416
Views
14
CrossRef citations to date
0
Altmetric
Theme: Gynecological Cancer - Review

Genetic changes in nonepithelial ovarian cancer

, , , , &
Pages 871-882 | Published online: 10 Jan 2014

References

  • Jamieson S, Fuller PJ. Molecular pathogenesis of granulosa cell tumors of the ovary. Endocr. Rev. 33(1), 109–144 (2012).
  • Pectasides D, Pectasides E, Kassanos D. Germ cell tumors of the ovary. Cancer Treat. Rev. 34(5), 427–441 (2008).
  • Despierre E, Lambrechts D, Neven P, Amant F, Lambrechts S, Vergote I. The molecular genetic basis of ovarian cancer and its roadmap towards a better treatment. Gynecol. Oncol. 117(2), 358–365 (2010).
  • Integrated genomic analyses of ovarian cancer. Cancer Genome Atlas Research Network. Nature 474(7353), 609–615 (2011).
  • Bast RC Jr. Molecular approaches to personalizing management of ovarian cancer. Ann. Oncol. 22(Suppl. 8), viii5–viii15 (2011).
  • Berns EM, Bowtell DD. The changing view of high-grade serous ovarian cancer. Cancer Res. 72(11), 2701–2704 (2012).
  • Gershenson DM. Treatment of ovarian cancer in young women. Clin. Obstet. Gynecol. 55(1), 65–74 (2012).
  • Colombo N, Parma G, Zanagnolo V, Insinga A. Management of ovarian stromal cell tumors. J. Clin. Oncol. 25(20), 2944–2951 (2007).
  • Lin YS, Eng HL, Jan YJ et al. Molecular cytogenetics of ovarian granulosa cell tumors by comparative genomic hybridization. Gynecol. Oncol. 97(1), 68–73 (2005).
  • Fuller PJ, Chu S. Signalling pathways in the molecular pathogenesis of ovarian granulosa cell tumours. Trends Endocrinol. Metab. 15(3), 122–128 (2004).
  • Shah SP, Köbel M, Senz J et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N. Engl. J. Med. 360(26), 2719–2729 (2009).
  • Jamieson S, Butzow R, Andersson N et al. The FOXL2 C134W mutation is characteristic of adult granulosa cell tumors of the ovary. Mod. Pathol. 23(11), 1477–1485 (2010).
  • Kim MS, Hur SY, Yoo NJ, Lee SH. Mutational analysis of FOXL2 codon 134 in granulosa cell tumour of ovary and human cancers. J. Pathol. 221, 174–152 (2010).
  • Al-Agha OM, Huwait HF, Chow C et al. FOXL2 is a sensitive and specific marker for sex cord-stromal tumors of the ovary. Am. J. Surg. Pathol. 35(4), 484–494 (2011).
  • Gershon R, Aviel-Ronen S, Korach J et al. FOXL2 C402G mutation detection using MALDI-TOF-MS in DNA extracted from Israeli granulosa cell tumors. Gynecol. Oncol. 122(3), 580–584 (2011).
  • Uda M, Ottolenghi C, Crisponi L et al. Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum. Mol. Genet. 13(11), 1171–1181 (2004).
  • Crisponi L, Deiana M, Loi A et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat. Genet. 27(2), 159–166 (2001).
  • Uhlenhaut NH, Jakob S, Anlag K et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139(6), 1130–1142 (2009).
  • Rosario R, Araki H, Print CG, Shelling AN. The transcriptional targets of mutant FOXL2 in granulosa cell tumours. PLoS ONE 7(9), e46270 (2012).
  • Benayoun BA, Anttonen M, L’hôte D et al. Adult ovarian granulosa cell tumor transcriptomics: prevalence of FOXL2 target genes misregulation gives insights into the pathogenic mechanism of the p.Cys134Trp somatic mutation. Oncogene doi:10.1038/onc.2012.298 (2012) (Epub ahead of print).
  • Fleming NI, Knower KC, Lazarus KA, Fuller PJ, Simpson ER, Clyne CD. Aromatase is a direct target of FOXL2: C134W in granulosa cell tumors via a single highly conserved binding site in the ovarian specific promoter. PLoS ONE 5(12), e14389 (2010).
  • Kim JH, Yoon S, Park M et al. Differential apoptotic activities of wild-type FOXL2 and the adult-type granulosa cell tumor-associated mutant FOXL2 (C134W). Oncogene 30(14), 1653–1663 (2011).
  • Bilandzic M, Chu S, Wang Y et al. Betaglycan alters NFκB-TGFβ2 cross talk to reduce survival of human granulosa tumor cells. Mol. Endocrinol. 27(3), 466–479 (2013).
  • Gartel LA. A new target for proteasome inhibitors: FOXM1. Expert Opin. Investig. Drugs 19(2), 235–242 (2010).
  • Yang JY, Hung MC. Deciphering the role of forkhead transcription factors in cancer therapy. Curr. Drug Targets 12(9), 1284–1290 (2011).
  • Kotlar TJ, Young RH, Albanese C, Crowley WF Jr, Scully RE, Jameson JL. A mutation in the follicle-stimulating hormone receptor occurs frequently in human ovarian sex cord tumors. J. Clin. Endocrinol. Metab. 82(4), 1020–1026 (1997).
  • Hussein S, Chu S, Fuller PJ. Comment on analysis of mutations in genes of the follicle-stimulating hormone receptor in ovarian granulosa cell tumors. J. Clin. Endocrinol. Metab. 84(10), 3852 (1999).
  • Hannon TS, King DW, Brinkman AD et al. Premature thelarche and granulosa cell tumors: a search for FSH receptor and G5α activating mutations. J. Pediatr. Endocrinol. Metab. 15(Suppl. 3), 891–895 (2002).
  • Kotlar T, Young RH, Albanese C, Crowley WF Jr, Scully RE, Jameson JL. Absence of mutations in the FSH receptor in ovarian granulosa cell tumors. J. Clin. Endocrinol. Metab. 83(8), 3001 (1998).
  • Kalfa N, Ecochard A, Patte C et al. Activating mutations of the stimulatory g protein in juvenile ovarian granulosa cell tumors: a new prognostic factor? J. Clin. Endocrinol. Metab. 91(5), 1842–1847 (2006).
  • Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS. Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-induced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol. Endocrinol. 14(8), 1283–1300 (2000).
  • Bittinger S, Alexiadis M, Fuller PJ. Expression status and mutational analysis of the PTEN and P13K subunit genes in ovarian granulosa cell tumors. Int. J. Gynecol. Cancer 19(3), 339–342 (2009).
  • Brachmann SM, Kleylein-Sohn J, Gaulis S et al. Characterization of the mechanism of action of the pan class I PI3K inhibitor NVP-BKM120 across a broad range of concentrations. Mol. Cancer Ther. 11(8), 1747–1757 (2012).
  • Chappell WH, Steelman LS, Long JM et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2(3), 135–164 (2011).
  • Shapiro G, Kwak E, Baselga J et al. Phase I dose-escalation study of XL-147, a PI3K inhibitor administered orally to patients with solid tumors. J. Clin. Oncol. 27(Suppl.), Abstract 3500 (2009).
  • Yap TA, Yan L, Patnaik A et al. First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J. Clin. Oncol. 29(35), 4688–4695 (2011).
  • Slomovitz BM, Lu KH, Johnston T et al. A Phase 2 study of the oral mammalian target of rapamycin inhibitor, everolimus, in patients with recurrent endometrial carcinoma. Cancer 116(23), 5415–5419 (2010).
  • Westin SN, Herzog TJ, Coleman RL. Investigational agents in development for the treatment of ovarian cancer. Invest. New Drugs 31(1), 213–229 (2013).
  • Leibl S, Bodo K, Gogg-Kammerer M et al. Ovarian granulosa cell tumors frequently express EGFR (Her-1), Her-3, and Her-4: an immunohistochemical study. Gynecol. Oncol. 101(1), 18–23 (2006).
  • Zandi R, Larsen AB, Andersen P, Stockhausen MT, Poulsen HS. Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell. Signal. 19(10), 2013–2023 (2007).
  • Furger C, Fiddes RJ, Quinn DI, Bova RJ, Daly RJ, Sutherland RL. Granulosa cell tumors express erbB4 and are sensitive to the cytotoxic action of heregulin-β2/PE40. Cancer Res. 58(9), 1773–1778 (1998).
  • Itamochi H, Kigawa J. Clinical trials and future potential of targeted therapy for ovarian cancer. Int. J. Clin. Oncol. 17(5), 430–440 (2012).
  • Sebolt-Leopold JS. Advances in the development of cancer therapeutics directed against the RAS-mitogen-activated protein kinase pathway. Clin. Cancer Res. 14(12), 3651–3656 (2008).
  • Matei D, Sill MW, Lankes HA et al. Activity of sorafenib in recurrent ovarian cancer and primary peritoneal carcinomatosis: a gynecologic oncology group trial. J. Clin. Oncol. 29(1), 69–75 (2011).
  • Carracedo A, Pandolfi PP. The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27(41), 5527–5541 (2008).
  • Färkkilä A, Anttonen M, Pociuviene J et al. Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 are highly expressed in ovarian granulosa cell tumors. Eur. J. Endocrinol. 164(1), 115–122 (2011).
  • Tao X, Sood AK, Deavers MT et al. Anti-angiogenesis therapy with bevacizumab for patients with ovarian granulosa cell tumors. Gynecol. Oncol. 114(3), 431–436 (2009).
  • Kesterson JP, Mhawech-Fauceglia P, Lele S. The use of bevacizumab in refractory ovarian granulosa-cell carcinoma with symptomatic relief of ascites: a case report. Gynecol. Oncol. 111(3), 527–529 (2008).
  • Barrena Medel NI, Herzog TJ, Wright JD, Lewin SN. Neoadjuvant bevacizumab in a granulosa cell tumor of the ovary: a case report. Anticancer Res. 30(11), 4767–4768 (2010).
  • Manchana T, Ittiwut C, Mutirangura A, Kavanagh JJ. Targeted therapies for rare gynaecological cancers. Lancet Oncol. 11(7), 685–693 (2010).
  • Knight PG, Glister C. TGF-β superfamily members and ovarian follicle development. Reproduction 132(2), 191–206 (2006).
  • Lappöhn RE, Burger HG, Bouma J, Bangah M, Krans M, de Bruijn HW. Inhibin as a marker for granulosa-cell tumors. N. Engl. J. Med. 321(12), 790–793 (1989).
  • Matzuk MM, Finegold MJ, Su JG, Hsueh AJ, Bradley A. α-Inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 360(6402), 313–319 (1992).
  • de Caestecker M. The transforming growth factor-β superfamily of receptors. Cytokine Growth Factor Rev. 15(1), 1–11 (2004).
  • Fuller PJ, Chu S, Jobling T, Mamers P, Healy DL, Burger HG. Inhibin subunit gene expression in ovarian cancer. Gynecol. Oncol. 73(2), 273–279 (1999).
  • Bilandzic M, Chu S, Farnworth PG et al. Loss of betaglycan contributes to the malignant properties of human granulosa tumor cells. Mol. Endocrinol. 23(4), 539–548 (2009).
  • Pangas SA. Bone morphogenetic protein signaling transcription factor (SMAD) function in granulosa cells. Mol. Cell. Endocrinol. 356(1-2), 40–47 (2012).
  • Alexiadis M, Eriksson N, Jamieson S et al. Nuclear receptor profiling of ovarian granulosa cell tumors. Horm. Cancer 2(3), 157–169 (2011).
  • Briasoulis E, Karavasilis V, Pavlidis N. Megestrol activity in recurrent adult type granulosa cell tumour of the ovary. Ann. Oncol. 8(8), 811–812 (1997).
  • Hardy RD, Bell JG, Nicely CJ, Reid GC. Hormonal treatment of a recurrent granulosa cell tumor of the ovary: case report and review of the literature. Gynecol. Oncol. 96(3), 865–869 (2005).
  • Fishman A, Kudelka AP, Tresukosol D et al. Leuprolide acetate for treating refractory or persistent ovarian granulosa cell tumor. J. Reprod. Med. 41(6), 393–396 (1996).
  • Ameryckx L, Fatemi HM, De Sutter P, Amy JJ. GnRH antagonist in the adjuvant treatment of a recurrent ovarian granulosa cell tumor: a case report. Gynecol. Oncol. 99(3), 764–766 (2005).
  • Sjoquist KM, Martyn J, Edmondson RJ, Friedlander ML. The role of hormonal therapy in gynecological cancers-current status and future directions. Int. J. Gynecol. Cancer 21(7), 1328–1333 (2011).
  • Freeman SA, Modesitt SC. Anastrozole therapy in recurrent ovarian adult granulosa cell tumors: a report of 2 cases. Gynecol. Oncol. 103(2), 755–758 (2006).
  • Korach J, Perri T, Beiner M, Davidzon T, Fridman E, Ben-Baruch G. Promising effect of aromatase inhibitors on recurrent granulosa cell tumors. Int. J. Gynecol. Cancer 19(5), 830–833 (2009).
  • Alhilli MM, Long HJ, Podratz KC, Bakkum-Gamez JN. Aromatase inhibitors in the treatment of recurrent ovarian granulosa cell tumors: brief report and review of the literature. J. Obstet. Gynaecol. Res. 38(1), 340–344 (2012).
  • Chu S, Nishi Y, Yanase T, Nawata H, Fuller PJ. Transrepression of estrogen receptor β signaling by nuclear factor-κB in ovarian granulosa cells. Mol. Endocrinol. 18(8), 1919–1928 (2004).
  • Chu S, Alexiadis M, Fuller PJ. Proteasome inhibition by bortezomib decreases proliferation and increases apoptosis in ovarian granulosa cell tumors. Reprod. Sci. 16(4), 397–407 (2009).
  • Kalfa N, Philibert P, Patte C et al. Extinction of FOXL2 expression in aggressive ovarian granulosa cell tumors in children. Fertil. Steril. 87(4), 896–901 (2007).
  • Lyons J, Landis CA, Harsh G et al. Two G protein oncogenes in human endocrine tumors. Science 249(4969), 655–659 (1990).
  • Olivier P, Simoneau-Roy J, Francoeur D et al. Leydig cell tumors in children: contrasting clinical, hormonal, anatomical, and molecular characteristics in boys and girls. J. Pediatr. 161(6), 1147–1152 (2012).
  • Heravi-Moussavi A, Anglesio MS, Cheng SW et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N. Engl. J. Med. 366(3), 234–242 (2012).
  • Hoei-Hansen CE, Kraggerud SM, Abeler VM, Kaern J, Rajpert-De Meyts E, Lothe RA. Ovarian dysgerminomas are characterised by frequent KIT mutations and abundant expression of pluripotency markers. Mol. Cancer 6, 12 (2007).
  • Sever M, Jones TD, Roth LM et al. Expression of CD117 (c-kit) receptor in dysgerminoma of the ovary: diagnostic and therapeutic implications. Mod. Pathol. 18(11), 1411–1416 (2005).
  • Despierre E, Lambrechts S, Leunen K et al. Folate receptor α: potential therapeutic target for pure yolk sac tumors and mixed germ cell tumors with yolk sac component. Abstract IGCS (2012).
  • Jelovac D, Armstrong DK. Role of farletuzumab in epithelial ovarian carcinoma. Curr. Pharm. Des. 18(25), 3812–3815 (2012).
  • Kraggerud SM, Szymanska J, Abeler VM et al. DNA copy number changes in malignant ovarian germ cell tumors. Cancer Res. 60(11), 3025–3030 (2000).
  • Cossu-Rocca P, Zhang S, Roth LM et al. Chromosome 12p abnormalities in dysgerminoma of the ovary: a FISH analysis. Mod. Pathol. 19(4), 611–615 (2006).
  • Cheng L, Roth LM, Zhang S et al. KIT gene mutation and amplification in dysgerminoma of the ovary. Cancer 117(10), 2096–2103 (2011).
  • Crockford GP, Linger R, Hockley S et al. Genome-wide linkage screen for testicular germ cell tumour susceptibility loci. Hum. Mol. Genet. 15(3), 443–451 (2006).
  • Giambartolomei C, Mueller CM, Greene MH, Korde LA. A mini-review of familial ovarian germ cell tumors: an additional manifestation of the familial testicular germ cell tumor syndrome. Cancer Epidemiol. 33(1), 31–36 (2009).
  • Rapley EA, Turnbull C, Al Olama AA et al.; UK Testicular Cancer Collaboration. A genome-wide association study of testicular germ cell tumor. Nat. Genet. 41(7), 807–810 (2009).
  • Fritsch MK, Schneider DT, Schuster AE, Murdoch FE, Perlman EJ. Activation of Wnt/β-catenin signaling in distinct histologic subtypes of human germ cell tumors. Pediatr. Dev. Pathol. 9(2), 115–131 (2006).
  • Fustino N, Rakheja D, Ateek CS, Neumann JC, Amatruda JF. Bone morphogenetic protein signalling activity distinguishes histological subsets of paediatric germ cell tumours. Int. J. Androl. 34(4 Pt 2), e218–e233 (2011).
  • Vergote I, Dieleman V, Becquart D, Buytaert P. Dysgerminoma of the ovary in association with XY gonadal dysgenesis. Eur. J. Obstet. Gynecol. Reprod. Biol. 14(6), 385–391 (1983).
  • Turnbull C, Rapley EA, Seal S et al.; UK Testicular Cancer Collaboration. Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell cancer. Nat. Genet. 42(7), 604–607 (2010).
  • Schumacher FR, Wang Z, Skotheim RI et al. Testicular germ cell tumor susceptibility associated with the UCK2 locus on chromosome 1q23. Hum. Mol. Genet. 22(13), 2748–2753 (2013).
  • Poynter JN, Hooten AJ, Frazier AL, Ross JA. Associations between variants in KITLG, SPRY4, BAK1, and DMRT1 and pediatric germ cell tumors. Genes. Chromosomes Cancer 51(3), 266–271 (2012).
  • Palmer RD, Murray MJ, Saini HK et al.; Children’s Cancer and Leukaemia Group. Malignant germ cell tumors display common microRNA profiles resulting in global changes in expression of messenger RNA targets. Cancer Res. 70(7), 2911–2923 (2010).
  • Farley J, Brady WE, Vathipadiekal V et al. Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: an open-label, single-arm, Phase 2 study. Lancet Oncol. 14(2), 134–140 (2013).
  • Matulonis UA, Berlin S, Ivy P et al. Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. J. Clin. Oncol. 27(33), 5601–5606 (2009).
  • Biagi JJ, Oza AM, Chalchal HI et al. A Phase II study of sunitinib in patients with recurrent epithelial ovarian and primary peritoneal carcinoma: an NCIC Clinical Trials Group Study. Ann. Oncol. 22(2), 335–340 (2011).
  • Friedlander M, Hancock KC, Rischin D et al. A Phase II, open-label study evaluating pazopanib in patients with recurrent ovarian cancer. Gynecol. Oncol. 119(1), 32–37 (2010).
  • Ledermann JA, Hackshaw A, Kaye S et al. Randomized Phase II placebo-controlled trial of maintenance therapy using the oral triple angiokinase inhibitor BIBF 1120 after chemotherapy for relapsed ovarian cancer. J. Clin. Oncol. 29(28), 3798–3804 (2011).
  • Karlan BY, Oza AM, Richardson GE et al. Randomized, double-blind, placebo-controlled Phase II study of AMG 386 combined with weekly paclitaxel in patients with recurrent ovarian cancer. J. Clin. Oncol. 30(4), 362–371 (2012).
  • Aghajanian C, Blessing JA, Darcy KM et al.; Gynecologic Oncology Group. A Phase II evaluation of bortezomib in the treatment of recurrent platinum-sensitive ovarian or primary peritoneal cancer: a Gynecologic Oncology Group Study. Gynecol. Oncol. 115(2), 215–220 (2009).
  • Schilder RJ, Sill MW, Lee RB et al. Phase II evaluation of imatinib mesylate in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group Study. J. Clin. Oncol. 26(20), 3418–3425 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.