53
Views
29
CrossRef citations to date
0
Altmetric
Review

Molecular neuro-oncology and the development of targeted therapeutic strategies for brain tumors Part 5: apoptosis and cell cycle

Pages 355-378 | Published online: 10 Jan 2014

References

  • Newton HB. Primary brain tumors: review of etiology, diagnosis, and treatment. Am. Fam. Phys. 49, 787–797 (1994).
  • Davis FG, McCarthy BJ. Current epidemiological trends and surveillance issues in brain tumors. Expert Rev. Anticancer Ther. 1, 395–401 (2001).
  • Newton HB. Neurological complications of systemic cancer. Am. Fam. Phys. 59, 878–886 (1999).
  • Wen PY, Loeffler JS. Management of brain metastases. Oncology 13, 941–961 (1999).
  • Newton HB, Turowski RC, Stroup TJ, McCoy LK. Clinical presentation, diagnosis, and pharmacotherapy of patients with primary brain tumors. Ann. Pharmacother. 33, 816–832 (1999).
  • Fine HA, Dear KBG, Loeffler JS, Black PM, Canellos GP. Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer 71, 2585–2597 (1993).
  • Newton HB. Chemotherapy for the treatment of metastatic brain tumors. Expert Rev. Anticancer Ther. 2, 495–506 (2002).
  • Chung RY, Seizinger BR. Tumor suppressor genes and cancer of the human nervous system. Cancer Invest. 9, 429–438 (1991).
  • von Deimling A, Louis DN, Wiestler OD. Molecular pathways in the formation of gliomas. Glia 15, 328–338 (1995).
  • Shapiro JR, Coons SW. Genetics of adult malignant gliomas. BNI Q 14, 27–42 (1998).
  • Maher EA, Furnari FB, Bachoo RM et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 15, 1311–1333 (2001).
  • Newton HB. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 1: Growth factor and Ras signaling pathways. Expert Rev. Anticancer Ther. 3, 89–108 (2003).
  • Newton HB. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, SHH/PTCH and angiogenesis. Expert Rev. Anticancer Ther. 4, 105–128 (2004).
  • Newton HB. Molecular neuro-oncology and the development of targeted therapeutic strategies for brain tumors. Part 3: brain tumor invasiveness. Expert Rev. Anticancer Ther. 4(5), 803–821 (2004)
  • Newton HB. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 4: p53 signaling pathways. Expert Rev. Anticancer Ther. 5(1), 177–191 (2004)
  • Montenarh M. Biochemical, immunological, and functional aspects of the growth suppressor/oncoprotein p53. Crit. Rev. Oncogenesis 3, 233–256 (1992).
  • Lee JM, Bernstein A. Apoptosis, cancer and the p53 tumor suppressor gene. Cancer Metast. Rev. 14, 149–161 (1995).
  • Sionov RV, Haupt Y. The cellular response to p53: the decision between life and death. Oncogene 18, 6145–6157 (1999).
  • Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).
  • Stewart BW. Mechanisms of apoptosis: integration of genetic, biochemical, and cellular indicators. J. Natl Cancer Inst. 86, 1286–1296 (1994).
  • Kerr JFR, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer 73, 2013–2026 (1994).
  • Hengartner MO. The biochemistry of apoptosis. Nature 407, 770–776 (2000).
  • Wyllie AH. Apoptosis: cell death in tissue regulation. J. Pathol. 153, 313–316 (1987).
  • Ellis RE, Yuan JY, Horvitz HR. Mechanisms and functions of cell death. Ann. Rev. Cell Biol. 7, 663–698 (1991).
  • Goldstein P, Ojcius DM, Young JD. Cell death mechanisms and the immune system. Immunol. Rev. 121, 29–65 (1991).
  • Reed JC. Dysregulation of apoptosis in cancer. J. Clin. Oncol. 17, 2941–2953 (1999).
  • Friedlandler RM. Apoptosis and caspases in neurodegenerative diseases. N. Engl. J. Med. 348, 1365–1375 (2003).
  • Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Ann. Rev. Biochem. 68, 383–424 (1999).
  • Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6, 1028–1042 (1999).
  • Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855–4878 (1994).
  • Ozbun MA, Butel JS. Tumor suppressor p53 mutations and breast cancer: a critical analysis. Adv. Cancer Res. 66, 71–141 (1995).
  • Harris CC. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J. Natl Cancer Inst. 88, 1442–1455 (1996).
  • Ozbun MA, Butel JS. p53 tumor suppressor gene: structure and function. In: Encyclopedia of Cancer. Volume II. Bertino JR (Ed.), Academic Press, CA, USA 1240–1257 (1997).
  • Malkin D. The role of p53 in human cancer. J. Neuro-oncol. 51, 231–243 (2001).
  • Sigal A, Rotter V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 60, 6788–6793 (2000).
  • Ashcroft M, Vousden KH. p53 tumor suppressor protein. In: Tumor Suppressor Genes in Human Cancer. Fisher DE (Ed.), Humana Press Inc., NJ, USA 7, 159–181 (2001).
  • El-Deiry WS. Regulation of p53 downstream genes. Semin. Cancer Biol. 8, 345–357 (1998).
  • Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293–299 (1995).
  • Korsmeyer SJ. Bcl-2 gene family and the regulation of programmed cell death. Cancer Res. 59, 1693S–1700S (1999).
  • Antonsson B, Martinou JC. The Bcl-2 protein family. Exp. Cell Res. 256, 50–57 (2000).
  • Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899–1911 (1999).
  • Loeffler M, Kroemer G. The mitochondrion in cell death control: certainties and incognita. Exp. Cell Res. 256, 19–26 (2000).
  • Cain K, Bratton SB, Langlais C et al. Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes. J. Biol. Chem. 275, 6067–6070 (2000).
  • LaCasse EC, Baird S, Korneluk RG, MacKenzie AE. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17, 3247–3259 (1998).
  • Li F, Ambrosini G, Chu EY et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396, 580–584 (1998).
  • Conway EM, Pollefeyt S, Cornelissen J et al. Three differentially expressed survivin cDNA variants encode proteins with distinct anti-apoptotic functions. Blood 95, 1435–1442 (2000).
  • Nagata S. Apoptosis by death factor. Cell 88, 355–365 (1997).
  • Ashkanazi A, Dixit VM. Death receptors: signaling and modulation. Science 281, 1305–1308 (1998).
  • Goldstein P. Cell death: TRAIL and its receptors. Curr. Biol. 7, R750–R753 (1997).
  • Irmler M, Thome M, Hahne M et al. Inhibition of death receptor signals by cellular FLIP. Nature 388, 190–195 (1997).
  • Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50 (1998).
  • Buendia B, Santa-Maria A, Courvalin JC. Caspase-dependent proteolysis of integral and peripheral proteins of nuclear membranes and nuclear pore complex proteins during apoptosis. J. Cell Sci. 112, 1743–1753 (1999).
  • Kothakota S, Azuma T, Reinhard C et al. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278, 294–298 (1997).
  • Rudel T, Bokoch GM. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276, 1571–1574 (1997).
  • Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 (1993).
  • Martin DS, Stolfi RL, Colofiore JR. Perspective: the chemotherapeutic relevance of apoptosis and a proposed biochemical cascade for chemotherapeutically induced apoptosis. Cancer Invest. 15, 372–381 (1997).
  • Brown JM, Wouters BG. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res. 59, 1391–1399 (1999).
  • Chou D, Miyashita T, Mohrenweiser HW et al. The Bax gene maps to the glioma candidate region at 19q13.3, but is not altered in human gliomas. Cancer Genet. Cytogenet. 88, 136–140 (1996).
  • Joy A, Panicker S, Shapiro JR. Altered nuclear localization of bax protein in BCNU-resistant glioma cells. J. Neuro-oncol. 49, 117–129 (2000).
  • Vogelbaum MA, Tong JX, Perugu R, Gutmann DH, Rich KM. Overexpression of Bax in human glioma cell lines. J. Neurosurg. 91, 483–489 (1999).
  • Nakasu S, Nakasu Y, Nioka H, Nakajima M, Handa J. Bcl-2 protein expression in tumors of the central nervous system. Acta Neuropathol. 88, 520–526 (1994).
  • Schiffer D, Cavalla P, Migheli A, Giordana MT, Chiado-Piat L. Bcl-2 distribution in neuroepithelial tumors: an immunohistochemical study. J. Neuro-oncol. 27, 101–109 (1996).
  • Newcomb EW, Bhalla SK, Parrish CL, Hayes RL, Cohen H, Miller DC. Bcl-2 protein expression in astrocytomas in relation to patient survival and p53 gene status. Acta Neuropathol. 94, 369–375 (1997).
  • Strik H, Deininger M, Streffer J et al. Bcl-2 family protein expression in initial and recurrent glioblastomas: modulation by chemoradiotherapy. J. Neurol. Neurosurg. Psych. 67, 763–768 (1999).
  • Korshunov A, Golanov A, Sycheva R, Pronin I. Prognostic value of tumour associated antigen immunoreactivity and apoptosis in cerebral glioblastomas: an analysis of 168 cases. J. Clin. Pathol. 52, 574–580 (1999).
  • Kraus J, Wenghoefer M, Glesmann N et al. TP53 gene mutations, nuclear p53 accumulation, expression of Waf/p21, Bcl-2, and CD95 (APO-1/Fas) proteins are not prognostic factors in de novo glioblastoma multiforme. J. Neuro-oncol. 52, 263–272 (2001).
  • McDonald FE, Ironside JW, Gregor A et al. The prognostic influence of Bcl-2 in malignant glioma. Br. J. Cancer 86, 1899–1904 (2002).
  • Strege RJ, Godt C, Stark AM, Hugo HH, Mehdorn HM. Protein expression of Fas, Fas ligand, Bcl-2 and TGFβ2 and correlation with survival in initial and recurrent human gliomas. J. Neuro-oncol. 67, 29–39 (2004).
  • Fels C, Schäfer C, Hüppe B et al. Bcl-2 expression in higher-grade human glioma: a clinical and experimental study. J. Neuro-oncol. 48, 207–216 (2000).
  • Frankel B, Longo SL, Ryken TC. Human astrocytomas co-expressing Fas and Fas ligand also produce TGFβ2 and Bcl-2. J. Neuro-oncol. 44, 205–212 (1999).
  • Tachibana O, Nakazawa H, Lampe J, Watanabe K, Kleihues P, Ohgaki H. Expression of Fas/APO-1 during the progression of astrocytomas. Cancer Res. 55, 5528–5530 (1995).
  • Husain N, Chiocca EA, Rainov N, Louis DN, Zervas NT. Co-expression of Fas and Fas ligand in malignant glial tumors and cell lines. Acta Neuropathol. 95, 287–290 (1998).
  • Gratas C, Tohma Y, Van Meir EG et al. Fas ligand expression in glioblastoma cell lines and primary astrocytic brain tumors. Brain Pathol. 7, 863–869 (1997).
  • Frankel B, Longo SL, Leach C, Canute GW, Ryken TC. Apoptosis and survival in high-grade astrocytomas as related to tumor Fas (APO-1/CE95) expression. J. Neuro-oncol. 59, 27–34 (2002).
  • Rieger J, Naumann U, Glaser T, Ashkenazi A, Weller M. APO2 ligand: a novel lethal weapon against malignant glioma? FEBS Lett. 427, 124–128 (1998).
  • Frank S, Khler U, Schackert G, Schackert HK. Expression of TRAIL and its receptors in human brain tumors. Biochem. Biophys. Res. Comm. 257, 454–459 (1999).
  • Nagane M, Pan G, Weddle JJ, Dixit VM, Cavanee WK, Huang HJS. Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res. 60, 847–853 (2000).
  • Hao C, Beguinot F, Condorelli G et al. Induction and intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apoptosis in human malignant glioma cells. Cancer Res. 61, 1162–1170 (2001).
  • Grotzer MA, Eggert A, Zuzak TJ et al. Resistance to TRAIL-induced apoptosis in primitive neuroectodermal brain tumor cells correlates with a loss of caspase-8 expression. Oncogene 19, 4604–4610 (2000).
  • Zuzak TJ, Steinhoff DF, Sutton LN, Phillips PC, Eggert A, Grotzer MA. Loss of caspase-8 gene expression is common in childhood primitive neuroectodermal brain tumor/medulloblastoma. Eur. J. Cancer 38, 92–98 (2002).
  • Pingoud-Meier C, Lang D, Janss AJ et al. Loss of caspase-8 protein expression correlates with unfavorable survival outcome in childhood medulloblastoma. Clin. Cancer Res. 9, 6401–6409 (2003).
  • Fulda S, Debatin KM. IFN-γ sensitizes for apoptosis by upregulating caspase-8 expression through the STAT1 pathway. Oncogene 21, 2295–2308 (2002).
  • Chakravati A, Noll E, Black PM et al. Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J. Clin. Oncol. 20, 1063–1068 (2002).
  • Sasaki T, Lopes MB, Hankins GR, Helm GA. Expression of survivin, an inhibitor of apoptosis protein, in tumors of the nervous system. Acta Neuropathol. 104, 105–109 (2002).
  • Kajiwara Y, Yamasaki F, Hama S et al. Expression of survivin in astrocytic tumors. Correlation with malignant grade and prognosis. Cancer 97, 1077–1083 (2003).
  • Yamada Y, Kuroiwa T, Nakagawa T et al. Transcriptional expression of survivin and its splice variants in brain tumors. J. Neuorsurg. 99, 738–745 (2003).
  • Kleinshchmidt-DeMasters BK, Heinz D, McCarthy PJ et al. Survivin in glioblastomas. Protein messenger RNA expression and comparison with telomerase levels. Arch. Pathol. Lab. Med. 127, 826–833 (2003).
  • Velculescu VE, Madden SL, Zhang L et al. Analysis of human transcriptomes. Nature Genet. 23, 387–388 (1999).
  • Altura RA, Olshefski RS, Jiang Y, Boue DR. Nuclear expression of survivin in paediatric ependymomas and choroid plexus tumours correlates with morphologic tumour grade. Br. J. Cancer 89, 1743–1749 (2003).
  • Foster BA, Coffey HA, Morin MJ, Rastinejad F. Pharmacological rescue of mutant p53 conformation and function. Science 286, 2507–2510 (1999).
  • Hupp TR, Lane DP, Ball KL. Strategies for manipulating the p53 pathway in the treatment of human cancer. Biochem. J. 352, 1–17 (2000).
  • Lane DP, Lain S. Therapeutic exploitation of the p53 pathway. Trends Mol. Med. 8, S38–S42 (2002).
  • Sellers WR, Fisher DE. Apoptosis and cancer drug targeting. J. Clin. Invest. 104, 1655–1661 (1999).
  • Stenner-Liewen F, Reed JC. Apoptosis and cancer: basic mechanisms and therapeutic opportunities in the postgenomic era. Cancer Res. 63, 263–268 (2003).
  • Nicholson DW. From bench to clinic with apoptosis-based therapeutic agents. Nature 407, 810–816 (2000).
  • Sun SY, Hail N, Lotan R. Apoptosis as a novel target for cancer chemoprevention. J. Natl Cancer Inst. 96, 662–672 (2004).
  • Reed JC, Gewirtz AM, Sternberg CN, Chitambar CR. Direct targeting of apoptosis in cancer therapy. Clin. Adv. Hematol. Oncol. 1, 3–1 (2003).
  • Jansen B, Schlagbauer-Wadl H, Brown BD et al. Bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nature Med. 4, 232–234 (1998).
  • Schlagbauer-Wadl H, Klosner G, Heere-Ress E et al. Bcl-2 antisense oligonucleotides (G3139) inhibit Merkel cell carcinoma growth in SCID mice. J. Invest. Dermatol. 114, 725–730 (2000).
  • Waters JS, Webb A, Cunningham D et al. Phase I clinical and pharmacokinetic study of Bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma. J. Clin. Oncol. 18, 1812–1823 (2000).
  • Zangemeister-Wittke U, Leech SH, Olie RA et al. A novel bispecific antisense oligonucleotide inhibiting both Bcl-2 and Bcl-xL expression efficiently induces apoptosis in tumor cells. Clin. Cancer Res. 6, 2547–2555 (2000).
  • Waxman DJ, Schwartz PS. Harnessing apoptosis for improved anticancer gene therapy. Cancer Res. 63, 8563–8572 (2003).
  • Badie B, Drazan KE, Kramar MH, Shaked A, Black KL. Adenovirus-mediated p53 gene delivery inhibits 9L glioma growth in rats. Neurol. Res. 17, 209–216 (1995).
  • Gomez-Manzano CX, Fueyo J, Kyritsis AP et al. Adenovirus-mediated transfer of the p53 gene produces rapid and generalized death of human glioma cells via apoptosis. Cancer Res. 56, 694–699 (1996).
  • Vecil GG, Lang FF. Clinical trials of adenoviruses in brain tumors: a review of Ad-p53 oncolytic adenoviruses. J. Neuro-oncol. 65, 237–246 (2003).
  • Lang FF, Bruner JM, Fuller GN et al. Phase I trial of adenovirus mediated p53 gene therapy for recurrent glioma: biological and clinical results. J. Clin. Oncol. 21, 2508–2518 (2003).
  • Shinoura N, Saito K, Yoshida Y et al. Adenovirus-mediated transfer of Bax with caspase-8 controlled by myelin basic protein promoter exerts an enhanced cytotoxic effect in gliomas. Cancer Gene Ther. 7, 739–748 (2000).
  • Arafat WO, Buchsbaum DJ, Gómex-Navarro J et al. An adenovirus encoding proapoptotic Bax synergistically radiosensitizes malignant glioma. Int. J. Radiat. Oncol. Biol. Phys. 55, 1037–1050 (2003).
  • Naumann U, Waltereit R, Schulz JB, Weller M. Adenoviral (full-length) APO2L/TRAIL gene transfer is an ineffective treatment strategy for malignant glioma. J. Neuro-oncol. 61, 7–15 (2003).
  • Younes A, Kadin ME. Emerging applications of the tumor necrosis factor family of ligands and receptors in cancer therapy. J. Clin. Oncol. 21, 3526–3534 (2003).
  • Ashkenazi A, Pai RC, Fong S et al. Safety and antitumor activity of recombinant soluble APO2 ligand. J. Clin. Invest. 104, 155–162 (1999).
  • Nagane M, Pan G, Weddle JJ et al. Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res. 60, 847–853 (2000).
  • Röhn TA, Wagenknecht B, Roth W et al. CCNU-dependent potentiation of TRAIL/APO2L-induced apoptosis in human glioma cells is p53-independent but may involve enhanced cytochrome c release. Oncogene 20, 4128–4137 (2001).
  • Pedersen IM, Kitada S, Schimmer A et al. The triterpenoid CDDO induces apoptosis in refractory CLL B-cells. Blood 100, 2965–2972 (2002).
  • Lu W, Chen L, Peng Y, Chen J. Activation of p53 by roscovitine-mediated suppression of mdm2 expression. Oncogene 20, 3206–3216 (2001).
  • Kim EH, Kim SU, Shin DY, Choi KS. Roscovitine sensitizes glioma cells to TRAIL-mediated apoptosis by downregulation of survivin and XIAP. Oncogene 23, 446–456 (2004).
  • Katoh M, Wilmotte R, Belkouch MC, de Tribolet N, Pizzolato G, Dietrich PY. Survivin in brain tumors: an attractive target for immunotherapy. J. Neuro-oncol. 64, 71–76 (2003).
  • Marte BM, Downward J. PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem. Sci. 22, 355–358 (1997).
  • Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK. Perifosine, a novel aklylphospholipid, inhibits protein kinase B. Mol. Cancer Ther. 2, 1093–1103 (2003).
  • Stewart CL, Soria AM, Hamel PA. Integration of the pRb and p53 cell cycle control pathways. J. Neuro-oncol. 51, 183–204 (2001).
  • Sherr CJ. Cancer cell cycles. Science 274, 1672–1677 (1996).
  • Dicks PB, Rutka JT. Current concepts in neuro-oncology: the cell cycle – a review. Neurosurgery 40, 1000–1015 (1997).
  • Poon RYC. Cell cycle control. In: Encyclopedia of Cancer. Volume I. Bertino JR (Ed.), Academic Press, CA, USA, 246–255 (1997).
  • Clurman BE, Roberts JM. Cell cycle control: an overview. In: The Genetic Basis of Human Cancer. Vogelstein B, Kinzler KW (Eds.), McGraw-Hill, NY, USA, 8, 175–191 (1998).
  • Ivanchuk SM, Rutka JT. The cell cycle: accelerators, brakes, and checkpoints. Neurosurgery 54, 692–700 (2004).
  • Weinstein IB, Zhou P. Cell cycle control gene defects and human cancer. In: Encyclopedia of Cancer. Volume I. Bertino JR (Ed.), Academic Press, CA, USA, 256–267 (1997).
  • Zetterberg A, Larsson O, Wiman K. What is the restriction point? Curr. Opin. Cell Biol. 7, 835 (1995).
  • Murray A. Creative blocks: cell-cycle checkpoints and feedback controls. Nature 359, 599–604 (1992).
  • Pines J. Cyclins and cyclin-dependent kinases: a biochemical view. Biochem. J. 308, 697–711 (1995).
  • Sherr CJ. Mammalian G1 cyclins. Cell 73, 1059–1065 (1993).
  • Nigg EA. Cyclin-dependent protein kinases: key regulators of the cell cycle. Bioessays 17, 471–480 (1995).
  • Morgan DO. Principles of Cdk regulation. Nature 374, 131–134 (1995).
  • Jeffrey PD, Russo AA, Polyak K et al. Crystal structure of a cyclin A–Cdk2 complex at 2.3A: mechanism of Cdk activation by cyclins. Nature 376, 313–320 (1995).
  • Sherr CJ, Kato J, Quell D, Matsuoka M, Roussel M. D-type cyclins and their cyclin-dependent kinases: G1 phase integrators of the mitogenic response. Cold Spring Harbor Symp. Quant. Biol. 49, 11–19 (1994).
  • Quelle DE, Ashmun RA, Shurtleff SA et al. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev. 7, 1559–1571 (1993).
  • De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH. Crystal structure of cyclin-dependent kinase 2. Nature 363, 595–602 (1993).
  • Fisher RP, Morgan DO. A novel cyclin associates with MO15/Cdk7 to form the Cdk-activating kinase. Cell 78, 713–724 (1994).
  • Krek W, Nigg EA. Differential phosphorylation of vertebrate p34Cdc2 kinase at the G1/S and G2/M transitions of the cell cycle: identification of major phosphorylation site. EMBO J. 10, 305–316 (1991).
  • McGowan CH, Russell P. Human Wee1 kinase inhibits cell division by phosphorylating p34Cdc2 exclusively on Tyr15. EMBO J. 12, 75–85 (1993).
  • Dunphy WG. The decision to enter mitosis. Trends Cell Biol. 4, 202–207 (1994).
  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).
  • El-Deiry WS, Tokino T, Velculescu VE et al. Waf1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).
  • Peter M, Herskowitz I. Joining the complex: cyclin dependent kinase inhibitory proteins and cell cycle. Cell 79, 181–184 (1994).
  • Sherr CJ, Roberts J. Inhibitors of mammalian G1 cyclin-dependent kinases. Gene Dev. 9, 1149–1163 (1995).
  • Nigg EA. Targets of cyclin-dependent protein kinases. Curr. Opin. Cell Biol. 5, 187–193 (1993).
  • Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).
  • Moran E. DNA tumor virus transforming proteins and the cell cycle. Curr. Opin. Genet. Dev. 3, 63–70 (1993).
  • Lees JA, Saito M, Vidal M et al. The retinoblastoma protein binds to a family of E2F transcription factors. Mol. Cell Biol. 13, 7813–7825 (1993).
  • Wu CL, Zukerberg LR, Ngwu C, Harlow E, Lees JA. In vivo association of E2F and DP family proteins. Mol. Cell Biol. 15, 2536–2546 (1995).
  • Lees JA, Buchkovich KJ, Marshak DR, Anderson CW, Harlow E. The retinoblastoma protein is phosphorylated on multiple sites by human Cdc2. EMBO J. 10, 4279–4290 (1991).
  • Dyson N. pRb, p107, and the regulation of the E2F transcription factor. J. Cell Sci. Suppl. 18, 81–87 (1994).
  • Krek W, Ewen M, Shirodkar S, Arany Z, Kaelin W, Livingston D. Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell 78, 161–172 (1994).
  • Sherr CJ, Roberts JM. Cdk inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).
  • Peters JM. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9, 931–943 (2002).
  • Pfleger CM, Lee E, Kirschner MW. Substrate recognition by the Cdc20 and Cdh1 components of the anaphase-promoting complex. Genes Dev. 15, 2396–2407 (2002).
  • Gieffers C, Peters BH, Kramer ER, Dotti CG, Peters JM. Expression of the Cdh1-associated form of the anaphase-promoting complex in postmitotic neurons. Proc. Natl Acad. Sci. USA 96, 11317–11322 (1999).
  • Roos-Mattjus, Sistonen L. The ubiquitin-proteasome pathway. Ann. Med. 36, 285–295 (2004).
  • Rechsteiner MC. Ubiquitin-mediated proteolysis: an ideal pathway for systems biology analysis. Adv. Exp. Med. Biol. 547, 49–59 (2004).
  • Zackon IL, Goolsby CL. A clinician’s guide to flow cytometry. Contemp. Oncol. 4, 14–36 (1994).
  • Christov K, Zapryanov Z. Flow cytometry in brain tumors. I. Ploidy abnormalities. Neoplasma 33, 49–55 (1986).
  • Giangaspero F, Chieco P, Lisignoli G, Burger PC. Comparison of cytologic composition with microfluorometric DNA analysis of the glioblastoma multiforme and anaplastic astrocytoma. Cancer 60, 59–65 (1987).
  • Zaprianov Z, Christov K. Histological grading, DNA content, cell proliferation and survival of patients with astroglial tumors. Cytometry 9, 380–386 (1988).
  • Tomita T, Yasue M, Engelhard HH, McLone DG, Gonzalez-Crussi F, Bauer KD. Flow cytometric DNA analysis of medulloblastoma. Prognostic implication of aneuploidy. Cancer 61, 744–749 (1988).
  • Kros JM, van Eden CG, Vissers CJ, Mulder AH, van der Kwast TH. Prognostic relevance of DNA flow cytometry in oligodendroglioma. Cancer 69, 1791–1798 (1992).
  • Salmon I, Kiss R, Dewitte O et al. Histopathologic grading and DNA ploidy in relation to survival among 206 adult astrocytic tumor patients. Cancer 70, 538–546 (1992).
  • Biernat W, Tohma Y, Yonekawa Y, Kleihues P, Ohgaki H. Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas. Acta Neuropathol. 94, 303–309 (1997).
  • Yin D, Xie D, Hofmann WK, Miller CW, Black KL, Koeffler HP. Methylation, expression, and mutation analysis of the cell cycle control genes in human brain tumors. Oncogene 21, 8372–8378 (2002).
  • He J, Allen JR, Collins VP. Cdk4 amplification is an alternative mechanism to p16 homozygous deletion in glioma cell lines. Cancer Res. 54, 5804–5807 (1994).
  • He J, Olson JJ, James CD. Lack of p16INK4 or retinoblastoma protein (pRb), or amplification-associated overexpression of Cdk4 is observed in distinct subsets of malignant glial tumors and cell lines. Cancer Res. 55, 4833–4836 (1995).
  • Chakrabarty A, Bridges LR, Gray S. Cyclin D1 in astrocytic tumours: an immunohistochemical study. Neuropathol. Appl. Neurobiol. 22, 311–316 (1996).
  • Costello JF, Plass C, Arap W et al. Cyclin-dependent kinase 6 (Cdk6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. Cancer Res. 57, 1250–1254 (1997).
  • Dirks PB, Hubbard SL, Murakami M, Rutka JT. Cyclin and cyclin-dependent kinase expression in human astrocytoma cell lines. J. Neuropathol. Exp. Neurol. 56, 291–300 (1997).
  • Chakrabarty A, Bridges LR. Immunohistochemical analysis of cyclin A in astrocytic tumours. J. Neuropathol. Appl. Neurobiol. 24, 239–245 (1998).
  • Machen SK, Prayson RA. Cyclin D1 and MIB-1 immunochemistry in pilocytic astrocytomas: a study of 48 cases. Hum. Pathol. 29, 1511–1516 (1998).
  • Kamiya M, Nakazato Y. The expression of cell cycle regulatory proteins in oligodendroglial tumors. Clin. Neuropathol. 21, 52–65 (2002).
  • Giani C, Finocchiaro G. Mutation rate of CdkN2 gene in malignant glioma. Cancer Res. 54, 6338–6339 (1994).
  • Jen J, Harper JW, Bigner SH et al. Deletion of p16 and p15 genes in brain tumors. Cancer Res. 54, 6353–6358 (1994).
  • Nishikawa R, Furnari FB, Lin H et al. Loss of p16INK4 expression is frequent in high grade gliomas. Cancer Res. 55, 1941–1945 (1995).
  • Ono Y, Tamiya T, Ichikawa T et al. Malignant astrocytomas with homozygous CdkN2/p16 gene deletions have higher Ki-67 proliferation indices. J. Neuropathol. Exp. Neurol. 55, 1026–1031 (1996).
  • Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN. CdkN2/p16 or Rb alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res. 56, 150–153 (1996).
  • Miettinen H, Kononen J, Sallinen P et al. CdkN2/p16 predicts survival in oligodendrogliomas: comparison with astrocytomas. J. Neuro-oncol. 41, 205–211 (1999).
  • Kirla R, Salminen E, Huhtala S et al. Prognostic value of the expression of tumor suppressor genes p53, p21, p16 and pRb, and Ki-67 labelling in high grade astrocytomas treated with radiotherapy. J. Neuro-oncol. 46, 71–80 (2000).
  • Kirla RM, Haapasalo HK, Kalimo H, Salminen EK. Low expression of p27 indicates a poor prognosis in patients with high-grade astrocytomas. Cancer 97, 644–648 (2001).
  • Kamiryo T, Tada K, Shiraishi S et al. Analysis of homozygous deletion of the p16 gene and correlation with survival in patients with glioblastoma multiforme. J. Neurosurg. 96, 815–822 (2002).
  • Costello JF, Berger MS, Huang HJ, Cavanee WK. Silencing of p16/CdkN2 expression in human gliomas by methylation and chromosome condensation. Cancer Res. 56, 2405–2410 (1996).
  • Herman JG, Jen J, Merlo A, Baylin SB. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res. 56, 722–727 (1996).
  • Venter DJ, Bevan KL, Ludwig RL et al. Retinoblastoma gene deletions in human glioblastomas. Oncogene 6, 445–448 (1991).
  • Henson JW, Schnitker BL, Correa KM et al. The retinoblastoma gene is involved in malignant progression of astrocytomas. Ann. Neurol. 36, 714–721 (1994).
  • McNeish IA, Bell SJ, Lemoine NR. Gene therapy progress and prospects: cancer gene therapy using tumour suppressor genes. Gene Ther. 11, 497–503 (2004).
  • Fueyo J, Gomez-Manzano C, Liu TJ, Yung WKA. Delivery of cell cycle genes to block astrocytoma growth. J. Neuro-oncol. 51, 277–287 (2001).
  • Fueyo J, Gomex-Manzano C, Yung WKA et al. Suppression of human glioma growth by adenovirus-mediated Rb gene transfer. Neurology 50, 1307–1315 (1998).
  • Fueyo J, Alemany R, Gomez-Manzano C et al. Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J. Natl Cancer Inst. 95, 652–660 (2003).
  • Arap W, Nishikawa, Furnari FB, Cavanee WK, Huang HSS. Replacement of the p16/CdkN2 gene suppresses human glioma cell growth. Cancer Res. 55, 1351–1354 (1995).
  • Fueyo J, Gomez-Manzano C, Yung WKA et al. Adenovirus-mediated p16/CdkN2 gene transfer induces growth arrest and modifies the transformed phenotype of glioma cells. Oncogene 12, 103–110 (1996).
  • Chintala SK, Fueyo J, Gomez-Manzano C et al. Adenovirus-mediated p16/CdkN2 gene transfer suppresses glioma invasion in vitro. Oncogene 15, 2049–2057 (1997).
  • Harada H, Nakagawa K, Iwata S et al. Restoration of wild type p16 downregulates vascular endothelial growth factor expression and inhibits angiogenesis in human gliomas. Cancer Res. 59, 3783–3789 (1999).
  • Hung KS, Hong CY, Lee J et al. Expression of p16INK4A induces dominant suppression of glioblastoma growth in situ through necrosis and cell cycle arrest. Biochem. Biophys. Res. Commun. 269, 718–725 (2000).
  • Simon M, Christian S, Köster G, Hans VHJ, Schramm J. Conditional expression of the tumor suppressor p16 in a heterotopic glioblastoma model results in loss of pRb expression. J. Neuro-oncol. 60, 1–12 (2002).
  • Komata T, Kanzawa T, Takeuchi H et al. Antitumor effect of cyclin-dependent kinase inhibitors (p16INK4A, p18INK4C, p19INK4D, p21Waf1/Cip1 and p27Kip1) on malignant glioma cells. Br. J. Cancer 88, 1277–1280 (2003).
  • Fueyo J, Gomez-Manzano C, Yung WKA et al. Overexpression of E2F-1 in glioma triggers apoptosis and suppresses tumor growth in vitro and in vivo. Nature Med. 4, 685–690 (1998).
  • Kamb A. Cyclin-dependent kinase inhibitors and human cancer. Curr. Top. Microbiol. Immunol. 227, 139–148 (1998).
  • Shapiro GI, Harper JW. Anticancer drug targets: cell cycle and checkpoint control. J. Clin. Invest. 104, 1645–1653 (1999).
  • Garrett MD, Fattaey A. Cdk inhibition and cancer therapy. Curr. Opin. Genet. Dev. 9, 104–111 (1999).
  • McDonald ER, El Deiry WS. Cell cycle control as a basis for cancer drug development. Int. J. Oncol. 16, 871–886 (2000).
  • Senderowicz AM, Sausville EA. Preclinical and clinical development of cyclin-dependent kinase modulators. J. Natl Cancer Inst. 92, 376–387 (2000).
  • Sausville EA. Complexities in the development of cyclin-dependent kinase inhibitor drugs. Trends Mol. Med. 8, S32–S37 (2002).
  • Dai Y, Grant S. Cyclin-dependent kinase inhibitors. Curr. Opin. Pharmacol. 3, 362–370 (2003).
  • Sausville EA. Cyclin-dependent kinase modulators studied at the NCI: preclinical and clinical studies. Anticancer Agents Curr. Med. Chem. 3, 47–56 (2003).
  • Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36, 131–149 (2003).
  • Kubo A, Kaye FJ. Searching for selective cyclin-dependent kinase inhibitors to target the retinoblastoma/p16 cancer gene pathway. J. Natl Cancer Inst. 93, 415–417 (2001).
  • Fahraeus R, Paramio JM, Ball KL, Lain S, Lane DP. Inhibition of pRb phosphorylation and cell-cycle progression by a 20-residue peptide derived from p16CdkN2/INK4A. Curr. Biol. 6, 84–91 (1996).
  • Chen YN, Sharma SK, Ramsey TM et al. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc. Natl Acad. Sci. USA 96, 4325–4329 (1999).
  • Adams J, Palombella VJ, Sausville EA et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59, 2615–2622 (1999).
  • Adams J, Palombela VJ, Elliott PJ. Proteasome inhibition: a new strategy in cancer treatment. Invest. New Drugs 18, 109–121 (2000).
  • Adams J. Proteasome inhibition: a novel approach to cancer therapy. Trends Mol. Med. 8, S49–S54 (2002).
  • Lenz HJ. Clinical update: proteasome inhibitors in solid tumors. Cancer Treat. Rev. 29, 41–48 (2003).
  • Park DJ, Lenz HJ. The role of proteasome inhibitors in solid tumors. Ann. Med. 36, 296–303 (2004).
  • Piva R, Cancelli I, Cavalla P et al. Proteasome-dependent degradation of p27/Kip1 in gliomas. J. Neuropathol. Exp. Neurol. 58, 691–696 (1999).
  • Teicher BA, Ara G, Herbst R, Palombella VJ, Adams J. The proteasome inhibitor PS-341 in cancer therapy. Clin. Cancer Res. 5, 2638–2645 (1999).
  • Adams J. Development of the proteasome inhibitor PS-341. Oncologist 7, 9–16 (2002).
  • Adams J, Kauffman M. Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest. 22, 304–311 (2004).
  • Kitigawa H, Tani E, Ikemoto H, Ozaki I, Nakano A, Omura S. Proteasome inhibitors induce mitochondria-independent apoptosis in human glioma cells. FEBS Lett. 443, 181–186 (1999).
  • Wagenknecht B, Hermisson M, Groscurth P, Liston P, Krammer PH, Weller M. Proteasome inhibitor-induced aoptosis of glioma cells involves the processing of multiple caspases and cytochrome release. J. Neurochem. 75, 2288–2297 (2000).
  • Laurent N, de Bouard S, Guillamo JS et al. Effects of the proteasome inhibitor ritonavir on glioma growth in vitro and in vivo. Mol. Cancer Ther. 3, 129–136 (2004).
  • Newcomb EW. Flavopiridol: pleiotropic biological effects enhance its anticancer activity. Anticancer Drugs 15, 411–419 (2004).
  • Alonso M, Tamasdan C, Miller DC, Newcomb EW. Flavopiridol induces apoptosis in glioma cell lines independent of retinoblastoma and p53 tumor suppressor pathway alterations by a caspase-independent pathway. Mol. Cancer Ther. 2, 139–150 (2003).
  • Newcomb EW, Tamasdan C, Entzminger Y et al. Flavopiridol induces mitochondrial-mediated apoptosis in murine glioma GL261 cells via release of cytochrome c and apoptosis inducing factor. Cell Cycle 2, 243–250 (2003).
  • Newcomb EW, Tamasdan C, Entzminger Y et al. Flavopiridol inhibits the growth of GL261 gliomas in vivo: implications for malignant glioma therapy. Cell Cycle 3, 230–234 (2004).
  • Senderowicz AM, Headlee D, Stinson SF et al. Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms. J. Clin. Oncol. 16, 2986–2999 (1998).
  • Schwartz GK, O’Reilly E, Ilson D et al. Phase I study of the cyclin-dependent kinase inhibitor flavopiridol in combination with paclitaxel in patients with advanced solid tumors. J. Clin. Oncol. 20, 2157–2170 (2002).
  • Burdette-Radoux S, Tozer RG, Lohmann RC et al. Phase II trial of flavopiridol, a cyclin dependent kinase inhibitor, in untreated metastatic melanoma. Invest. New Drugs 22, 315–322 (2004).
  • Pollack IF, Kawecki S, Lazo JS. Blocking of glioma proliferation in vitro and in vivo and potentiating the effects of BCNU and cisplatin: UCN-01, a selective protein kinase C inhibitor. J. Neurosurg. 84, 1024–1032 (1996).
  • Bredel M, Pollack IF, Freund JM, Rusnak J, Lazo JS. Protein kinase C inhibition by UCN-01 induces apoptosis in human glioma cells in a time-dependent fashion. J. Neuro-oncol. 41, 9–20 (1999).
  • Meijer L, Borgne A, Mulner O et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases Cdc2, Cdk2 and Cdk5. Eur. J. Biochem. 243, 527–536 (1997).
  • Whittaker SR, Walton MI, Garrett MD, Workman P. The cyclin-dependent kinase inhibitor CYC202 (R-roscovitine) inhibits retinoblastoma protein phosphorylation, causes loss of cyclin D1, and activates the mitogen-activated protein kinase pathway. Cancer Res. 64, 262–272 (2004).
  • Yakisich JS, Boethius J, Lindblom IO et al. Inhibition of DNA synthesis in human gliomas by roscovitine. Neuroreport 10, 2563–2567 (1999).
  • Eshleman JS, Carlson BL, Mladek AC, Kastner BD, Shide KL, Sarkaria JN. Inhibition of the mammalian target of rapamycin sensitizes U87 xenografts to fractionated radiation therapy. Cancer Res. 62, 7291–7297 (2002).
  • Garrett MD, Workman P. Discovering novel chemotherapeutic drugs for the third millennium. Eur. J. Cancer 35, 2010–2030 (1999).
  • Gelman KA, Eisenhauer EA, Harris AL, Ratain MJ, Workman P. Anticancer agents targeting signaling molecules and cancer cell environments: challenges for drug development? J. Natl Cancer Inst. 91, 1281–1287 (1999).
  • Clarke PA, te Poele R, Wooster R, Workman P. Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential. Biochem. Pharmacol. 62, 1311–1336 (2001).
  • Workman P. The impact of genomic and proteomic technologies on the development of new cancer drugs. Ann. Oncol. 13, 115–124 (2002).
  • Groothuis DR. The blood–brain and blood–tumor barriers: a review of strategies for increasing drug delivery. J. Neuro-oncol. 1, 45–59 (2000).
  • Degen JW, Walbridge S, Vortmeyer AO, Oldfield EH, Lonser RR. Safety and efficacy of convection-enhanced delivery of gemcitabine or carboplatin in a malignant glioma model in rats. J. Neurosurg. 99, 893–898 (2003).
  • Lidar Z, Mardor Y, Jonas T et al. Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a Phase I/II clinical trial. J. Neurosurg. 100, 472–479 (2004).
  • Scheck AC. Molecular biology of chemotherapy and resistance. BNI Q 14, 43–54 (1998).
  • Clarke PA, te Poele R, Wooster R, Workman P. Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential. Biochem. Pharmacol. 62, 1311–1336 (2001).
  • Ramaswamy S, Golub TR. DNA microarrays in clinical oncology. J. Clin. Oncol. 20, 1932–1941 (2001).
  • Mohr S, Leikauf GD, Keith G, Rihn BH. Microarrays as cancer keys: an array of possibilities. J. Clin. Oncol. 20, 3165–3175 (2002).
  • Sturla LM, Fernandez-Teijeiro A, Pomeroy SL. Application of microarrays to neurological disease. Arch. Neurol. 60, 676–682 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.