Haruna Y, Kobori A, Makiyama T, et al. Genotype-phenotype correlations of KCNJ2 mutations in Japanese patients with Andersen-Tawil syndrome. Hum Mutat 2007;28(2):208
  • Zhang L, Benson DW, Tristani-Firouzi M, et al. Electrocardiographic features in Andersen-Tawil syndrome patients with KCNJ2 mutations: characteristic T-U-wave patterns predict the KCNJ2 genotype. Circulation 2005;111(21):2720-6
  • Tristani-Firouzi M, Jensen JL, Donaldson MR, et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J. Clin. Invest 2002;110(3):381-8
  • Rajakulendran S, Tan SV, Hanna MG. Muscle weakness, palpitations and a small chin: the Andersen-Tawil syndrome. Pract Neurol 2010;10(4):227-31
  • Canún S, Pérez N, Beirana LG. Andersen syndrome autosomal dominant in three generations. Am J Med Genet 1999;85(2):147-56
  • Andelfinger G, Tapper AR, Welch RC, et al. KCNJ2 mutation results in Andersen syndrome with sex-specific cardiac and skeletal muscle phenotypes. Am J Hum Genet 2002;71(3):663-8
  • Ryan DP, da Silva MRD, Soong TW, et al. Mutations in potassium channel Kir2.6 cause susceptibility to thyrotoxic hypokalemic periodic paralysis. Cell 2010;140(1):88-98
  • Sugiura Y, Makita N, Li L, et al. Cold induces shifts of voltage dependence in mutant SCN4A, causing hypokalemic periodic paralysis. Neurology 2003;61(7):914-18
  • Webb J, Cannon SC. Cold-induced defects of sodium channel gating in atypical periodic paralysis plus myotonia. Neurology 2008;70(10):755-61
  • Trip J, Drost G, Ginjaar HB, et al. Redefining the clinical phenotypes of non-dystrophic myotonic syndromes. J. Neurol. Neurosurg. Psychiatry 2009;80(6):647-52
  • Fialho D, Schorge S, Pucovska U, et al. Chloride channel myotonia: exon 8 hot-spot for dominant-negative interactions. Brain 2007;130(Pt 12):3265-74
  • Lehmann-Horn F, Jurkat-Rott K, Rüdel R. Diagnostics and therapy of muscle channelopathies--Guidelines of the Ulm Muscle Centre. Acta Myol 2008;27:98-113
  • Ryan AM, Matthews E, Hanna MG. Skeletal-muscle channelopathies: periodic paralysis and nondystrophic myotonias. Curr Opin Neurol 2007;20(5):558-63
  • Tan SV, Matthews E, Barber M, et al. Refined exercise testing can aid DNA-based diagnosis in muscle channelopathies. Ann Neurol 2011;69(2):328-40
  • Fournier E, Arzel M, Sternberg D, et al. Electromyography guides toward subgroups of mutations in muscle channelopathies. Ann Neurol 2004;56(5):650-61
  • Fournier E, Viala K, Gervais H, et al. Cold extends electromyography distinction between ion channel mutations causing myotonia. Ann Neurol 2006;60(3):356-65
  • Cleland JC, Logigian EL. Clinical evaluation of membrane excitability in muscle channel disorders: potential applications in clinical trials. Neurotherapeutics 2007;4(2):205-15
  • McManis PG, Lambert EH, Daube JR. The exercise test in periodic paralysis. Muscle Nerve 1986;9(8):704-10
  • Kuntzer T, Flocard F, Vial C, et al. Exercise test in muscle channelopathies and other muscle disorders. Muscle Nerve 2000;23(7):1089-94
  • Tengan CH, Antunes AC, Gabbai AA, Manzano GM. The exercise test as a monitor of disease status in hypokalaemic periodic paralysis. J. Neurol. Neurosurg. Psychiatry 2004;75(3):497-9
  • Katz JS, Wolfe GI, Iannaccone S, et al. The exercise test in Andersen syndrome. Arch Neurol 1999;56(3):352-6
  • Deymeer F, Cakirkaya S, Serdaroğlu P, et al. Transient weakness and compound muscle action potential decrement in myotonia congenita. Muscle Nerve 1998;21(10):1334-7
  • Colding-Jørgensen E, DunØ M, Schwartz M, Vissing J. Decrement of compound muscle action potential is related to mutation type in myotonia congenita. Muscle Nerve 2003;27(4):449-55
  • Michel P, Sternberg D, Jeannet P-Y, et al. Comparative efficacy of repetitive nerve stimulation, exercise, and cold in differentiating myotonic disorders. Muscle Nerve 2007;36(5):643-50
  • Engel AG, Lambert EH, Rosevear JW, Tauze WN. Clinical and electromyographic studies in a apteint with primary hypokalemic periodic paralysis. Am J Med 1965;38:626-40
  • Crews J, Kaiser KK, Brooke MH. Muscle pathology of myotonia congenita. J Neurol Sci 1976;28(4):449-57
  • Morrow JM, Matthews E, Raja Rayan DL, et al. Muscle MRI reveals distinct abnormalities in genetically proven non-dystrophic myotonias. Neuromuscul Disord 2013;8):637-46
  • Trip J, Pillen S, Faber CG, et al. Muscle ultrasound measurements and functional muscle parameters in non-dystrophic myotonias suggest structural muscle changes. Neuromuscul Disord 2009;19(7):462-7
  • Jurkat-Rott K, Weber M-A, Fauler M, et al. K+-dependent paradoxical membrane depolarization and Na+ overload, major and reversible contributors to weakness by ion channel leaks. Proc Natl Acad Sci USA 2009;106(10):4036-41
  • Weber M-A, Nielles-Vallespin S, Essig M, et al. Muscle Na+ channelopathies: MRI detects intracellular 23Na accumulation during episodic weakness. Neurology 2006;67(7):1151-8
  • Amarteifio E, Nagel AM, Weber M-A, et al. Hyperkalemic periodic paralysis and permanent weakness: 3-T MR imaging depicts intracellular 23Na overload--initial results. Radiology 2012;264(1):154-63
  • Koch MC, Steinmeyer K, Lorenz C, et al. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 1992;257(5071):797-800
  • Zhang J, George AL Jr, Griggs RC, et al. Mutations in the human skeletal muscle chloride channel gene (CLCN1) associated with dominant and recessive myotonia congenita. Neurology 1996;47(4):993-8
  • George AL Jr, Crackower MA, Abdalla JA, et al. Molecular basis of Thomsen's disease (autosomal dominant myotonia congenita). Nat Genet 1993;3(4):305-10
  • Meyer-Kleine C, Steinmeyer K, Ricker K, et al. Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia. Am J Hum Genet 1995;57(6):1325-34
  • Sun C, Tranebjaerg L, Torbergsen T, et al. Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia. Eur J Hum Genet 2001;9(12):903-9
  • Raja Rayan DL, Haworth A, Sud R, et al. A new explanation for recessive myotonia congenita: exon deletions and duplications in CLCN1. Neurology 2012;78(24):1953-8
  • Suominen T, Schoser B, Raheem O, et al. High frequency of co-segregating CLCN1 mutations among myotonic dystrophy type 2 patients from Finland and Germany. J Neurol 2008;255(11):1731-6
  • McClatchey AI, McKenna-Yasek D, Cros D, et al. Novel mutations in families with unusual and variable disorders of the skeletal muscle sodium channel. Nat Genet 1992;2(2):148-52
  • Koch MC, Ricker K, Otto M, et al. Linkage data suggesting allelic heterogeneity for paramyotonia congenita and hyperkalemic periodic paralysis on chromosome 17. Hum Genet 1991;88(1):71-4
  • Vicart S, Sternberg D, Fontaine B, Meola G. Human skeletal muscle sodium channelopathies. Neurol Sci 2005;26(4):194-202
  • Mitrovic N, George AL, Lerche H, et al. Different effects on gating of three myotonia-causing mutations in teh inactivation gate of the human muscle sodium channel. J Physiol 1995;487(Pt 1):107-14
  • Jurkat-Rott K, Lehmann-Horn F, Elbaz A, et al. A calcium channel mutation causing hypokalemic periodic paralysis. Hum Mol Genet 1994;3(8):1415-19
  • Ptácek LJ, Tawil R, Griggs RC, et al. Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. Cell 1994;77(6):863-8
  • Bulman DE, Scoggan KA, van Oene MD, et al. A novel sodium channel mutation in a family with hypokalemic periodic paralysis. Neurology 1999;53(9):1932-6
  • Struyk AF, Scoggan KA, Bulman DE, Cannon SC. The human skeletal muscle Na channel mutation R669H associated with hypokalemic periodic paralysis enhances slow inactivation. J Neurosci 2000;20(23):8610-17
  • Matthews E, Labrum R, Sweeney MG, et al. Voltage sensor charge loss accounts for most cases of hypokalemic periodic paralysis. Neurology 2009;72(18):1544-7
  • Jurkat-Rott K, Lehmann-Horn F. Genotype-phenotype correlation and therapeutic rationale in hyperkalemic periodic paralysis. Neurotherapeutics 2007;4(2):216-24
  • Zhou H, Lillis S, Loy RE, et al. Multi-minicore disease and atypical periodic paralysis associated with novel mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 2010;20(3):166-73
  • Plaster NM, Tawil R, Tristani-Firouzi M, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell 2001;105(4):511-19
  • Donaldson MR, Yoon G, Fu Y-H, Ptacek LJ. Andersen-Tawil syndrome: a model of clinical variability, pleiotropy, and genetic heterogeneity. Ann Med 2004;36(Suppl 1):92-7
  • Matthews E, Portaro S, Ke Q, et al. Acetazolamide efficacy in hypokalemic periodic paralysis and the predictive role of genotype. Neurology 2011;77(22):1960-4
  • Nam T-S, Lossin C, Kim D-U, et al. An algorithm for candidate sequencing in non-dystrophic skeletal muscle channelopathies. J Neurol 2013;260(7):1770-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.