36
Views
16
CrossRef citations to date
0
Altmetric
Review

Therapeutic aspects of chaperones/heat-shock proteins in neuro-oncology

&
Pages 679-695 | Published online: 10 Jan 2014

References

  • Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol.64, 479–489 (2005).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352, 987–996 (2005).
  • Parcellier A, Schmitt E, Brunet M, Hammann A, Solary E, Garrido C. Small heat shock proteins HSP27 and αB-crystallin: cytoprotective and oncogenic functions. Antioxid. Redox Signal.7, 404–413 (2005).
  • Whitesell L, Bagatell R, Falsey R. The stress response: implications for the clinical development of hsp90 inhibitors. Curr. Cancer Drug Targets3, 349–358 (2003).
  • Lee AS. The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem. Sci.26, 504–510 (2001).
  • Jolly C, Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl Cancer Inst.92, 1564–1572 (2000).
  • Moseley P. Stress proteins and the immune response. Immunopharmacology48, 299–302 (2000).
  • Ellis RJ. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci.26, 597–604 (2001).
  • Haslbeck M, Franzmann T, Weinfurtner D, Buchner J. Some like it hot: the structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol.12, 842–846 (2005).
  • Weibezahn J, Schlieker C, Tessarz P, Mogk A, Bukau B. Novel insights into the mechanism of chaperone-assisted protein disaggregation. Biol. Chem.386, 739–744 (2005).
  • Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol. Life Sci.62, 670–684 (2005).
  • Riggs D, Cox M, Cheung-Flynn J, Prapapanich V, Carrigan P, Smith D. Functional specificity of co-chaperone interactions with Hsp90 client proteins. Crit. Rev. Biochem. Mol. Biol.39, 279–295 (2004).
  • Neckers L, Ivy SP. Heat shock protein 90. Curr. Opin. Oncol.15, 419–424 (2003).
  • Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem.70, 603–647 (2001).
  • Graner MW, Bigner DD. Chaperone proteins and brain tumors: potential targets and possible therapeutics. Neuro-oncology7, 260–278 (2005).
  • Kato S, Hirano A, Umahara T, Kato M, Herz F, Ohama E. Comparative immunohistochemical study on the expression of α B crystallin, ubiquitin and stress-response protein 27 in ballooned neurons in various disorders. Neuropathol. Appl. Neurobiol.18, 335–340 (1992).
  • Aoyama A, Steiger RH, Frohli E et al. Expression of α B-crystallin in human brain tumors. Int. J. Cancer55, 760–764 (1993).
  • Hitotsumatsu T, Iwaki T, Fukui M, Tateishi J. Distinctive immunohistochemical profiles of small heat shock proteins (heat shock protein 27 and α B-crystallin) in human brain tumors. Cancer77, 352–361 (1996).
  • Kato S, Hirano A, Kato M, Herz F, Ohama E. Comparative study on the expression of stress-response protein (srp) 72, srp 27, α B-crystallin and ubiquitin in brain tumours. An immunohistochemical investigation. Neuropathol. Appl. Neurobiol.19, 436–442 (1993).
  • Strik HM, Weller M, Frank B et al. Heat shock protein expression in human gliomas. Anticancer Res.20, 4457–4462 (2000).
  • Wadhwa R, Kaul SC Ikawa Y, Sugimoto Y. Identification of a novel member of mouse hsp70 family. Its association with cellular mortal phenotype. J. Biol. Chem.268, 6615–6621 (1993).
  • Wadhwa R, Taira K, Kaul SC. An Hsp70 family chaperone, mortalin/mthsp70/PBP74/Grp75: what, when, and where? Cell Stress Chaperones7, 309–316 (2002).
  • Kaul SC, Matsui M, Takano S, Sugihara T, Mitsui Y, Wadhwa R. Expression analysis of mortalin, a unique member of the Hsp70 family of proteins, in rat tissues. Exp. Cell Res.232, 56–63 (1997).
  • Takano S, Wadhwa R, Yoshii Y, Nose T, Kaul SC, Mitsui Y. Elevated levels of mortalin expression in human brain tumors. Exp. Cell Res.237, 38–45 (1997).
  • Manzerra P, Rush SJ, Brown IR. Tissue-specific differences in heat shock protein hsc70 and hsp70 in the control and hyperthermic rabbit. J. Cell. Physiol.170, 130–137 (1997).
  • Suzuki T, Usuda N, Murata S, Nakazawa A, Ohtsuka K, Takagi H. Presence of molecular chaperones, heat shock cognate (Hsc) 70 and heat shock proteins (Hsp) 40, in the postsynaptic structures of rat brain. Brain Res.816, 99–110 (1999).
  • Chen S, Bawa D, Besshoh S, Gurd JW, Brown IR. Association of heat shock proteins and neuronal membrane components with lipid rafts from the rat brain. J. Neurosci. Res.81, 522–529 (2005).
  • Hylander BL, Chen X, Graf PC, Subjeck JR. The distribution and localization of hsp110 in brain. Brain Res.869, 49–55 (2000).
  • Izumoto S, Herbert J. Widespread constitutive expression of HSP90 messenger RNA in rat brain. J. Neurosci. Res.35, 20–28 (1993).
  • Gass P, Schroder H, Prior P, Kiessling M. Constitutive expression of heat shock protein 90 (HSP90) in neurons of the rat brain. Neurosci. Lett.182, 188–192 (1994).
  • Plumier JC, Hopkins D A, Robertson HA, Currie RW. Constitutive expression of the 27-kDa heat shock protein (Hsp27) in sensory and motor neurons of the rat nervous system. J. Comp. Neurol.384, 409–428 (1997).
  • Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Constitutive expression of heat shock protein HSP25 in the central nervous system of the developing and adult mouse. J. Comp. Neurol.434, 262–274 (2001).
  • Ohtsuka K, Suzuki T. Roles of molecular chaperones in the nervous system. Brain Res. Bull.53, 141–146 (2000).
  • Franklin TB, Krueger-Naug AM, Clarke DB, Arrigo AP, Currie RW. The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int. J. Hyperthermia21, 379–392 (2005).
  • Marcuccilli CJ, Mathur SK, Morimoto RI, Miller RJ. Regulatory differences in the stress response of hippocampal neurons and glial cells after heat shock. J. Neurosci.16, 478–485 (1996).
  • Pavlik A, Aneja IS, Lexa J, Al-Zoabi BA. Identification of cerebral neurons and glial cell types inducing heat shock protein Hsp70 following heat stress in the rat. Brain Res.973, 179–189 (2003).
  • Belay HT, Brown IR. Cell death and expression of heat-shock protein Hsc70 in the hyperthermic rat brain. J. Neurochem. (2006) [Epub ahead of print].
  • Guzhova I, Kislyakova K, Moskaliova O et al.In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res.914, 66–73 (2001).
  • Tytell M. Release of heat shock proteins (Hsps) and the effects of extracellular Hsps on neural cells and tissues. Int. J. Hyperthermia21, 445–455 (2005).
  • Rickman DS, Tyagi R, Zhu XX et al. The gene for the axonal cell adhesion molecule TAX-1 is amplified and aberrantly expressed in malignant gliomas. Cancer Res.61, 2162–2168 (2001).
  • Pomeroy SL, Tamayo P, Gaasenbeek M et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature415, 436–442 (2002).
  • Zhang R, Tremblay TL, McDermid A, Thibault P, Stanimirovic D. Identification of differentially expressed proteins in human glioblastoma cell lines and tumors. Glia42, 194–208 (2003).
  • Iwadate Y, Sakaida T, Hiwasa T et al. Molecular classification and survival prediction in human gliomas based on proteome analysis. Cancer Res.64, 2496–2501 (2004).
  • Odreman F, Vindigni M, Gonzales ML et al. Proteomic studies on low- and high-grade human brain astrocytomas. J. Proteome Res.4, 698–708 (2005).
  • Mosser DD. Morimoto RI. Molecular chaperones and the stress of oncogenesis. Oncogene23, 2907–2918 (2004).
  • Jaattela M. Escaping cell death: survival proteins in cancer. Exp. Cell Res.248, 30–43 (1999).
  • Garrido C, Gurbuxani S, Ravagnan L, Kroemer G. Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem. Biophys. Res. Commun.286, 433–442 (2001).
  • Garrido C, Schmitt E, Cande C, Vahsen N, Parcellier A, Kroemer G. HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell Cycle2, 579–584 (2003).
  • Komarova EY, Afanasyeva EA, Bulatova MM, Cheetham ME, Margulis BA, Guzhova IV. Downstream caspases are novel targets for the antiapoptotic activity of the molecular chaperone hsp70. Cell Stress Chaperones9, 265–275 (2004).
  • Rashmi R, Kumar S, Karunagaran D. Ectopic expression of Hsp70 confers resistance and silencing its expression sensitizes human colon cancer cells to curcumin-induced apoptosis. Carcinogenesis25, 179–187 (2004).
  • Nylandsted J, Wick W, Hirt UA et al. Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion. Cancer Res.62, 7139–7142 (2002).
  • Kato S, Kato M, Hirano A, Takikawa M, Ohama E. The immunohistochemical expression of stress-response protein (srp) 60 in human brain tumours: relationship of srp 60 to the other five srps, proliferating cell nuclear antigen and p53 protein. Histol. Histopathol.16, 809–820 (2001).
  • Hermisson M, Strik H, Rieger J, Dichgans J, Meyermann R, Weller M. Expression and functional activity of heat shock proteins in human glioblastoma multiforme. Neurology54, 1357–1365 (2000).
  • Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer5, 761–772 (2005).
  • Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med.228, 111–133 (2003).
  • Zhao R, Davey M, Hsu YC et al. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell120, 715–727 (2005).
  • Kamal A, Thao L, Sensintaffar J et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature425, 407–410 (2003).
  • Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature396, 336–342 (1998).
  • Queitsch C, Sangster T, Lindquist S. Hsp90 as a capacitor of phenotypic variation. Nature417, 618–624 (2002).
  • Sangster TA, Lindquist S, Queitsch C. Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays26, 348–362 (2004).
  • Weinstein IB. Cancer Addiction to oncogenes – the Achilles heal of cancer. Science297, 63–64 (2002).
  • Jonkers J, Berns, A. Oncogene addiction: sometimes a temporary slavery. Cancer Cell6, 535–538 (2004).
  • Citri A, Kochupurakkal BS, Yarden Y. The achilles heel of ErbB-2/HER2: regulation by the Hsp90 chaperone machine and potential for pharmacological intervention. Cell Cycle3, 51–60 (2004).
  • Sasaki K, Yasuda H, Onodera K. Growth inhibition of virus transformed cells in vitro and antitumor activity in vivo of geldanamycin and its derivatives. J. Antibiot.32, 849–851 (1979).
  • Okabe M, Uehara M. New insight into oncoprotein-targeted antitumor effect: herbimycin A as an antagonist of protein tyrosine kinase against Ph1-positive leukemia cells. Leuk. Lymphoma12, 41–49 (1993).
  • Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc. Natl Acad. Sci. USA91, 8324–8328 (1994).
  • Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell90, 65–75 (1997).
  • Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP. Crystal structure of an Hsp90–geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell89, 239–250 (1997).
  • Mimnaugh EG, Chavany C, Neckers L. Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J. Biol. Chem.271, 22796–22801 (1996).
  • Schulte TW, An WG, Neckers LM. Geldanamycin-induced destabilization of Raf-1 involves the proteasome. Biochem. Biophys. Res. Commun.239, 655–659 (1997).
  • An WG, Schulte TW, Neckers LM. The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ.11, 355–360 (2000).
  • Kamal A, Boehm MF, Burrows FJ. Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol. Med.10, 283–290 (2004).
  • Workman P. Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol. Med.10, 47–51 (2004).
  • Goetz MP, Toft D, Reid J et al. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J. Clin. Oncol.23, 1078–1087 (2005).
  • Grem JL, Morrison G, Guo XD et al. Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J. Clin. Oncol.23, 1885–1893 (2005).
  • Ramanathan RK, Trump DL, Eiseman JL et al. Phase I pharmacokinetic-pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin (17AAG, NSC 330507), a novel inhibitor of heat shock protein 90, in patients with refractory advanced cancers. Clin. Cancer Res.11, 3385–3391 (2005).
  • Banerji U, O'Donnell A, Scurr M et al. Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J. Clin. Oncol.23, 4152–4161 (2005).
  • Eder JP, Wheeler CA, Teicher BA, Schnipper LE. A Phase I clinical trial of novobiocin, a modulator of alkylating agent cytotoxicity. Cancer Res.51, 510–513 (1991).
  • Ellis GK, Crowley J, Livingston RB, Goodwin JW, Hutchins L, Allen A. Cisplatin and novobiocin in the treatment of non-small cell lung cancer. A Southwest Oncology Group study. Cancer67, 2969–2973 (1991).
  • Kennedy MJ, Armstrong DK, Huelskamp AM et al. Phase I and pharmacologic study of the alkylating agent modulator novobiocin in combination with high-dose chemotherapy for the treatment of metastatic breast cancer. J. Clin. Oncol.13, 1136–1143 (1995).
  • Murren JR, DiStasio SA, Lorico A et al. Phase I and pharmacokinetic study of novobiocin in combination with VP-16 in patients with refractory malignancies. Cancer J.6, 256–265 (2000).
  • Ivy PS, Schoenfeldt M. Clinical trials referral resource. Current clinical trials of 17-AG and 17-DMAG. Oncology18, 610, 615, 619–620 (2004).
  • Yang J, Yang JM, Iannone M, Shih WJ, Lin Y, Hait WN. Disruption of the EF-2 kinase/Hsp90 protein complex: a possible mechanism to inhibit glioblastoma by geldanamycin. Cancer Res.61, 4010–4016 (2001).
  • Zagzag D, Nomura M, Friedlander DR et al. Geldanamycin inhibits migration of glioma cells in vitro: a potential role for hypoxia-inducible factor (HIF-1α) in glioma cell invasion. J. Cell. Physiol.196, 394–402 (2003).
  • Lavictoire SJ, Parolin DA, Klimowicz AC, Kelly JF, Lorimer IA. Interaction of Hsp90 with the nascent form of the mutant epidermal growth factor receptor EGFRvIII. J. Biol. Chem.278, 5292–5299 (2003).
  • Calabrese C, Frank A, Maclean K, Gilbertson R. Medulloblastoma sensitivity to 17-allylamino-17-demethoxygeldanamycin requires MEK/ERKM. J. Biol. Chem.278, 24951–24959 (2003).
  • Bull EE, Dote H, Brady KJ et al. Enhanced tumor cell radiosensitivity and abrogation of G2 and S Phase arrest by the Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin. Clin. Cancer Res.10, 8077–8084 (2004).
  • Premkumar DR, Arnold B, Jane EP, Pollack IF. Synergistic interaction between 17-AAG and phosphatidylinositol 3-kinase inhibition in human malignant glioma cells. Mol. Carcinog.45, 47–59 (2006).
  • Sausville EA. Combining cytotoxics and 17-allylamino, 17-demethoxygeldanamycin: sequence and tumor biology matters. Commentary re: P. Munster. Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner. Clin. Cancer Res.7, 2155–2158 (2001).
  • Banerji U, Judson I, Workman P. The clinical applications of heat shock protein inhibitors in cancer – present and future. Curr. Cancer Drug Targets3, 385–390 (2003).
  • Egorin MJ, Rosen DM, Wolff JH, Callery PS, Musser SM, Eiseman JL. Metabolism of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) by murine and human hepatic preparations. Cancer Res.58, 2385–2396 (1998).
  • Hollingshead M, Alley M, Burger AM et al.In vivo antitumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water-soluble geldanamycin derivative. Cancer Chemother. Pharmacol.56, 115–125 (2005).
  • Mandler R, Kobayashi H, Hinson ER, Brechbiel MW, Waldmann TA. Herceptin-geldanamycin immunoconjugates: pharmacokinetics, biodistribution, and enhanced antitumor activity. Cancer Res.64, 1460–1467 (2004).
  • Boskovitz A, Wikstrand CJ, Kuan CT, Zalutsky MR, Reardon DA, Bigner DD. Monoclonal antibodies for brain tumour treatment. Expert Opin. Biol. Ther.4, 1453–1471 (2004).
  • Neckers L. Development of small molecule Hsp90 inhibitors: utilizing both forward and reverse chemical genomics for drug identification. Curr. Med. Chem.10, 733–739 (2003).
  • Cheung KM, Matthews TP, James K et al. The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3,4-diarylpyrazole class of Hsp90 inhibitors. Bioorg. Med. Chem. Lett.15, 3338–3343 (2005).
  • Moulin E, Zoete V, Barluenga S, Karplus M, Winssinger N. Design, synthesis, and biological evaluation of HSP90 inhibitors based on conformational analysis of radicicol and its analogues. J. Am. Chem. Soc.127, 6999–7004 (2005).
  • Neckers L, Neckers K. Heat-shock protein 90 inhibitors as novel cancer chemotherapeutics – an update. Expert Opin. Emerg. Drugs10, 137–149 (2005).
  • He H, Zatorska D, Kim J et al. Identification of potent water soluble purine-scaffold inhibitors of the heat shock protein 90. J. Med. Chem.49, 381–390 (2006).
  • Smith DF, Whitesell L, Katsanis E. Molecular chaperones: biology and prospects for pharmacological intervention. Pharmacol. Rev.50, 493–514 (1998).
  • Fecci PE, Sampson JH. Clinical immunotherapy for brain tumors. Neuroimaging Clin. N. Am.12, 641–664 (2002).
  • Fecci PE, Mitchell DA, Archer GE et al. The history, evolution, and clinical use of dendritic cell-based immunization strategies in the therapy of brain tumors. J. Neurooncol.64, 161–176 (2003).
  • Wheeler CJ, Black KL. Dendritic cell vaccines and obstacles to beneficial immunity in glioma patients. Curr. Opin. Mol. Ther.7, 35–47 (2005).
  • Khan-Farooqi HR, Prins RM, Liau LM. Tumor immunology, immunomics and targeted immunotherapy for central nervous system malignancies. Neurol. Res.27, 692–702 (2005).
  • Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol.20, 395–425 (2002).
  • Parmiani G, Testori A, Maio M et al. Heat shock proteins and their use as anticancer vaccines. Clin. Cancer Res.10, 8142–8146 (2004).
  • Srivastava PK. Immunotherapy for human cancer using heat shock protein-peptide complexes. Curr. Oncol. Rep.7, 104–108 (2005).
  • Zeng Y, Graner MW, Katsanis E. Chaperone-rich cell lysates, immune activation and tumor vaccination. Cancer Immunol. Immunother.55, 329–338 (2006).
  • Srivastava PK, DeLeo AB, Old LJ. Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc. Natl Acad. Sci. USA83, 3407–3411 (1986).
  • Ullrich SJ, Robinson EA, Law LW, Willingham M, Appella E. A mouse tumor-specific transplantation antigen is a heat shock-related protein. Proc. Natl Acad. Sci. USA83, 3121–3125 (1986).
  • Srivastava PK, Udono H, Blachere NE, Li Z. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics39, 93–98 (1994).
  • Li Z, Srivastava PK. A critical contemplation on the role of heat shock proteins in transfer of antigenic peptides during antigen presentation. Behring Inst. Mitt.37–47 (1994).
  • Flynn GC, Chappell TG, Rothman JE. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science245, 385–390 (1989).
  • Flynn GC, Pohl J, Flocco MT, Rothman JE. Peptide-binding specificity of the molecular chaperone BiP. Nature353, 726–730 (1991).
  • Graner M, Katsanis E. Chaperone proteins/heat shock proteins as anti-cancer vaccines. In: Handbook of Cancer Vaccine. Morse M, Clay T, Lyerly H (Eds). Humana Press, Totowa, NJ, USA (2004).
  • Manjili MH, Wang XY, MacDonald IJ et al. Cancer immunotherapy and heat-shock proteins: promises and challenges. Expert Opin. Biol. Ther.4, 363–373 (2004).
  • Wang XY, Li Y, Yang G, Subjeck JR. Current ideas about applications of heat shock proteins in vaccine design and immunotherapy. Int. J. Hyperthermia21, 717–722 (2005).
  • Baker-LePain JC, Sarzotti M, Fields TA, Li CY, Nicchitta CV. GRP94 (gp96) and GRP94 N-terminal geldanamycin binding domain elicit tissue nonrestricted tumor suppression. J. Exp. Med.196, 1447–1459 (2002).
  • Reits E, Griekspoor A, Neijssen J et al. Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity18, 97–108 (2003).
  • Nicchitta CV. Re-evaluating the role of heat-shock protein–peptide interactions in tumour immunity. Nat. Rev. Immunol.3, 427–432 (2003).
  • Ishii T, Udono H, Yamano T et al. Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J. Immunol.162, 1303–1309 (1999).
  • Binder RJ, Srivastava PK. Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat. Immunol.6, 593–599 (2005).
  • van Eden W, Koets A, van Kooten P, Prakken B, van der Zee R. Immunopotentiating heat shock proteins: negotiators between innate danger and control of autoimmunity. Vaccine21, 897–901 (2003).
  • Hoos A, Levey DL. Vaccination with heat shock protein–peptide complexes: from basic science to clinical applications. Expert Rev. Vaccines2, 369–379 (2003).
  • Todryk SM, Gough MJ, Pockley AG. Facets of heat shock protein 70 show immunotherapeutic potential. Immunology110, 1–9 (2003).
  • Prohaszka Z, Fust G. Immunological aspects of heat-shock proteins – the optimum stress of life. Mol. Immunol.41, 29–44 (2004).
  • Wan T, Zhou X, Chen G et al. Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood103, 1747–1754 (2004).
  • Janetzki S, Palla D, Rosenhauer V, Lochs H, Lewis JJ, Srivastava PK. Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int. J. Cancer88, 232–238 (2000).
  • Belli F, Testori A, Rivoltini L et al. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J. Clin. Oncol.20, 4169–4180 (2002).
  • Mazzaferro V, Coppa J, Carrabba MG et al. Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin. Cancer Res.9, 3235–3245 (2003).
  • Rivoltini L, Castelli C, Carrabba M et al. Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma- and colon carcinoma-specific T cells. J. Immunol.171, 3467–3474 (2003).
  • Li Z, Qiao Y, Liu B et al. Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia. Clin. Cancer Res.11, 4460–4468 (2005).
  • Pilla L, Patuzzo R, Rivoltini L et al. A Phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-α in metastatic melanoma patients. Cancer Immunol. Immunother.1–11 (2005).
  • Maciag PC, Paterson Y. Technology evaluation: HspE7 (Stressgen). Curr. Opin. Mol. Ther.7, 256–263 (2005).
  • Derkay CS, Smith RJ, McClay J et al. HspE7 treatment of pediatric recurrent respiratory papillomatosis: final results of an open-label trial. Ann. Otol. Rhinol. Laryngol.114, 730–737 (2005).
  • Multhoff G. Activation of natural killer cells by heat shock protein 70. Int. J. Hyperthermia18, 576–585 (2002).
  • Gross C, Schmidt-Wolf IG, Nagaraj S et al. Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress Chaperones8, 348–360 (2003).
  • Gross C, Koelch W, DeMaio A, Arispe N, Multhoff G. Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J. Biol. Chem.278, 41173–41181 (2003).
  • Krause SW, Gastpar R, Andreesen R et al. Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical Phase I trial. Clin. Cancer Res.10, 3699–3707 (2004).
  • Piselli P, Vendetti S, Poccia F et al.In vitro and in vivo efficacy of heat shock protein specific immunotoxins on human tumor cells. J. Biol. Regul. Homeost. Agents9, 55–62 (1995).
  • Arap MA, Lahdenranta J, Mintz PJ et al. Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell6, 275–284 (2004).
  • Davidson DJ, Haskell C, Majest S et al. Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res.65, 4663–4672 (2005).
  • Shin BK, Wang H, Yim AM et al. Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J. Biol. Chem.278, 7607–7616 (2003).
  • Becker B, Multhoff G, Farkas B et al. Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp. Dermatol.13, 27–32 (2004).
  • Eustace BK, Sakurai T, Stewart JK et al. Functional proteomic screens reveal an essential extracellular role for hsp90 α in cancer cell invasiveness. Nat. Cell Biol.6, 507–514 (2004).
  • Eustace BK, Jay DG. Extracellular roles for the molecular chaperone, hsp90. Cell Cycle3, 1098–1100 (2004).
  • Gehrmann M, Marienhagen J, Eichholtz-Wirth H et al. Dual function of membrane-bound heat shock protein 70 (Hsp70), Bag-4, and Hsp40: protection against radiation-induced effects and target structure for natural killer cells. Cell Death Differ.12, 38–51 (2005).
  • Mizzen L. Immune responses to stress proteins: applications to infectious disease and cancer. Biotherapy10, 173–189 (1998).
  • Fleshner M, Johnson JD. Endogenous extracellular heat shock protein 72: releasing signal(s) and function. Int. J. Hyperthermia21, 457–471 (2005).
  • Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy. Nat. Immunol.2, 293–299 (2001).
  • Arispe N, De Maio A. ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes. J. Biol. Chem.275, 30839–30843 (2000).
  • Arispe N, Doh M, Simakova O, Kurganov B, De Maio A. Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB J.18, 1636–1645 (2004).
  • Grzesiak JJ, Smith KC, Chalberg C et al. Heat shock protein-70 expressed on the surface of cancer cells binds parathyroid hormone-related protein in vitro. Endocrinology146, 3567–3576 (2005).
  • Bausero MA, Page DT, Osinaga E, Asea A. Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis. Tumour Biol.25, 243–251 (2004).
  • Bausero MA, Bharti A, Page DT et al. Silencing the hsp25 gene eliminates migration capability of the highly metastatic murine 4T1 breast adenocarcinoma cell. Tumour Biol.27, 17–26 (2006).
  • Arrigo AP. Hsp27: novel regulator of intracellular redox state. IUBMB Life52, 303–307 (2001).
  • Landry J, Huot J. Regulation of actin dynamics by stress-activated protein kinase 2 (SAPK2)-dependent phosphorylation of heat-shock protein of 27 kDa (Hsp27). Biochem. Soc. Symp.64, 79–89 (1999).
  • Broquet AH, Thomas G, Masliah J, Trugnan G, Bachelet M. Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J. Biol. Chem.278, 21601–21606 (2003).
  • Lancaster GI, Febbraio MA. Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J. Biol. Chem.280, 23349–23355 (2005).
  • Dewhirst MW, Vujaskovic Z, Jones E, Thrall D. Re-setting the biologic rationale for thermal therapy. Int. J. Hyperthermia21, 779–790 (2005).
  • Lepock JR. How do cells respond to their thermal environment? Int. J. Hyperthermia21, 681–687 (2005).
  • Chen Q, Evans SS. Thermal regulation of lymphocyte trafficking: hot spots of the immune response. Int. J. Hyperthermia21, 723–729 (2005).
  • Pandita TK. Role of HSPs and telomerase in radiotherapy. Int. J. Hyperthermia21, 689–694 (2005).
  • Coss RA. Inhibiting induction of heat shock proteins as a strategy to enhance cancer therapy. Int. J. Hyperthermia21, 695–701 (2005).
  • Price JT, Quinn JM, Sims NA et al. The heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, enhances osteoclast formation and potentiates bone metastasis of a human breast cancer cell line. Cancer Res.65, 4929–4938 (2005).
  • Yun BG, Matts RL. Differential effects of Hsp90 inhibition on protein kinases regulating signal transduction pathways required for myoblast differentiation. Exp. Cell Res.307, 212–223 (2005).
  • Glaze ER, Lambert AL, Smith AC et al. Preclinical toxicity of a geldanamycin analog, 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), in rats and dogs: potential clinical relevance. Cancer Chemother. Pharmacol.56, 637–647 (2005).
  • Akabani G, Reist CJ, Cokgor I et al. Dosimetry of 131I-labeled 81C6 monoclonal antibody administered into surgically created resection cavities in patients with malignant brain tumors. J. Nucl. Med.40, 631–638 (1999).
  • Sampson JH, Reardon DA, Friedman AH et al. Sustained radiographic and clinical response in patient with bifrontal recurrent glioblastoma multiforme with intracerebral infusion of the recombinant targeted toxin TP-38: case study. Neuro-oncol.7, 90–96 (2005).
  • Smith-Jones PM, Solit DB, Akhurst T, Afroze F, Rosen N, Larson SM. Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat. Biotechnol.22, 701–706 (2004).
  • Goel S, Wharton SB, Brett LP, Whittle IR. Morphological changes and stress responses in neurons in cerebral cortex infiltrated by diffuse astrocytoma. Neuropathology23, 262–270 (2003).
  • Zou JP, Morford LA, Chougnet C et al. Human glioma-induced immunosuppression involves soluble factor(s) that alters monocyte cytokine profile and surface markers. J. Immunol.162, 4882–4892 (1999).
  • Hussain SF, Heimberger AB. Immunotherapy for human glioma: innovative approaches and recent results. Expert Rev. Anticancer Ther.5, 777–790 (2005).
  • Weller M, Fontana A. The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-β, T-cell apoptosis, and the immune privilege of the brain. Brain Res. Brain Res. Rev.21, 128–151 (1995).
  • Malmberg KJ. Effective immunotherapy against cancer: a question of overcoming immune suppression and immune escape? Cancer Immunol. Immunother.53, 879–892 (2004).
  • Graf MR, Sauer JT., Merchant RE. Tumor infiltration by myeloid suppressor cells in response to T cell activation in rat gliomas. J. Neurooncol.73, 29–36 (2005).
  • Facoetti A, Nano R, Zelini P et al. Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin. Cancer Res.11, 8304–8311 (2005).
  • Graner MW, Likhacheva A, Davis J et al. Cargo from tumor-expressed albumin inhibits T-cell activation and responses. Cancer Res.64, 8085–8092 (2004).
  • Wojtowicz-Praga S. Reversal of tumor-induced immunosuppression by TGF-β inhibitors. Invest. New Drugs21, 21–32 (2003).
  • Sutmuller RP, Offringa R, Melief CJ. Revival of the regulatory T cell: new targets for drug development. Drug Discov. Today9, 310–316 (2004).
  • Maker AV, Attia P, Rosenberg SA. Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J. Immunol.175, 7746–7754 (2005).
  • Huang J, El-Gamil M, Dudley ME, Li YF, Rosenberg SA, Robbins PF. T cells associated with tumor regression recognize frameshifted products of the CDKN2A tumor suppressor gene locus and a mutated HLA class I gene product. J. Immunol.172, 6057–6064 (2004).
  • Zhou J, Dudley ME, Rosenberg SA, Robbins PF. Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J. Immunother.28, 53–62 (2005).
  • Chiosis G, Lucas B, Huezo H, Solit D, Basso A, Rosen N. Development of purine-scaffold small molecule inhibitors of Hsp90. Curr. Cancer Drug Targets3, 371–376 (2003).
  • Emens LA, Jaffee EM. Leveraging the activity of tumor vaccines with cytotoxic chemotherapy. Cancer Res.65, 8059–8064 (2005).
  • Liu G, Akasaki Y, Khong HT et al. Cytotoxic T cell targeting of TRP-2 sensitizes human malignant glioma to chemotherapy. Oncogene24, 5226–5234 (2005).
  • Curtin JF, King GD, Candolfi M et al. Combining cytotoxic and immune-mediated gene therapy to treat brain tumors. Curr. Top. Med. Chem.5, 1151–1170 (2005).

Websites

  • www.cbtrus.org/reports/reports.html Website of the Central Brain Tumor Registry of the USA
  • http://cgap.nci.nih.gov/SAGE Cancer Genome Anatomy Project SAGE Genie website
  • www.picard.ch/downloads/Hsp90interactors.pdf Didier Picard Laboratory website with updated information on HSP90 interactors
  • http://clinicaltrial.gov National Institutes of Health (USA) clinical trials information online
  • www.antigenics.com Website for Antigenics, Inc.
  • www.stressgen.com Website for Stressgen Biotechnologies Corp.
  • www.conformacorp.com Website for Conforma Therapeutics Corp.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.