120
Views
48
CrossRef citations to date
0
Altmetric
Review

New opportunities in chemosensitization and radiosensitization: modulating the DNA-damage response

&
Pages 333-342 | Published online: 10 Jan 2014

References

  • Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3(5), 421–429 (2003).
  • Tentori L, Portarena I, Graziani G. Potential clinical applications of poly(ADP-ribose)polymerase (PARP) inhibitors. Pharmacol. Res. 45(2), 73–85 (2002).
  • Amé JC, Spenlehauer C, de Murcia G. The PARP superfamily. BioEssays 26(8), 882–893 (2004).
  • Virág L, Szabó C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54(3), 375–429 (2002).
  • Tulin A, Spradling A. Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci. Science 299(5606), 560–562 (2003).
  • Kraus WL, Lis JT. PARP goes transcription. Cell 113(6), 677–683 (2003).
  • Bouchard VJ, Rouleau M, Poirier GG. PARP-1, a determinant of cell survival in response to DNA damage. Exp. Hematol. 31(6), 446–454 (2003).
  • de Murcia G, Ménissier de Murcia J, Schreiber V. Poly(ADP-ribose) polymerase: molecular biological aspects. BioEssays 13(9), 455–462 (1991).
  • Davidovic L, Vodenicharov M, Affar EB, Poirier GG. Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp. Cell Res. 268, 7–13 (2000).
  • Brochu G, Duchaine C, Thibeault L et al. Mode of action of poly(ADP-ribose) glycohydrolase. Biochim. Biophys. Acta 1219(2), 342–350 (1994).
  • Ménissier de Murcia J, Niedergang C, Trucco C et al. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc. Natl Acad. Sci. USA 94(14), 7303–7307 (1997).
  • Wang ZQ, Stingl L, Morrison C et al. PARP is important for genomic stability but dispensable in apoptosis. Genes Dev. 11(18), 2347–2358 (1997).
  • Schreiber V, Amé Jean C, Dollé P et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J. Biol. Chem. 277(25), 23028–23036 (2002).
  • Ménissier de Murcia J, Ricoul M, Tartier L et al. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 22(9), 2255–2263 (2003).
  • de Murcia G, Schreiber V, Molinete M et al. Structure and function of poly(ADP-ribose) polymerase. Mol. Cell Biochem. 138(1–2), 15–24 (1994).
  • de Murcia G, Ménissier de Murcia J. Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem. Sci. 19(4), 172–176 (1994).
  • Schreiber V, Hunting D, Trucco C et al. A dominant-negative mutant of human poly(ADP-ribose) polymerase affects cell recovery, apoptosis, and sister chromatid exchange following DNA damage. Proc. Natl Acad. Sci. USA 92(11), 4753–4757 (1995).
  • Smith S. The world according to PARP. Trends Biochem. Sci. 26(3), 174–179 (2001).
  • Mazen A, Menissier de Murcia J, Molinete M et al. Poly(ADP-ribose)polymerase: a novel finger protein. Nucleic Acids Res. 17(12), 4689–4698 (1989).
  • Shieh WM, Amé JC, Wilson MV et al. Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J. Biol. Chem. 273(46), 30069–30072 (1998).
  • Amé JC, Rolli V, Schreiber V et al. PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. Chem. 274(25), 17860–17868 (1999).
  • Ménissier deMurcia J, Molinete M, Gradwohl G et al. Zinc-binding domain of poly(ADP-ribose)polymerase participates in the recognition of single strand breaks on DNA. J. Mol. Biol. 210(1), 229–233 (1989).
  • Lindahl T, Satoh MS, Poirier GG et al. Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem. Sci. 20(10), 405–411 (1995).
  • Pleschke JM, Kleczkowska HE, Strohm M et al. Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J. Biol. Chem. 275(52), 40974–40980 (2000).
  • Malanga M, Althaus FR. Poly(ADP-ribose) reactivates stalled DNA topoisomerase I and induces DNA strand break resealing. J. Biol. Chem. 279(7), 5244–5248 (2004).
  • Dianov GL, Sleeth KM, Dianova II, Allinson SL. Repair of abasic sites in DNA. Mutat. Res. 531, 157–163 (2003).
  • Masson M, Niedergang C, Schreiber V et al. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol. Cell. Biol. 18(6), 3563–3571 (1998).
  • Marintchev A, Mullen MA, Maciejewski MW et al. Solution structure of the single-strand break repair protein XRCC1 N- terminal domain. Nature Struct. Biol. 6(9), 884–893 (1999).
  • Caldecott KW, Aoufouchi S, Johnson P et al. XRCC1 polypeptide interacts with DNA polymerase β and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular ‘nick-sensor’ in vitro. Nucleic Acids Res. 24(22), 4387–4394 (1996).
  • Kubota Y, Nash RA, Klungland A et al. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase β and the XRCC1 protein. EMBO J. 15(23), 6662–6670 (1996).
  • Vidal AE, Boiteux S, Hickson ID et al. XRCC1 co-ordinates the initial and late stages of DNA abasic site repair through protein–protein interactions. EMBO J. 20(22), 6530–6539 (2001).
  • Whitehouse CJ, Taylor RM, Thistlethwaite A et al. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell 104(1), 107–117 (2001).
  • Curtin NJ, Wang L-Z, Yiakouvaki A et al. Novel poly(ADP-ribose)polymerase-1 inhibitor, AG-14361, restores sensitivity to temozolomide in mismatch repair-deficient cells. Clin. Cancer Res. 10, 881–889 (2004).
  • Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev. 18(11), 1272–1282 (2004).
  • Ha HC, Snyder SH. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc. Natl Acad. Sci. USA 96(24), 13978–13982 (1999).
  • Masutani M, Suzuki H, Kamada N et al. Poly(ADP-ribose) polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc. Natl Acad. Sci. USA 96(5), 2301–2304 (1999).
  • Trucco C, Oliver FJ, de Murcia G et al. DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res. 26(11), 2644–2649 (1998).
  • Shall S, de Murcia G. Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model? Mutat. Res. 460(1), 1–15 (2000).
  • Wang ZQ, Auer B, Stingl L et al. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev. 9(5), 509–520 (1995).
  • Masutani M, Nozaki T, Nakamoto K et al. The response of PARP knockout mice against DNA damaging agents. Mutat. Res. 462(2–3), 159–166 (2000).
  • Masutani M, Nozaki T, Nishiyama E et al. Function of poly(ADP-ribose) polymerase in response to DNA damage: gene-disruption study in mice. Mol. Cell Biochem. 193(1–2), 149–152 (1999).
  • Simbulan-Rosenthal CM, Haddad BR, Rosenthal DS et al. Chromosomal aberrations in PARP(-/-) mice: genome stabilization in immortalized cells by reintroduction of poly(ADP-ribose) polymerase cDNA. Proc. Natl Acad. Sci. USA 96(23), 13191–13196 (1999).
  • Ziegler M, Oei SL. A cellular survival switch: poly(ADP-ribosyl)ation stimulates DNA repair and silences transcription. BioEssays 23(6), 543–548 (2001).
  • Boulton S, Kyle S, Durkacz BW. Interactive effects of inhibitors of poly(ADP-ribose) polymerase and DNA-dependent protein kinase on cellular responses to DNA damage. Carcinogenesis 20(2), 199–203 (1999).
  • Agarwal ML, Agarwal A, Taylor WR et al. Defective induction but normal activation and function of p53 in mouse cells lacking poly-ADP-ribose polymerase. Oncogene 15(9), 1035–1041 (1997).
  • Wieler S, Gagne JP, Vaziri H et al. Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. J. Biol. Chem. 278(21), 18914–18921 (2003).
  • Valenzuela MT, Guerrero R, Núñez MI et al. PARP-1 modifies the effectiveness of p53-mediated DNA damage response. Oncogene 21(7), 1108–1116 (2002).
  • Wesierska Gadek J, Wojciechowski J, Schmid G. Phosphorylation regulates the interaction and complex formation between wt p53 protein and PARP-1. J. Cell Biochem. 89(6), 1260–1284 (2003).
  • Wesierska-Gadek J, Wojciechowski J, Schmid G. Central and carboxy-terminal regions of human p53 protein are essential for interaction and complex formation with PARP-1. J. Cell Biochem. 89(2), 220–232 (2003).
  • Hassa PO, Hottiger MO. A role of poly (ADP-ribose) polymerase in NF-κB transcriptional activation. Biol. Chem. 380(7–8), 953–959 (1999).
  • Hassa PO, Hottiger MO. The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-κB in inflammatory disorders. Cell. Mol. Life Sci. 59(9), 1534–1553 (2002).
  • Hassa Paul O, Buerki C, Lombardi C et al. Transcriptional coactivation of nuclear factor-κB-dependent gene expression by p300 is regulated by poly(ADP)-ribose polymerase-1. J. Biol. Chem. 278(46), 45145–45153 (2003).
  • Hassa PO, Covic M, Hasan S et al. The enzymatic and DNA binding activity of PARP-1 are not required for NF-κB coactivator function. J. Biol. Chem. 276(49), 45588–45597 (2001).
  • Yu SW, Wang H, Poitras Marc F et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297(5579), 259–263 (2002).
  • Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev. 13(15), 1899–1911 (1999).
  • Tomoda T, Kurashige T, Moriki T et al. Enhanced expression of poly(ADP-ribose) synthetase gene in malignant lymphoma. Am. J. Hematol. 37(4), 223–227 (1991).
  • Wielckens K, Garbrecht M, Kittler M et al. ADP-ribosylation of nuclear proteins in normal lymphocytes and in low-grade malignant non-Hodgkin lymphoma cells. Eur. J. Biochem. 104(1), 279–287 (1980).
  • Nomura F, Yaguchi M, Togawa A et al. Enhancement of poly-adenosine diphosphate-ribosylation in human hepatocellular carcinoma. J. Gastroenterol. Hepatol. 15(5), 529–535 (2000).
  • Shiobara M, Miyazaki M, Ito H et al. Enhanced polyadenosine diphosphate-ribosylation in cirrhotic liver and carcinoma tissues in patients with hepatocellular carcinoma. J. Gastroenterol. Hepatol. 16(3), 338–44 (2001).
  • Kubo S, Matsutani M, Nakagawa K et al. Participation of poly(ADP-ribose) polymerase in the drug sensitivity in human lung cancer cell lines. J. Cancer Res. Clin. Oncol. 118(4), 244–248 (1992).
  • Fukushima M, Kuzuya K, Ota K et al. Poly(ADP-ribose) synthesis in human cervical cancer cell – diagnostic cytological usefulness. Cancer Lett. 14(3), 227–236 (1981).
  • McNealy T, Frey M, Trojon L et al. Intrinsic presence of poly (ADP-ribose) is significantly increased in malignant prostate compared to benign prostate cell lines. Anticancer Res. 23(2B), 1473–1478 (2003).
  • Brock WA, Milas L, Bergh S, Lo R, Szabo C, Mason KA. Radiosensitization of human and rodent cell lines by INO-1001, a novel inhibitor of poly(ADP-ribose) polymerase. Cancer Lett. 205(2), 155–160 (2004).
  • Veuger SJ, Curtin NJ, Richardson CJ et al. Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNA-dependent protein kinase and poly(ADP-ribose) polymerase-1. Cancer Res. 63(18), 6008–6015 (2003).
  • Calabrese CR, Almassy R, Barton S et al. Anticancer chemosensitization and radiosensitization by the novel poly (ADP-ribose) polymerase-1 inhibitor AG14361. J. Natl Cancer Inst. 96(1), 56–67 (2004).
  • Bowman KJ, White A, Golding BT et al. Potentiation of anticancer agent cytotoxicity by the potent poly(ADP-ribose) polymerase inhibitors NU1025 and NU1064. Br. J. Cancer 78(10), 1269–1277 (1998).
  • Tentori L, Leonetti C, Scarsella M et al. Combined treatment with temozolomide and poly(ADP-ribose) polymerase inhibitor enhances survival of mice bearing hematologic malignancy at the central nervous system site. Blood 99(6), 2241–2244 (2002).
  • Delaney CA, Wang LZ, Kyle S et al. Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly(adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin. Cancer Res. 6(7), 2860–2867 (2000).
  • Miknyoczki SJ, Jones-Bolin S, Pritchard S et al. Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol. Cancer Ther. 2(4), 371–382 (2003).
  • Calabrese CR, Batey MA, Thomas HD et al. Identification of potent nontoxic poly(ADP-ribose) polymerase-1 inhibitors: chemopotentiation and pharmacological studies. Clin. Cancer Res. 9(7), 2711–2718 (2003).
  • Tentori L, Portarena I, Torino F et al. Poly(ADP-ribose) polymerase inhibitor increases growth inhibition and reduces G(2)/M cell accumulation induced by temozolomide in malignant glioma cells. Glia 40(1), 44–54 (2002).
  • Liu L, Taverna P, Whiteacre CM et al. Pharmacologic disruption of base excision repair sensitizes mismatch repair-deficient and proficient colon cancer cells to methylating agents. Clin. Cancer Res. 5, 2908–2917 (1999).
  • Tentori L, Leonetti C, Scarsella M et al. Systemic administration of GPI 15427, a novel poly(ADP-ribose) polymerase-1 inhibitor, increases the antitumor activity of temozolomide against intracranial melanoma, glioma, lymphoma. Clin. Cancer Res. 9(14), 5370–5379 (2003).
  • Curtin N. PARP-1: a new target for cancer treatment. In: Cancer Research UK Scientific yearbook. 2002–03. 52–54 (2003).
  • Tsutsumi M, Masutani M, Nozaki T et al. Increased susceptibility of poly(ADP-ribose) polymerase-1 knockout mice to nitrosamine carcinogenicity. Carcinogenesis 22(1), 1–3 (2001).
  • Martin-Oliva D, O’Valle F, Munoz-Gamez JA et al. Crosstalk between PARP-1 and NF-κB modulates the promotion of skin neoplasia. Oncogene 23, 5275–5283 (2004).
  • Conde C, Mark M, Oliver FJ et al. Loss of poly(ADP-ribose) polymerase-1 causes increased tumour latency in p53-deficient mice. EMBO J. 20(13), 3535–3543 (2001).
  • Sanchez Y, Wong C, Thoma RS et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277(5331), 1497–1501 (1997).
  • Liu Q, Guntuku S, Cui XS et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 14(12), 1448–1459 (2000).
  • Sorenson CS, Syljuasen RG, Falck J et al. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 3(3), 247–258 (2003).
  • Zhao H, Watkins JL, Piwnica-Worms H. Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc. Natl Acad. Sci. USA 99(23), 14795–14800 (2003).
  • Peng CY, Graves PR, Thoma RS et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277(5331), 1501–1505 (1997).
  • Furnari B, Rhind N, Russell P. Cdc25 mitotic inducer targeted by Chk1 DNA damage checkpoint kinase. Science 277(5331), 1495–1497 (1997).
  • Mailand N, Falck J, Lukas C et al. Rapid destruction of human Cdc25A in response to DNA damage. Science 288(5470), 1425–1429 (2000).
  • Jin J, Shirogane T, Xu L et al. SCFβ-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev. 17(24), 3062–3074 (2003).
  • Busino L, Donzelli M, Chiesa M et al. Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage. Nature 426(6962), 87–91 (2003).
  • Chen M-S, Ryan CE, Piwnica-Worms H. Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol. Cell. Biol. 23(21), 7488–7497 (2003).
  • Shimuta K, Nakajo N, Uto K et al. Chk1 is activated transiently and targets Cdc25A for degradation at the Xenopus midblastula transition. EMBO J. 21(14), 3694–3703 (2002).
  • Lopez-Girona A, Furnari B, Mondesert O et al. Nuclear localization of Cdc25 is regulated by DNA damage and a 14–3-3 protein. Nature 397(6715), 172–175 (1999).
  • Kumagai A, Dunphy WG. Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25. Genes Dev. 13(9), 1067–1072 (1999).
  • Roninson IB, Broude EV, Chang BD. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist. 4(5), 303–313 (2001).
  • Castedo M, Perfettini J-L, Roumier T et al. Cell death by mitotic catastrophe: a molecular definition. Oncogene 23(16), 2825–2837 (2004).
  • Lau CC, Pardee AB. Mechanism by which caffeine potentiates lethality of nitrogen mustard. Proc. Natl Acad. Sci. USA 79(9), 2942–2946 (1982).
  • Takahashi I, Kobayashi E, Asano K et al. UCN-01, a selective inhibitor of protein kinase C from Streptomyces. J. Antibiot. (Tokyo) 40(12), 1782–1784 (1987).
  • Wang Q, Fan S, Eastman A et al. UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J. Natl Cancer Inst. 88(14), 956–965 (1996).
  • Shao RG, Cao CX, Shimizu T et al. Abrogation of an S-phase checkpoint and potentiation of camptothecin cytotoxicity by 7-hydroxystaurosporine (UCN-01) in human cancer cell lines, possibly influenced by p53 function. Cancer Res. 57(18), 4029–4035 (1997).
  • Bunch RT, Eastman A. Enhancement of cisplatin-induced cytotoxicity by 7-hydroxystaurosporine (UCN-01), a new G2-checkpoint inhibitor. Clin. Cancer Res. 2(5), 791–797 (1996).
  • Bunch RT, Eastman A. 7-hydroxystaurosporine (UCN-01) causes redistribution of proliferating cell nuclear antigen and abrogates cisplatin-induced S-phase arrest in Chinese hamster ovary cells. Cell Growth Differ. 8(7), 779–788 (1997).
  • Busby EC, Leistritz DF, Abraham RT et al. The radiosensitizing agent 7-hydroxystaurosporine (UCN-01) inhibits the DNA damage checkpoint kinase hChk1. Cancer Res. 60(8), 2108–2112 (2000).
  • Ree AH, Bratland A, Nome RV et al. Inhibitory targeting of checkpoint kinase signaling overrides radiation-induced cell cycle gene regulation: a therapeutic strategy in tumor cell radiosensitization? Radiother. Oncol. 72(3), 305–310 (2004).
  • Akinaga S, Nomura K, Gomi K et al. Enhancement of antitumor activity of mitomycin C in vitro and in vivo by UCN-01, a selective inhibitor of protein kinase C. Cancer Chemother. Pharmacol. 32(3), 183–189 (1993).
  • Hsueh CT, Kelsen D, Schwartz GK. UCN-01 suppresses thymidylate synthase gene expression and enhances 5-fluorouracil-induced apoptosis in a sequence-dependent manner. Clin. Cancer Res. 4(9), 2201–2206 (1998).
  • Wang S, Wang Z, Grant S. Bryostatin 1 and UCN-01 potentiate 1-β-d-arabinofuranosylcytosine-induced apoptosis in human myeloid leukemia cells through disparate mechanisms. Mol. Pharmacol. 63(1), 232–242 (2003).
  • Shao RG, Cao CX, Pommier Y. Abrogation of Chk1-mediated S/G2 checkpoint by UCN-01 enhances ara-C-induced cytotoxicity in human colon cancer cells. Acta Pharmacol. Sin. 25(6), 756–762 (2004).
  • Luo Y, Rockow-Magnone SK, Kroeger PE et al. Blocking Chk1 expression induces apoptosis and abrogates the G2 checkpoint mechanism. Neoplasia 3(5), 411–419 (2001).
  • Hirose Y, Berger MS, Pieper RO. Abrogation of the Chk1-mediated G(2) checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells. Cancer Res. 61(15), 5843–5849 (2001).
  • Shi Z, Azuma A, Sampath D et al. S-phase arrest by nucleoside analogues and abrogation of survival without cell cycle progression by 7-hydroxystaurosporine. Cancer Res. 61(3), 1065–1072 (2001).
  • Syljuasen RG, Sorensen CS, Nylandsted J et al. Inhibition of Chk1 by CEP-3891 accelerates mitotic nuclear fragmentation in response to ionizing radiation. Cancer Res. 64(24), 9035–9040 (2004).
  • Jackson JR, Gilmartin A, Imburgia C et al. An indolocarbazole inhibitor of human checkpoint kinase (Chk1) abrogates cell cycle arrest caused by DNA damage. Cancer Res. 60(3), 566–572 (2000).
  • Eastman A, Kohn EA, Brown MK et al. A novel indolocarbazole, ICP-1, abrogates DNA damage-induced cell cycle arrest and enhances cytotoxicity: similarities and differences to the cell cycle checkpoint abrogator UCN-01. Mol. Cancer Ther. 1(12), 1067–1078 (2002).
  • Tse AN, Schwartz GK. Potentiation of cytotoxicity of topoisomerase I poison by concurrent and sequential treatment with the checkpoint inhibitor UCN-01 involves disparate mechanisms resulting in either p53-independent clonogenic suppression or p53-dependent mitotic catastrophe. Cancer Res. 64(18), 6635–6644 (2004).
  • Luo Y, Rockow-Magnone SK, Joseph MK et al. Abrogation of G2 checkpoint specifically sensitize p53 defective cells to cancer chemotherapeutic agents. Anticancer Res. 21(1A), 23–28 (2001).
  • Chen Z, Xiao Z, Chen J et al. Human Chk1 expression is dispensable for somatic cell death and critical for sustaining G2 DNA damage checkpoint. Mol. Cancer Ther. 2(6), 543–548 (2003).
  • Wang Y, Decker SJ, Sebolt-Leopold J. Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol. Ther. 3(3), 305–313 (2004).
  • Gatei M, Sloper K, Sorenson C et al. Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J. Biol. Chem. 278(17), 14806–14811 (2003).
  • Wang X, Khadpe J, Hu B et al. An overactivated ATR/CHK1 pathway is responsible for the prolonged G2 accumulation in irradiated AT cells. J. Biol. Chem. 278(33), 30869–30874 (2003).
  • Akinaga S, Gomi K, Morimoto M et al. Antitumor activity of UCN-01, a selective inhibitor of protein kinase C, in murine and human tumor models. Cancer Res. 51(18), 4888–4892 (1991).
  • Takai H, Tominaga K, Motoyama N et al. Aberrant cell cycle checkpoint function and early embryonic death in Chk1(-/-) mice. Genes Dev. 14(12), 1439–1447 (2000).
  • Lam MH, Liu Q, Elledge SJ et al. Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell 6(1), 45–59 (2004).
  • Bertoni F, Codegoni AM, Furlan D et al. Chk1 frameshift mutations in genetically unstable colorectal and endometrial cancers. Genes Chromosomes Cancer 26(2), 176–180 (1999).
  • Menoyo A, Alazzouzi H, Espin E et al. Somatic mutations in the DNA damage-response genes ATR and Chk1 in sporadic stomach tumors with microsatellite instability. Cancer Res. 61(21), 7727–7730 (2001).
  • Vassileva V, Millar A, Briollais L et al. Genes involved in DNA repair are mutational targets in endometrial cancers with microsatellite instability. Cancer Res. 62(14), 4095–4099 (2002).
  • Haruki N, Saito H, Tatematsu Y et al. Histological type-selective, tumor-predominant expression of a novel Chk1 isoform and infrequent in vivo somatic Chk2 mutation in small cell lung cancer. Cancer Res. 60(17), 4689–4692 (2000).
  • Monks A, Harris ED, Vaigro-Wolff A et al. UCN-01 enhances the in vitro toxicity of clinical agents in human tumor cell lines. Invest. New Drugs 18(2), 95–107 (2000).
  • Fuse E, Tanii H, Kurata N et al. Unpredicted clinical pharmacology of UCN-01 caused by specific binding to human α1-acid glycoprotein. Cancer Res. 58(15), 3248–3253 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.