150
Views
32
CrossRef citations to date
0
Altmetric
Review

Immunotherapy for human glioma: innovative approaches and recent results

&
Pages 777-790 | Published online: 10 Jan 2014

References

  • Paul W. The Immune System. An Introduction. Third Edition. Raven Press, NY, USA (1993).
  • Hsieh CS, Heimberger AB, Gold JS, O’Garra A, Murphy KM. Differential regulation of T-helper phenotype development by interleukins 4 and 10 in an α β T-cell-receptor transgenic system. Proc. Natl Acad. Sci. USA 89(13), 6065–6069 (1992).
  • Murphy JB, Sturm E. Conditions determining the transplantability of tissues in the brain. J. Exp. Med. 38, 183–197 (1923).
  • Medawar PB. Immunity to homologous grafted skin. III. The fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69 (1948).
  • Schackert HK, Itaya T, Schackert G, Fearon E, Vogelstein B, Frost P. Systemic immunity against a murine colon tumor (CT-26) produced by immunization with syngeneic cells expressing a transfected viral gene product. Int. J. Cancer 43(5), 823–827 (1989).
  • Kida Y, Cravioto H, Hochwald GM, Hochgeschwender U, Ransohoff J. Immunity to transplantable nitrosourea-induced neurogenic tumors. II. Immunoprophylaxis of tumors of the brain. J. Neuropathol. Exp. Neurol. 42(2), 122–135 (1983).
  • Mitchell MS. Relapse in the central nervous system in melanoma patients successfully treated with biomodulators. J. Clin. Oncol. 7(11), 1701–1709 (1989).
  • Yamada S, DePasquale M, Patlak CS, Cserr HF. Albumin outflow into deep cervical lymph from different regions of rabbit brain. Am. J. Physiol. 261(4 Pt 2), H1197–H1204 (1991).
  • Bradbury M, Westrop R. Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit. J. Physiol. 339, 519–534 (1983).
  • Cserr HF, DePasquale M, Harling-Berg CJ, Park JT, Knopf PM. Afferent and efferent arms of the humoral immune response to CSF- administered albumins in a rat model with normal blood-brain barrier permeability. J. Neuroimmunol. 41(2), 195–202 (1992).
  • Ni HT, Merica RR, Spellman SR, Wang JM, Low WC. Visualization of antigen-specific T-cell activation in vivo in response to intracerebral administration of a xenopeptide. Exp. Neurol. 164(2), 362–370 (2000).
  • Lampson LA, Hickey WF. Monoclonal antibody analysis of MHC expression in human brain biopsies: tissue ranging from ‘histologically normal’ to that showing different levels of glial tumor involvement. J. Immunol. 136(11), 4054–4062 (1986).
  • Wong GH, Bartlett PF, Clark-Lewis I, Battye F, Schrader JW. Inducible expression of H-2 and Ia antigens on brain cells. Nature 310(5979), 688–691 (1984).
  • Massa PT, Ozato K, McFarlin DE. Cell type-specific regulation of major histocompatibility complex (MHC) class I gene expression in astrocytes, oligodendrocytes, and neurons. Glia 8(3), 201–207 (1993).
  • Mattiace LA, Davies P, Dickson DW. Detection of HLA-DR on microglia in the human brain is a function of both clinical and technical factors. Am. J. Pathol. 136(5), 1101–1114 (1990).
  • McMenamin PG, Forrester JV. Dendritic Cells in the Central Nervous System and Eye and their Associated Supporting Tissues (Volume 1). Academic Press, NY, USA (1999).
  • Williams K Jr, Ulvestad E, Cragg L, Blain M, Antel JP. Induction of primary T-cell responses by human glial cells. J. Neurosci. Res. 36(4), 382–390 (1993).
  • Williams K, Ulvestad E, Antel JP. B7/BB-1 antigen expression on adult human microglia studied in vitro and in situ. Eur. J. Immunol. 24(12), 3031–3037 (1994).
  • Serot J, Foliguet B, Bene M, Faure G. Ultrastructural and immunohistochemical evidence for dendritic-like cells within the human choroid plexus epithelium. Neuroreport 8(8), 1995–1998 (1997).
  • Greter M, Heppner FL, Lemos MP et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nature Med. 11(3), 328–334 (2005).
  • McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nature Med. 11(3), 335–339 (2005).
  • Plautz GE, Mukai S, Cohen PA, Shu S. Cross-presentation of tumor antigens to effector T-cells is sufficient to mediate effective immunotherapy of established intracranial tumors. J. Immunol. 165(7), 3656–3662 (2000).
  • Calzascia T, Di Berardino-Besson W, Wilmotte R et al. Cutting edge: cross-presentation as a mechanism for efficient recruitment of tumor-specific CTL to the brain. J. Immunol. 171(5), 2187–2191 (2003).
  • Calzascia T, Masson F, Di Berardino-Besson W et al. Homing phenotypes of tumor-specific CD8 T-cells are predetermined at the tumor site by crosspresenting APCs. Immunity 22(2), 175–184 (2005).
  • Chaux P, Favre N, Martin M, Martin F. Tumor-infiltrating dendritic cells are defective in their antigen-presenting function and inducible B7 expression in rats. Int. J. Cancer 72(4), 619–624 (1997).
  • Ulvestad E, Williams K, Bjerkvig R, Tiekotter K, Antel J, Matre R. Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J. Leukoc. Biol. 56(6), 732–740 (1994).
  • Thomas W. Brain macrophages: evaluation of microglia and their functions. Brain Res. Brain Res. Rev. 17(1), 61–74 (1992).
  • Banati R, Graeber M. Surveillance, intervention and cytotoxicity: is there a protective role of microglia? Dev. Neurosci. 16(3,4), 114–127 (1994).
  • Yao J, Harvath L, Gilbert D, Colton C. Chemotaxis by a CNS macrophage, the microglia. J. Neurosci. Res. 27(1), 36–42 (1990).
  • Pfeiffer S, Gooding R, Apperley J, Goldschmidt H, Samson D. Dendritic cells generated from the blood of patients with multiple myeloma are phenotypically and functionally identical to those similarly produced from healthy donors. Br. J. Haematol. 98(4), 973–982 (1997).
  • Radmayr C, Bock G, Hobisch A, GKlocker H, Bartsch G, Thurnher M. Dendritic antigen-presenting cells from the peripheral blood of renal-cell-carcinoma patients. Int. J. Cancer 63(5), 627–632 (1995).
  • Archer GE, Bigner DD, Friedman AH, Heimberger AB, Sampson J. Induction of CD4 and CD8 T-cells to the tumor specific antigen EGFRvIII. 15th International Conference on Brain Tumor Research and Therapy. Society for Neuro-Oncology, Sorrento, Italy (2003).
  • Hauser SL, Bhan AK, Gilles FH et al. Immunohistochemical staining of human brain with monoclonal antibodies that identify lymphocytes, monocytes, and the Ia antigen. J. Neuroimmunol. 5(2), 197–205 (1983).
  • Hickey WF, Kimura H. Graft versus host disease elicits expression of class I and class II histocompatibility antigens and the presence of scattered T-lymphocytes in rat central nervous system. Proc. Natl Acad. Sci. USA 84(7), 2082–2086 (1987).
  • Paterson PY, Day ED. Current perspectives of neuroimmunologic disease: multiple sclerosis and experimental allergic encephalomyelitis. [Review]. Clin. Immunol. Rev. 1(4), 581–697 (1981).
  • Hickey WF, Hsu BL, Kimura H. T-lymphocyte entry into the central nervous system. J. Neurosci. Res. 28(2), 254–260 (1991).
  • Borrow P, Cornell JL, Ruppe MD, Mucke L. Immunization-induced inflammatory infiltration of the central nervous system in transgenic mice expressing a microbial antigen in astrocytes. J. Neuroimmunol. 61(2), 133–149 (1995).
  • Brabb T, von Dassow P, Ordonez N, Schnabel B, Duke B, Goverman J. In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity. J. Exp. Med. 192(6), 871–880 (2000).
  • Krakowski ML, Owens T. Naive T-lymphocytes traffic to inflamed central nervous system, but require antigen recognition for activation. Eur. J. Immunol. 30, 1002–1009 (2000).
  • Walker PR, Calzascia T, Schnuriger V et al. The brain parenchyma is permissive for full antitumor CTL effector function, even in the absence of CD4 T-cells. J. Immunol. 165(6), 3128–3135 (2000).
  • von Hanwehr RI, Hofman FM, Taylor CR, Apuzzo ML. Mononuclear lymphoid populations infiltrating the microenvironment of primary CNS tumors. Characterization of cell subsets with monoclonal antibodies. J. Neurosurg. 60(6), 1138–1147 (1984).
  • Palma L, Di Lorenzo N, Guidetti B. Lymphocytic infiltrates in primary glioblastomas and recidivous gliomas. Incidence, fate, and relevance to prognosis in 228 operated cases. J. Neurosurg. 49(6), 854–861 (1978).
  • Brooks WH, Markesbery WR, Gupta GD, Roszman TL. Relationship of lymphocyte invasion and survival of brain tumor patients. Ann. Neurol. 4(3), 219–224 (1978).
  • Safdari H, Hochberg F, Richardson E. Prognostic value of round cell (lymphocyte) infiltration in malignant gliomas. Surg. Neurol. 23(3), 221–226 (1985).
  • Heimberger AB, Crotty LE, Archer GE et al. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin. Cancer Res. 9, 4247–4254 (2003).
  • Sampson JH, Archer GE, Ashley DM et al. Subcutaneous vaccination with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the ‘immunologically privileged’ central nervous system. Proc. Natl. Acad. Sci. USA 93(19), 10399–10404 (1996).
  • Wheeler CJ, Black KL, Liu G et al. Thymic CD8+ T-cell production strongly influences tumor antigen recognition and age-dependent glioma mortality. J. Immunol. 171(9), 4927–4933 (2003).
  • Sampson JH, Crotty LE, Lee S et al. Unarmed, tumor-specific, monoclonal antibody effectively treats brain tumors. Proc. Natl. Acad. Sci. USA 97(13), 7503–7508 (2000).
  • Graf MR, Prins RM, Merchant RE. IL-6 secretion by a rat T9 glioma clone induces a neutrophil-dependent antitumor response with resultant cellular, antiglioma immunity. J. Immunol. 166(1), 121–129 (2001).
  • Sandberg-Wollheim M, Zweiman B, Levinson A, Lisak R. Humoral immune responses within the human central nervous system following systemic immunization. J. Neuroimmunol. 11(3), 205–214 (1986).
  • Bernheimer H, Lassmann H, Suchanek G. Dynamics of IgG+, IgA+, and IgM+ plasma cells in the central nervous system of guinea-pigs with chronic relapsing experimental allergic encephalomyelitis. Neuropathol. Appl. Neurobiol. 14(2), 157–167 (1988).
  • Dan M, Schlachta C, Guy J et al. Human antiglioma monoclonal antibodies from patients with astrocytic tumors. J. Neurosurg. 76(4), 660–669 (1992).
  • Levi-Strauss M, Mallat M. Primary cultures of murine astrocytes produce C3 and factor B, two components of the alternative pathway of complement activation. J. Immunol. 139(7), 2361–2366 (1987).
  • Roszman TL, Brooks WH, Elliott LH. Inhibition of lymphocyte responsiveness by a glial tumor cell- derived suppressive factor. J. Neurosurg. 67(6), 874–879 (1987).
  • Bodmer S, Strommer K, Frei K et al. Immunosuppression and transforming growth factor-β in glioblastoma. Preferential production of transforming growth factor-β 2. J. Immunol. 143(10), 3222–3229 (1989).
  • Elliott LH, Brooks WH, Roszman TL. Suppression of high affinity IL-2 receptors on mitogen activated lymphocytes by glioma-derived suppressor factor. J. Neurooncol. 14(1), 1–7 (1992).
  • Hishii M, Nitta T, Ishida H et al. Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 37(6), 1160–1167 (1995).
  • Alleva DG, Burger CJ, Elgert KD. Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-α production. Role of tumor-derived IL-10, TGF-beta, and prostaglandin E2. J. Immunol. 153(4), 1674–1686 (1994).
  • Sawamura Y, Diserens AC, de Tribolet N. In vitro prostaglandin E2 production by glioblastoma cells and its effect on interleukin-2 activation of oncolytic lymphocytes. J. Neurooncol. 9(2), 125–130 (1990).
  • Samuels V, Barrett J, Bockman S, Pantazis C, Allen M. Immunocytochemical study of transforming growth factor expression in benign and malignant gliomas. Am. J. Pathol. 134(4), 894–902 (1989).
  • Kuppner M, Hamou M, Sawamura Y, Bodmer S, deTribolet N. Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor-β2. J. Neurosurg. 71(2), 211–217 (1989).
  • Roszman T, Elliott L, Brooks W. Modulation of T-cell function by gliomas. Immunol. Today 12(10), 370–374 (1991).
  • Zou JP, Morford LA, Chougnet C et al. Human glioma-induced immunosuppression involves soluble factor(s) that alters monocyte cytokine profile and surface markers. J. Immunol. 162(8), 4882–4892 (1999).
  • Fakhrai H, Dorigo O, Shawler DL et al. Eradication of established intracranial rat gliomas by transforming growth factor β antisense gene therapy. Proc. Natl Acad. Sci. USA 93(7), 2909–2914 (1996).
  • Liau LM, Fakhrai H, Black KL. Prolonged survival of rats with intracranial C6 gliomas by treatment with TGF-β antisense gene. Neurol. Res. 20(8), 742–747 (1998).
  • Fakhrai H, Gramatikova S, Safaei R. Downregulation of transforming growth factor B as therapeutic approach for brain tumors. In: Brain Tumor Immunotherapy. Liau LM, Becker DP, Cloughesy TF, Bigner DD (Eds). Humana Press Inc., Totowa, NJ, USA, 289–305 (2001).
  • Prins RM, Incardona F, Lau R et al. Characterization of defective CD4-CD8 T-cells in murine tumors generated independent of antigen specificity. J. Immunol. 172(3), 1602–1611 (2004).
  • Prins RM, Scott GP, Merchant RE, Graf MR. Irradiated tumor cell vaccine for treatment of an established glioma. II. Expansion of myeloid suppressor cells that promote tumor progression. Cancer Immunol. Immunother. 51(4), 190–199 (2002).
  • Barshes NR, Goodpastor SE, Goss JA. Pharmacologic immunosuppression. Front. Biosci. 9, 411–420 (2004).
  • Su YB, Sohn S, Krown SE et al. Selective CD4+ lymphopenia in melanoma patients treated with temozolomide: A toxicity with therapeutic implications. J. Clin. Oncol. 22(4), 610–616 (2004).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352(10), 987–996 (2005).
  • Bloom HJ, Peckham MJ, Richardson AE, Alexander PA, Payne PM. Glioblastoma multiforme: a controlled trial to assess the value of specific active immunotherapy in patients treated by radical surgery and radiotherapy. Br. J. Cancer 27(3), 253–267 (1973).
  • Trouillas P. Immunology and immunotherapy of cerebral tumors. Current status. Rev. Neurol. (Paris) 128(1), 23–38 (1973).
  • Wikstrand CJ, Bigner DD. Hyperimmunization of non-human primates with BCG-CW and cultured human glioma-derived cells. J. Neuroimmunol. 1(3), 249–260 (1981).
  • Shapiro JR, Yung WK, Shapiro WR. Isolation, karyotype, and clonal growth of heterogeneous subpopulations of human malignant gliomas. Cancer Res. 41(6), 2349–2359 (1981).
  • Fogel M, Gorelik E, Segal S, Feldman M. Differences in cell surface antigens of tumor metastases and those of the local tumor. J. Natl Cancer Inst. 62(3), 585–588 (1979).
  • Bigner DD, Schold C, Bigner SH, Bullard DE, Wikstrand C. How heterogeneous are gliomas? Cancer Treat. Rep. 65(Suppl. 2), 45–49 (1981).
  • Bigner DD, Bigner SH, Ponten J et al. Heterogeneity of genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas. J. Neuropathol. Exp. Neurol. 40(3), 201–229 (1981).
  • Bigner SH, Batra SK, Rasheed A. Mechanisms of altered growth control. Cytogenetics, oncogenes and suppressor genes. In: Russell and Rubinstein’s Pathology of Tumors of the Nervous System. (Volume 6). Bigner DD, McLendon RE, Bruner JM (Eds). Oxford University Press, NY, USA 47 (1998).
  • Kleihues P, Burger PC, Plate KH, Ohgaki H, Cavenee WK. Astrocytic tumors. In: Pathology and Genetics: Tumors of the Nervous System. (Volume 1). Kleihues P, Cavenee WJ (Eds). International Agency for Research on Cancer, Lyon, France (1997).
  • Kurpad SN, Zhao XG, Wikstrand CJ, Batra SK, McLendon RE, Bigner DD. Tumor antigens in astrocytic gliomas. Glia 15(3), 244–256 (1995).
  • Nitta T, Sato K, Yagita H, Okumura K, Ishii S. Preliminary trial of specific targeting therapy against malignant glioma. Lancet 335(8686), 368–371 (1990).
  • Plautz GE, Miller DW, Barnett GH et al. T-cell adoptive immunotherapy of newly diagnosed gliomas. Clin. Cancer Res. 6(6), 2209–2218 (2000).
  • Hayes RL, Koslow M, Hiesiger EM et al. Improved long-term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer 76(5), 840–852 (1995).
  • Kikuchi T, Akasaki Y, Irie M, Homma S, Abe T, Ohno T. Results of Phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol. Immunother. 50(7), 337–344 (2001).
  • Kikuchi T, Akasaki Y, Abe T et al. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin-12. J. Immunother. 27(6), 452–459 (2004).
  • Yu J, Wheeler C, Zeltzer P et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res. 61(3), 842–847 (2001).
  • Yu J, Liu G, Ying H, Yong W, Black K, Wheeler CJ. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res. 64(14), 4973–4979 (2004).
  • Heimberger AB, Hlatky R, Suki D et al. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin. Cancer Res. 11(4), 1462–1466 (2005).
  • Cobbs C, Harkins L, Samanta M et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 62(12), 3347–3350 (2002).
  • Yamanaka R, Abe T, Yajima N et al. Vaccination of recurrent glioma patients with tumor lysate-pulsed dendritic cells elicits immune responses: Results of a clinical Phase I/II trial. Br. J. Cancer 89(7), 1172–1179 (2003).
  • Wheeler CJ, Das A, Liu G, Yu J, Black K. Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin. Cancer Res. 10(16), 5316–5326 (2004).
  • Cokgor I, Akabani G, Kuan CT et al. Phase I trial results of iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with newly diagnosed malignant gliomas. J. Clin. Oncol. 18(22), 3862–3872 (2000).
  • Reardon DA, Akabani G, Coleman RE et al. Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J. Clin. Oncol. 20(5), 1389–1397 (2002).
  • Stragliotto G, Vega F, Stasiecki P, Gropp P, Poisson M, Delattre J. Multiple infusions of anti-epidermal growth factor receptor (EGFR) monoclonal antibody (EMD 55,900) in patients with recurrent malignant gliomas. Eur. J. Cancer 32A(4), 636–640 (1996).
  • Salazar AM, Levy HB, Ondra S et al. Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabillized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery 38(6), 1096–1194 (1996).
  • Lozupone F, Rivoltini L, Luciani F et al. Adoptive transfer of an antiMART-1(27–35)-specific CD8+ T-cell clone leads to immunoselection of human melanoma antigen-loss variants in SCID mice. Eur. J. Immunol. 33(2), 556–566 (2003).
  • Sanchez-Perez L, Kottke T, Diaz RM et al. Potent selection of antigen loss variants of B16 melanoma following inflammatory killing of melanocytes in vivo. Cancer Res. 65(5), 2009–2017 (2005).
  • Rosenberg SA, Yang JC, Robbins PF et al. Cell transfer therapy for cancer: lessons from sequential treatments of a patient with metastatic melanoma. J. Immunother. 26(5), 385–393 (2003).
  • Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J. Natl Cancer Inst. 88(2), 100–108 (1996).
  • Wintterle S, Schreiner B, Mitsdoerffer M et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res. 63(21), 7462–7467 (2003).
  • Wiendl H, Mitsdoerffer M, Hofmeister V et al. A functional role of HLA-G expression in human gliomas: an alternative strategy of immune escape. J. Immunol. 168(9), 4772–4780 (2002).
  • Akasaki Y, Liu G, Chung NH, Ehtesham M, Black KL, Yu JS. Induction of a CD4+ T regulatory Type 1 response by cyclooxygenase-2-overexpressing glioma. J. Immunol. 173(7), 4352–4359 (2004).
  • Kuppner MC, Hamou MF, de Tribolet N. Immunohistological and functional analyses of lymphoid infiltrates in human glioblastomas. Cancer Res. 48(23), 6926–6932 (1988).
  • Naganuma H, Sasaki A, Satoh E et al. Transforming growth factor-beta inhibits interferon-gamma secretion by lymphokine-activated killer cells stimulated with tumor cells. Neurol. Med. Chir. 36(11), 789–795 (1996).
  • Ashkenazi E, Deutsch M, Tirosh R, Weinreb A, Tsukerman A, Brodie C. A selective impairment of the IL-2 system in lymphocytes of patients with glioblastomas: increased level of soluble IL-2R and reduced protein tyrosine phosphorylation. Neuroimmunomodulation 4(1), 49–56 (1997).
  • Roussel E, Gingras MC, Grimm EA, Bruner JM, Moser RP. Predominance of a Type 2 intratumoural immune response in fresh tumour-infiltrating lymphocytes from human gliomas. Clin. Exp. Immunol. 105(2), 344–352 (1996).
  • Yu JS, Lee PK, Ehtesham M, Samoto K, Black KL, Wheeler CJ. Intratumoral T-cell subset ratios and Fas ligand expression on brain tumor endothelium. J. Neurooncol. 64(1–2), 55–61 (2003).
  • Morford LA, Dix AR, Brooks WH, Roszman TL. Apoptotic elimination of peripheral T-lymphocytes in patients with primary intracranial tumors. J. Neurosurg. 91(6), 935–946 (1999).
  • Kuppner MC, Sawamura Y, Hamou MF, de Tribolet N. Influence of PGE2- and cAMP-modulating agents on human glioblastoma cell killing by interleukin-2-activated lymphocytes. J. Neurosurg. 72(4), 619–625 (1990).
  • Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M. Glutamate release promotes growth of malignant gliomas. Nature Med. 7(9), 1010–1015 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.