46
Views
10
CrossRef citations to date
0
Altmetric
Review

Adult human sarcomas. I. Basic science

Pages 31-56 | Published online: 10 Jan 2014

References

  • Hoshi H, Matsumoto S, Manabe J et al. Malignant change secondary to fibrous dysplasia. Int. J. Clin. Oncol.11(3), 229–235 (2006).
  • Ceulemans J, De Wever I, Sciot R et al. A sarcoma at the site of previous extravasation of adriamycin. Sarcoma6(4), 135–139 (2002).
  • Hoogduijn MJ, Rakonczay Z, Genever PG. The effects of anticholinergic insecticides on human mesenchymal stem cells. Toxicol. Sci. (2006) (Epub ahead of print).
  • Shibuya M, Hanafusa T, Hanafusa H, Stephenson JR. Homology exists among the transforming sequences of avian and feline sarcoma viruses. Proc. Natl. Acad. Sci. USA77(11), 6536–6540 (1980).
  • Neil JC, Delamarter JF, Vogt PK. Evidence for three classes of avian sarcoma viruses: comparison of the transformation-specific proteins of PRCII, Y73 and Fujinami viruses. Proc. Natl. Acad. Sci. USA78(3), 1906–1910 (1981).
  • Groffen J, Heisterkamp N, Shibuya M et al. Transforming genes of avian (v-fps) and mammalian (v-fes) retroviruses correspond to a common cellular locus. Virology125(2), 480–486 (1983).
  • Hammond CI, Vogt PK, Bishop JM. Molecular cloning of the PRCII sarcoma viral genome and the chicken proto-oncogene c-fps. Virology143(1), 300–308 (1985).
  • Neckameyer WS, Shibuya M, Hsu MT, Wang LH. Proto-oncogene c-ros codes for a molecule with structural features common to those of growth factor receptors and displays tissue specific and developmentally regulated expression. Mol. Cell Biol.6(5), 1478–1486 (1986).
  • Su HY, Bos TJ, Monteclaro FS, Vogt PK. Jun inhibits myogenic differentiation. Oncogene6(10), 1759–1766 (1991).
  • Fukui Y, Saltiel AR, Hanafusa H. Phosphatidylinositol-3 kinase is activated in v-src, v-yes and v-fps transformed chicken embryo fibroblasts. Oncogene6(3), 407–411 (1991).
  • Zong CS, Poon B, Chen J, Wang LH. Molecular and biochemical bases for activation of the transforming potential of the proto-oncogene c-ros. J. Virol.67(11), 6453–6462 (1993).
  • Shimizu K, Ichikawa H, Tojo A et al. An ets-relateted gene, ERG, is rearranged in human myeloid leukemia with t(16;21) chromosomal translocation. Proc. Natl. Acad. Sci. USA90(21), 10280–10284 (1993).
  • Sing DC, McMullan DJ, Roberts P et al. FUS/ERG gene fusions in Ewing’s tumors. Cancer Res.63(15), 4568–4576 (2003).
  • Jia R, Hanafusa H. The proto-oncogene of v-eyk (v-ryk) is a novel receptor-type protein tyrosine kinase with extracellular Ig/GN-III domains. J. Biol. Chem.269(3), 1839–1844 (1994).
  • Chang HW, Li J, Kretzschmar D, Vogt PK. Avian cellular homolog of the qin oncogene. Proc. Natl. Acad. Sci. USA92(2), 447–451 (1995).
  • Huai L, Chiocca SM, Gilbreth MA, Ainsworth JR, Bishop LA, Murphy EC Jr. Moloney sarcoma virus MuSVts110 DNA: cloning, nucleotide sequence and gene expression. J. Virol.66(9), 5329–5337 (1992).
  • Jiang D, Flyer DC. Immune response to Moloney murine leukemia virus nonviral, tumor-associated antigens fail to provide in vivo tumor protection. J. Immunol.148(3), 974–980 (1992).
  • Milde-Langosch K. The Fos family of transcription factors and their role in tumorigenesis. Eur. J. Cancer41(16), 2449–2461 (2005).
  • Tanaka KK, Yoshida TO, Tanaka T, Kojima K, Hanaichi T. Different neoplastic response of mice and rats to infection by murine sarcoma virus (Moloney). Gann.63(4), 445–457 (1972).
  • Feig LA. The odyssey of K-ras. Mol. Cell.21(4), 447–449 (2006).
  • Besmer P, Murphy JE, George PC et al. A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature320(6061), 415–421 (1986).
  • Majumder S, Ray, P, Besmer P. Tyrosine protein kinase activity of the HZ4-feline sarcoma virus P80gag-kit-transforming protein. Oncogene Res.5(4), 329–335 (1990).
  • Johnsson A, Heldin CH, Wasteson A et al. The c-sis gene encodes a precursor of the B chain of platelet-derived growth factor. EMBO J.3(5), 921–928 (1984).
  • Pierce GF, Shawver LK, Milner PG et al. Identification and purification of PDGF/sis-like proteins from nuclei of simian sarcoma virus-transformed fibroblasts. Oncogene Res.2(3), 235–244 (1988).
  • Sinkovics JG, Györkey F, Kusyk C, Siciliano MJ. Growth of human tumor cells in established cultures. In: Methods in Cancer Research. Busch H (Ed.). Academic Press, New York, San Francisco, London, vol. XIV, 243–323 (1978).
  • Sinkovics JG, Shirato E, Gyorkey F et al. Relationship between lymphoid neoplasms and immunologic functions. In: Leukemia-Lymphoma. Year Book Medical Publishers, Inc., Chicago, USA 53–92 (1970).
  • Sinkovics JG, Plager C, McMurtrey MJ et al. Immunotherapy of human sarcomas. In: Management of Primary Bone & Soft Tissue Tumors. Year Book Medical Publishers, Inc., Chicago, USA 361–410 (1977).
  • Giraldo G, Beth E, Hirshaut Y et al. Human sarcomas in culture. Foci of altered cells and a common antigen; induction of foci and antigen in human fibroblast cultures by filtrates. J. Exp. Med.133(3), 454–478 (1971).
  • Morton DL, Hall WT, Malmgren RA. Human liposarcomas: tissue cultures containing foci of transformed cells with viral particles. Science165, 813–815 (1969).
  • Sinkovics JG, Horvath JC. Kaposi’s sarcoma: breeding ground of Herpesviridae. Internat. J. Oncol.14(4), 615–646 (1999). Erratum 27(1), 33 (2005).
  • Akula SM, Ford PW, Whitman AG et al. B-Raf-dependent expression of vascular endothelial growth factor-A in Kaposi sarcoma-associated herpesvirus-infected human B cells. Blood105(11), 4516–4522 (2005).
  • Masood R, Xia G, Smith P et al. Ephrin B2 expression in Kaposi sarcoma is induced by human herpesvirus type 8: phenotype switch from venous to arterial endothelium. Blood105(3), 1310–1318 (2005).
  • Ford PW, Bryan BA, Dyson OF, Weidner DA, Chintagattu V, Akula SM. Raf/MEK/ERK signaling triggers reactivation of Kaposi’s sarcoma-associated herpesvirus latency. J. Gen. Virol.87(5), 1139–1144 (2006).
  • Keller SA, Schattner EJ, Cesarman E. Inhibition of NF-κB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood96(7), 2537–2542 (2000).
  • Fiorelli V, Gendelman R, Sirianni MC et al. γ interferon produced by CD8+ T cells infiltrating Kaposi’s sarcoma induces spindle cells with human immunodeficiency virus-1 Tat protein: an immune response to human herpesvirus-8 infection? Blood91(3), 956–967 (1998).
  • Humer J, Waltenberger A, Grassauer A et al. Identification of a melanoma marker derived from melanoma-associated endogenous retroviruses. Cancer Res.66(3), 1658–1663 (2006).
  • Hirschl S, Schanab O, Seppele H et al. Sequence variability of retroviral particles derived from human melanoma cells: melanoma-associated retrovirus. Virus Res. (2006) (Submitted).
  • Strick R, Ackermann S, Langbein M et al. Proliferation and cell-cell fusion of endometrial carcinoma are induced by the human endogenous retroviral syncytin-1 and regulated by TGF-β. J. Mol. Med. (2006) (Submitted).
  • Wang-Johanning F, Liu J, Rycaj K et al. Expression of multiple human endogenous retrovirus surface envelope proteins in ovarian cancer. Int. J. Cancer120(1), 81–90 (2007).
  • Wang Y, Jiang JD, Xu D et al. A mouse mammary virus-like long terminal repeat superantigen in human breast cancer. Cancer Res.64(12), 4105–4111 (2004).
  • Urisman A, Molinaro RJ, Fischer N et al. Identification of a novel gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLos Pathog.2(3), (2006).
  • Carroll KD, Bu W, Palmeri D et al. Kaposi’s sarcoma-associated herpesvirus lytic switch protein stimulates DNA binding of RBP-Jk/CSL to activate the Notch pathway. J. Virol.80(19), 9697–9709 (2006).
  • Verma SC, Lan K, Choudhuri T, Robertson ES. Kaposi’s sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen modulates K1 expression through its cis-acting elements within the terminal repeats. J. Virol.80(7) (2006).
  • Sharma-Walia N, Raghu H, Sadagopan S et al. Cyclooxygenase 2 induced by Kaposi’s sarcoma-associated herpesvirus early during in vitro infection of target cells plays a role in the maintenance of latent viral gene expression. J. Virol.80(13), 6534–6552 (2006).
  • Sodhi A, Chaisuparat R, Hu J et al. The TSC2/mTOR pathway drives endothelial cell transformation induced by the Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor. Cancer Cell10(2), 133–143 (2006).
  • Chang H. Notch signal transduction induces a novel profile of Kaposi’s sarcoma-associated herpesvirus gene expression. J. Microbiol.44(2), 217–225 (2006).
  • Wang L, Dittmer DP, Tomlinson CC et al. Immortalization of primary endothelial cells by the K1 protein of Kaposi’s sarcoma-associated herpesvirus. Cancer Res.66(7), 3658–3666 (2006).
  • Grossmann C, Podgrabinska S, Skobe M, Ganem D. Activation of NF-kappaB by the latent vFLIP gene of Kaposi’s sarcoma-associated herpesvirus is required for the spindle shape of virus-infected endothelial cells and contributes to their proinflammatory phenotype. J. Virol.80(14), 7179–7185 (2006).
  • Fuld S, Cunningham C, Klucher K et al. Inhibition of interferon signaling by the Kaposi’s sarcoma-associated herpesvirus full-length viral interferon regulatory factor 2 protein. J. Virol.80(6) 3092–3097 (2006).
  • Little RF, Yarchoan R. Poor specific T cell response to human herpesvirus 8: a key to unleashing Kaposi sarcoma? J. Infect. Dis.194(8), 1030–1031 (2006).
  • Reeaee SA, Cunningham C, Davidson AJ, Blackbourn DJ. Kaposi’s sarcoma-associated herpesvirus immune modulation: an overview. J. Gen. Virol.87(7), 1781–1804 (2006).
  • Pantanowitz L, Schwartz EJ, Dezube BJ et al. c-Kit (CD117) expression in AIDS-related, classic and African endemic Kaposi sarcoma. Appl. Immunohistochem. Mol. Morphol.13(2), 162–166 (2005).
  • Cohen CD, Horster S, Sander CA, Bogner JR. Kaposi’s sarcoma associated with tumour necrosis factor α neutralizing antibody. Ann. Rheum. Dis.62(7), 684 (2003).
  • Zmonarski SC, Boratynska M, Rabczynski J et al. Regression of Kaposi’s sarcoma in renal graft recipients after conversion to sirolimus treatment. Transplat. Proc.37(2) 964–966 (2005).
  • Connick E, Kane MA, White IE et al. Immune reconstitution inflammatory syndrome associated with Kaposi sarcoma during potent antiretroviral therapy. Clin. Infect. Dis.39(12), 1852–1855 (2004).
  • Crane HM, Deubner H, Huang JC et al. Fatal Kaposi’s sarcoma-associated immune reconstitution following HAART initiation. Int. J. STD. AIDS16(1), 80–83 (2005).
  • Leidner RS, Aboulafia DM. Recrudescent Kaposi’s sarcoma after initiation of HAART: a manifestation of immune reconstitution syndrome. AIDS Patient Care STDS19(10), 635–644 (2005).
  • Bower M, Nelson M, Young AM et al. Immune reconstitution inflammatory syndrome associated with Kaposi’s sarcoma. J. Clin. Oncol.23(22), 5224–5228 (2005).
  • Khakoo AY, Pat S anderson SA et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J. Exp. Med.203(5), 1235–1247 (2006).
  • Taubert H, Greither T, Kaushal D et al. Expression of the stem cell self-renewal gene Hiwi and risk of tumour-related death in patients with soft tissue sarcoma. Oncogene (2006) (Epub ahead of print).
  • Matushansky I, Hernando E, Singer S et al. β-catenin loss-of-function and its putative role as a tumor suppressor in sarcomagenesis. Proceedings 97th Annual Meeting, American Association of Cancer Research. Washington, DC. USA. 47, 1082–4609 (2006) (Abstract 4609).
  • Matushansky I, Socci N, Hernando E et al. A putative tumor suppressor role for Wnt-signaling in sarcomagenesis.Proceedings 42nd Annual Meeting American Society of Clinical Oncology. Atlanta, GA, USA. Supplement J. Clin. Oncol.24(18) Part I, 521 (2006) (Abstract 9507).
  • Riggi N, Cironi L, Provero P et al. Development of Ewing’s sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res.65(24), 11459–11468 (2005).
  • Uren A, Toretsky JA. Ewing’s sarcoma oncoprotein EWS-FLI1: the perfect target without a therapeutic agent. Future Oncol.1(4) 521–528 (2005).
  • Coffman JA. Runx transcription factors and the developmental balance between cell proliferation and differentiation. Cell Biol. Int.27(4), 315–324 (2003).
  • Szalasznyk RM, Klees RF, Boskey A, Plopper GE. Activation of FAK is necessary for the osteogenic differentiation of human mesenchymal stem cells on laminin. J. Cell Biochem. (2006) (Epub ahead of print).
  • Gibbs CP, Kukekov VG, Reith JD et al. Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia7(11), 967–976 (2005).
  • Sorensen KD, Quintanilla-Martinez L, Kunder S et al. Mutation of all Runx (AML1/core) sites in the enhancer of T-lymphomagenic SL3–3 murine leukemia virus unmasks a significant potential for myeloid leukemia induction and favors evolution toward induction of other disease patterns. J. Virol.78(23) 13216–13231 (2006).
  • Yagi MJ, Holland JF, Bekesi JG. Tumor necrosis factor enhances murine SL3–3 retrovirus replication. J. Clin. Lab. Immunol.24(3), 129–134 (1987).
  • Blyth K, Vaillant F, Hanlon L et al. Runx2 and MYC collaborate in lymphoma development by suppressing apoptotic and growth arrest pathways in vivo. Cancer Res.66(4), 2195–2201 (2006).
  • Blyth K, Cameron ER, Neil JC. The Runx genes: gain or loss of function in cancer. Nature Rev. Cancer5(5), 376–387 (2005).
  • Yoshida CA, Komori T. Role of Runx proteins in chondrogenesis. Crit. Rev. Eukaryot. Gene Expr.15(3) 243–254 (2005).
  • Edgar AJ, Dover SL, Lodrick MN et al. Bone morphogenetic protein-2 induces expression of murine zinc finger transcription factor ZNF450. J. Cell Biochem.94(1), 202–215 (2005).
  • Valta MP, Hentunen T, Qu Q et al. Regulation of osteoblast differentiation: a novel function for fibroblast growth factor 8. Endocrinology147(5), 2171–2182 (2006).
  • Chandar N, Swindle J, Szajkovics A, Kolman K. Relationship of bone morphogenetic protein expression during osteoblast differentiation to wild type p53. J. Orthop. Res.23(6), 1345–1353 (2005).
  • Patane S, Avnet S, Coltella N et al. MET overexpression turns human primary osteoblasts into osteosarcomas. Cancer Res.66(9), 4750–4757 (2006).
  • Nishijo K, Nakayama T, Aoyama T et al. Mutation analysis of the RECQL4 gene in sporadic osteosarcomas. Int. J. Cancer111(3), 3670–372 (2004).
  • Wang LL, Gannavarapu A, Kozinetz CA et al. Association between osteosarcoma and deleterious mutations in the RECQKL4 gene in Rothmund-Thomson syndrome. J. Natl Cancer Inst.95(9), 669–674 (2003).
  • Werner SR, Prahalad AK, Yang J, Hock JM. RECQL4-deficient cells are hypersensitive to oxidative stress/damage: insights for osteosarcoma prevalence and heterogeneity in Rothmund-Thomson syndrome. Biochem. Biophys. Res. Commun.345(1), 403–409 (2006).
  • Ajuh P, Kuster B, Panov K et al. Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO J.19(23), 6569–6581 (2000).
  • Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: lipoma. Cancer Genet. Cytogenet.150(2), 93–115 (2004).
  • Sandberg AA. Update on the cytogenetics and molecular genetics of bone and soft tissue tumors: liposarcoma. Cancer Genet. Cytogenet.155(1), 1–24 (2004).
  • Antonescu CR, Tschernyavsky SJ, Decuseara R et al. Prognostic impact of p53 status, TLS-CHOP fusion transcript structure and histologic grade in myxoid liposarcoma: a molecular and clinicopathologic study of 82 cases. Clin. Cancer Res.7(22), 3977–3987 (2001).
  • Huang HY, Antonescu CR. Molecular variability of TLS-CHOP structure shows no significant impact on the level of adipogenesis: a comparative ultrastructural and RT0-PCR analysis of 14 cases of myxoid/round cell liposarcomas. Ultrastruct. Pathol.27(4), 217–226 (2003).
  • Antonescu CR. The role of genetic testing in soft tissue sarcoma. Histopathology48(1), 13–21 (2006).
  • Panagopoulos I, Mertens F, Isakson M, Mandahl N. Expression of DOL54 is not restricted to myxoid liposarcomas with the FUS-DDIT3 chimera but is found in various sarcomas. Oncol. Rep.12(1), 107–110 (2004).
  • Perez-Mancera PA, Sanchez-Garcia I. Understanding mesenchymal cancer: the liposarcoma-associated FUS-DDIT3 fusion gene as a model. Semin. Cancer Biol.15(3), 206–214 (2005).
  • Goransson M, Elias E, Stahlberg A et al. Myxoid liposarcoma FUS-DDIT3 fusion oncogene induces C/EBP β-mediated interleukin-6 expression. Int. J. Cancer115(4), 556–560 (2005).
  • Engstrom K, Willen H, Kabjorn-Gustafsson C et al. The myxoid/round cell liposarcoma fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype in transfected human fibrosarcoma cells. Am. J. Pathol.168(5), 1642–1653 (2006).
  • Matsui Y, Ueda T, Kubo T et al. A novel type of EWS-CHOP fusion gene in myxoid liposarcoma. Biochem. Biophys. Res. Commun.348(2), 437440 (2006).
  • Riggi N, Cironi L, Provero P et al. Expression of the FUS-CHOP fusion protein in primary mesenchymal progenitor cells gives rise to a model of myxoid liposarcoma. Cancer Res.66(14), 7016–7023 (2006).
  • Costa A, Daidone MG, Daprai L et al. Telomere maintenance mechanisms in liposarcomas: association with histologic subtypes and disease progression. Cancer Res.66(17), 8918–8924 (2006).
  • Clark MA, Fisher C, Judson I, Thomas JM. Soft-tissue sarcomas in adults. N. Engl. J. Med.353(7), 701–711 (2005).
  • van de Rijn M, Fletcher JA. Genetics of soft tissue tumors. Annu. Rev. Pathol. Mech. Dis.1, 435–466 (2006).
  • Nielsen TO. Microarray analysis of sarcomas. Adv. Anat. Pathol.13(4), 166–173 (2006).
  • Lazar A, Abruzzo LV, Pollock RE et al. Molecular diagnosis of sarcomas: chromosomal translocations in sarcomas. Arch. Pathol. Lab. Med.130(6), 1199–1207 (2006).
  • Torchia EC, Jaishankar S, Baker SJ. Ewing tumor fusion proteins block the differentiation of pluripotent marrow stromal cells. Cancer Res.63(13), 3464–3468 (2003).
  • Staege MS, Hutter C, Neumann I et al. DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res.64(22), 8213–8221 (2004).
  • Carvajal R, Meyers P. Ewing’s sarcoma and primitive neuroectodermal family of tumors. Hematol. Oncol. Clin. North Am.19(3), 501–525 (2005).
  • Matsunobu T, Tanaka K, Nakamura T et al. The possible role of EWS-FLi1 in evasion of senescence in Ewing family tumors. Cancer Res.66(2), 803–811 (2006).
  • Saito T, Nagai M, Ladanyi M. SYT-SSX1 and SYT-SSX2 interfere with repression of E-cadherin by Snail and Slug: a potential mechanism for aberrant mesenchymal to epithelial transition in human synovial sarcoma. Cancer Res.66(14), 6919–6927 (2006).
  • de Bruijn DRH, Allander SV, Anke HA et al. The synovial sarcoma-associated SS18-SSX2 fusion protein induces epigenetic gene (de)regulation. Cancer Res.66(19), 9474–9482 (2006).
  • Moreno-Bueno G, Cubillo E, Sarrió D et al. Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug and E47 factors in epithelial-mesenchymal transition. Cancer Res.66(19), 9543–9556 (2006).
  • de Torres C, Cardesa TM, Rodriguez-Perales S et al. Epithelioid sarcoma with SYT-SSX1 fusion gene expression: molecular and cytogenetic analysis. Cancer Genet. Cytogenet.162(1), 50–56 (2005).
  • Kato H, Hatori M, Kokubun S et al. Ca 125 expression in epithelioid sarcoma. Jpn. J. Clin. Oncol.34(3), 149–154 (2004).
  • Kagami S, Saeki H, Idezuki T et al. Epithelioid sarcoma associated with lung adenocarcinoma. J. Dermatol.32(11), 904–908 (2005).
  • Fisher C. Epithelioid sarcoma of Enzinger. Adv. Anat. Pathol.13(3), 114–121 (2006).
  • Pretto D, Barco R, Rivera J et al. The synovial sarcoma translocation protein SYT-SSX2 recruits β-catenin to the nucleus and associates with it in an active complex. Oncogene25(26), 3661–3669 (2006).
  • Kawaguchi S, Goto Y, Ihara K et al. Survival analysis with p27 expression and apoptosis appears to estimate the prognosis of patients with synovial sarcoma more accurately. Cancer94(10), 2712–2718 (2002).
  • Olsen RJ, Lydiatt WM, Koepsell SA et al. C-erb-B2 (HER2/neu) expression in synovial sarcoma of the head and neck. Head Neck27(10), 883–92 (2005).
  • Sápi Z, Pápai Zs, Hruska A et al. Her-2 oncogene amplification, chromosome 17 and DNA ploidy status in synovial sarcoma. Pathol. Oncol. Res.11(3), 133–138 (2005).
  • Sun Y, Gao D, Liu Y et al. IGF2 is critical for tumorigenesis by synovial sarcoma oncoprotein SYT-SSX1. Oncogene25(7), 1042–1052 (2006).
  • Lopez-Guerrero JA, Navarro S, Noguera R et al. Mutational analysis of the c-Kit and PDGFRα in a series of molecularly well-characterized synovial sarcomas. Diagn. Mol. Pathol.14(3), 134–139 (2005).
  • Nagayama S, Fukukawa C, Katagiri T et al. Therapeutic potential of antibodies against FZD 10, a cell surface protein, for synovial sarcoma. Oncogene24(41), 6201–6212 (2005).
  • Nagayama S, Iiizumi M, Katagiri T et al. Identification of PDZK4, a novel human gene with PDZ domains, that is upregulated in synovial sarcoma. Oncogene23(32), 5551–5557 (2004).
  • Kazanskaya O, Glinka A, Niehrs C. The role of Xenopus dickkopf1 in prechordial plate specification and neural pattering. Development127(22), 4981–4992 (2000).
  • Shibata M, Ono H, Hikasa H et al. Xenopus crescent encoding a Frizzled-like domain is expressed in the Spemann organizer and pronephros. Mech. Dev.96(2), 243–246 (2000).
  • Guder C, Pinho S, Nacak TG et al. An ancient Wnt-Dickkopf antagonism in Hydra. Development133(5), 901–911 (2006).
  • Kuphal S, Lodermeyer S, Bataille F et al. Expression of Dickkopf genes is strongly reduced in malignant melanoma. Oncogene25(36), 5027–5036 (2006).
  • Tulac S, Overgaard MT, Hamilton AE et al. Dickkopf-1, an inhibitor of WNT signaling, is regulated by progesterone in human endometrial stromal cells. J. Clin. Endocrinol. Metab.91(4), 1453–1461 (2006).
  • Iwasaki H, Isayama T, Ohjimi Y. et al. Malignant fibrous histiocytoma, a tumor of facultative histiocytes showing mesenchymal differentiation in cultured cell lines. Cancer69(2), 437–447 (1992).
  • Kanzaki T, Kitajima S, Suzumoei K. Biological behavior of cloned cells of human malignant fibrous histiocytoma in vivo and in vitro. Cancer Res.51(8), 2133–2137 (1991).
  • Gazziola C, Cordani N, Wasserman B et al. Malignant fibrous histiocytoma: a proposed cellular origin and identification of its characterizing gene transcripts. Int. J. Oncol.23(2), 343–351 (2003).
  • Baird K, Davis S, Antonescu CR et al. Gene expression profiling of human sarcomas: insight into sarcoma biology. Cancer Res.65(20), 9226–9235 (2005).
  • Sorensen PH, Lynch JC, Qualman SJ et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J. Clin. Oncol.20(11), 2672–2679 (2002).
  • Xia SJ, Barr FG. Analysis of the transforming and growth suppressive activities of the PAX3-FKHR oncoprotein. Oncogene23(41), 6864–6871 (2004).
  • Davicioni E, Finckenstein FG, Shahbazian V et al. Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcoma. Cancer Res.66(14), 6936–6946 (2006).
  • Bois PR, Izeradjene K, Houghton PJ et al. FOXOI1a acts as a selective tumor suppressor in alveolar rhabdomyosarcoma. J. Cell Biol.170(6), 903–912 (2005).
  • Kawaguchi K-I, Oda Y, Saito T et al. Genetic and epigenetic alterations of the PTEN gene in soft tissue sarcomas. Hum. Pathol.36(4), 357–363 (2005).
  • Pan X, Song Z, Zhai L et al. Chromatin-remodeling factor INI1/hSNF5/BAF47 is involved in activation of the colony stimulating factor 1 promoter. Mol. Cells20(2), 183–188 (2005).
  • DeCristofaro MF, Betz BK, Wang W, Weissman BE. Alteration of hSNF5/INI1/BAF47 detected in rhabdoid cell lines and primary rhabdomyosarcomas but not Wilms’ tumors. Oncogene18(52), 7559–7565 (1999).
  • Pan X, Zhai L, Sun R et al. INI1/hSNF5/BAF47 represses c-fos transcription via a histone deacetylase-dependent manner. Biochem. Biophys. Res. Commun.337(4), 1052–1058 (2005).
  • Cui K, Tailor P, Liu H et al. The chromatin-remodelling BAF complex mediates cellular antiviral activities by promoter priming. Mol. Cell Biol.24(10), 4476–4486 (2004).
  • Mercer SE, Ewton DZ, Shah S et al. Mirk/Dyrk1b mediates cell survival in rhabdomyosarcoma. Cancer Res.66(10), 5143–5150 (2006).
  • Goldstein M, Meler I, Issakov J, Orr-Urtreger A. Novel genes implicated in embryonal, alveolar and pleomorphic rhabdomyosarcoma: a cytogenetic and molecular analysis of primary tumors. Neoplasia8(5), 332–343 (2006).
  • Schmidt D, Mackay B, Sinkovics JG. Retroperitoneal tumor with vertebral metastasis. Ultrastruct. Pathol.2(4), 383–388 (1982).
  • Machinami R, Kikuchi F. Adenosine triphosphatase activity of crystalline inclusions in alveolar soft part sarcoma. An ultrahistochemical study of a case.Pathol. Res. Pract.181(3), 357–364 (1986).
  • Logrono R, Wojtowycz MM, Wunderlich DW et al. Fine needle aspiration cytology and core biopsy in the diagnosis of alveolar soft part sarcoma presenting with lung metastases. A case report. Acta Cytol.43(3), 464–470 (1999).
  • Ladanyi M, Lui MY, Antonescu CR et al. The der(17)t(X;17)(p11:q25) of human alveolar soft part sarcoma fuses the TFR3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene20(1), 48–57 (2001).
  • Uppal S, Aviv H, Patterson F et al. Alveolar soft part sarcoma – reciprocal translocation between chromosome 17q25 and Xp11. Report of a case with metastases at presentation and review of the literature. Acta Orthop. Belg.69(2), 182–187 (2003).
  • Pang LJ, Li F, Chang B et al. Detection of ASPL-TEF3 fusion gene by reverse transcriptase polymerase chain reaction in paraffin-embedded tumor tissues of alveolar soft part sarcoma. Zhonghua Bing Li Xue Za Zhi33(6), 508–512 (2004).
  • Roma AA, Yang B, Senior ME, Goldblum JR. TFE3 immunoreactivity in alveolar soft part sarcoma of the uterine cervix: case report. Int. J. Gynecol. Pathol.24(2), 131–135 (2005).
  • Huang HY, Lui MY, Ladanyi M. Nonrandom cell-cycle timing of a somatic chromosomal translocation: the t(X;17) of alveolar soft-part sarcoma occurs in G2. Genes Chromosomes Cancer44(2), 170–176 (2005).
  • Koch MB, Shih IM, Weiss SW, Folpe AL. Microphthalmia transcription factor and melanoma cell adhesion molecule expression distinguish desmoplastic/spindle cell melanoma from morphologic mimics. Am. J. Surg. Pathol.25(1), 58–64 (2001).
  • Granter SR, Weilbaecher KN, Quigley C et al. Clear cell sarcoma show immunoreactivity for microphthalmia transcription factor: further evidence for melanocyte differentiation. Mod. Pathol.14(1), 6–9 (2001).
  • Panagopoulos I, Mertens F, Debiec-Rychter M et al. Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of tendons and aponeuroses. Int. J. Cancer99(4), 560–567 (2002).
  • Davis IJ, Kim JJ, Ozsolak F et al. Oncogenic MITF dysregulation in clear cell sarcoma: defining the MIT family of human cancers. Cancer Cell9(6), 473–484 (2006).
  • Willmore-Payne C, Holden JA, Hirschowitz S, Layfield LJ. BRAF and c-kit gene copy number in mutation-positive malignant melanoma. Hum. Pathol.37(5), 520–527 (2006).
  • Coindre J-M, Hostein I, Terrier P et al. Diagnosis of clear cell sarcoma by real-time reverse transcriptase-polymerase chain reaction analysis of paraffin embedded tissues. Cancer107(5), 1055–1064 (2006).
  • Antonescu CR, Nafa K, Segal NH et al. EWS-CREB1: a recurrent variant fusion in clear cell sarcoma-association with gastrointestinal location and absence of melanocytic differentiation. Clin. Cancer Res.12(18), 5356–5362 (2006).
  • Barr GF, Zhang PJ. The impact of genetics on sarcoma diagnosis: an evolving science. Clin. Cancer Res.12(18), 5256–5257 (2006).
  • Llombart B, Sanmartin O, Lopez-Guerrero JA et al. Analysis of the COL1A1-PDGFB fusion gene of dermatofibrosarcoma protuberans with a fibrosarcoma component. Actas Dermosifiliogr.97(5), 337–341 (2006).
  • Abbott JJ, Erickson-Johnson M, Wang X et al. Gains of COL1A1-PDGFB genomic copies occur in fibrosarcomatous transformation of dermatofibrosarcoma protuberans. Mod. Pathol.19(11), 1512–1518 (2006).
  • Kutzner H. Expression of the human progenitor cell antigen CD34 (HPCA-1) distinguishes dermatofibrosarcoma protuberans from fibrous histiocytoma in formalin-fixed, paraffin-embeded tissue. J Am. Acad. Dermatol.28(4). 613–617 (1993).
  • Hanly AJ, Jorda M, Elgart GW et al. High proliferative activity excludes dermatofibrosarcoma: report of the utility of MIB-1 in the differential diagnosis of selected fibrohistiocytic tumors. Arch. Pathol. Lab. Med.130(6), 831–834 (2006).
  • Sturt NJ, Clark SK. Current ideas in desmoid tumors. Fam. Cancer5(3), 275–285 (2006).
  • Ferenc T, Sygut J, Kopczynski J et al. Aggressive fibromatosis (desmoid tumors): definition, occurrence, pathology, diagnostic problems, clinical behavior, genetic background. Pol. J. Pathol.57(1), 5–15 (2006).
  • Cheon SS, Cheah AY, Turley S et al. β-catenin stabilization dysregulates mesenchymal cell motility and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc. Natl. Acad. Sci. USA99(10), 6973–6978 (2002).
  • Tejpatr S, Michilis G, Denys H et al. Analysis of Wnt/β-catenin signaling in desmoid tumors. Acta Gastroenterol. Belg.68(1), 5–9 (2005).
  • Ng TL, Gown AM, Barry TS et al. Nuclear β-catenin in mesenchymal tumors. Mod. Pathol.18(1), 68–74 (2005).
  • Amini Nik S, Hohenstein P, Jadidizadeh A et al. Upregulation of Wilms’ tumor gene 1 (WT1) in desmoid tumors. Int. J. Cancer114(2), 202–208 (2005).
  • Koontz JI, Soreng AL, Nucci M et al. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc. Natl. Acad. Sci. USA98(11), 6348–6353 (2001).
  • Micci F, Walter CU, Teixeira MR et al. Cytogenetic and molecular genetic analyses of endometrial stromal sarcoma: nonrandom involvement of chromosome arms 6p and 7p and confirmation of JAZF1/JJAZ1 gene fusion in t(7;17). Cancer Genet. Cytogenet.144(2), 119–124 (2003).
  • Micci F, Panagopoulos I, Bjerkehagen B, Heim S. Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC/PHF1 in endometrial stromal sarcoma. Cancer Res.66(1), 107–112 (2006).
  • Adams SF, Hickson JA, Hutto JY et al. PDGFR-α as a potential therapeutic target in uterine sarcomas. Gynecol. Oncol. (2006).
  • Connor JP. Aggressive carcinosarcoma of the uterine cervix associated with high levels of granulocyte colony stimulating factor: case report and laboratory correlates. Gynecol. Oncol.103(1), 349–353 (2006).
  • Raspollini MR, Susini T, Amunni G et al. Expression and amplification of HER-2/neu oncogene in uterine carcinosarcomas; a marker for potential molecularly targeted treatment. Int. J. Gynecol. Cancer16(1), 416–422 (2006).
  • Liang S, Stone G, Chalas E et al. A high-grade leiomyosarcoma with chorionic gonadotropin production. Int. J. Gynecol. Pathol.25(3), 257–261 (2006).
  • Fuchs B, Spinner RJ, Rock MG. Malignant peripheral nerve sheath tumors: an update. J. Surg. Orthop. Adv.14(4), 168–174 (2005).
  • Upadhyaya M, Spurlock G, Majounie E et al. The heterogeneous nature of germline mutations in NF1 patients with malignant nerve sheath tumours MNSTs). Hum. Mutat.27(7), 716 (2006).
  • Sabah M, Cummins R, Leader M, Kay E. Loss of p16 (INK4A) expression is associated with allelic imbalance/loss of heterozygosity of chromosome 9p21 in microdissected malignant peripheral nerve sheath tumors. Appl. Immunohistochem. Mol. Morphol.14(1), 97–102 (2006).
  • Lee PR, Cohen JE, Fields RD. Immune system evasion by peripheral nerve sheath tumors. Neurosci. Lett.397(1–2), 126–129 (2006).
  • Storlazzi CT, Brekke HR, Mandahl N et al. Identification of a novel amplicon at distal 17q containing the BIRC5/Survivin gene in malignant peripheral nerve sheath tumours. J. Pathol.209(4), 492–500 (2006).
  • Sinkovics JG, Papadopoulos N, Plager C et al. Neurofibromatosis of von Recklinghausen: survival determinants of 27 patients with sarcomatous transformation. Proceedings 16th Annual Meeting American Society Clinical Oncology, San Diego, CA, USA. 21, 480 (1980) (Abstract C635).
  • Anghileri M, Miceli R, Fiore M et al. Malignant peripheral nerve sheath tumors. Cancer107, 1065–1074 (2006).
  • Gordon WL, Haber DA. The EWS-WT1 gene fusion in desmoplastic small round cell tumor. Semin. Cancer Biol.15(3), 197–205 (2005).
  • Werner H, Idelman G, Rubinstein M et al. A novel EWS-WT1 gene fusion product in desmoplastic small round cell tumor is a potent transactivator of the insulin-like growth factor-1 receptor (IGF-IR) gene. Cancer Lett . (2006).
  • Lee SB, Kolquist KA, Nichols K et al. The EWS-WT1 translocation product induces PDGF-α in desmoplastic small round-cell tumour. Nat. Genet.17(3), 309–313 (1997).
  • Froberg K, Brown RE, Gaylord H, Manivel C. Intra-abdominal desmoplastic small round cell tumor: immunohistochemical evidence for up-regulation of autocrine and paracrine growth factors. Ann. Clin. Lab. Sci.28(6), 386–396 (1998).
  • Zhang PJ, Goldblum JR, Pawel BR et al. PDGF-A, PDGR-Rβ, TGFβ3 and bone morphogenic protein-4 in desmoplastic small round cell tumors with EWS-WT1 gene fusion product and their role in stromal desmoplasia: an imunohistochemical study. Mod. Pathol.18(3), 382–387 (2005).
  • Fine RL, Shah SS, Moulton TA et al. Androgen and c-Kit receptors in desmoplastic small round cell tumors resistant to chemotherapy: novel targets for therapy. Cancer Chemother. Pharmacol. (2006).
  • Yang SF, Wang SL, Chai CY et al. Intra-abdominal desmoplastic small round cell tumor with elevated serum Ca 125: a case report. Kaoshiung J. Med. Sci.19(10), 531–536 (2003).
  • Hassan I, Shyyan R, Donohue JH et al. Intraabdominal desmoplastic small round cell tumors. Cancer104(6), 1264–1270 (2005).
  • Ueda T, Oji Y, Naka N et al. Overexpression of the Wilms’ tumor gene WT1 in human bone and soft-tissue sarcomas. Cancer Sci.94(3), 271–276 (2003).
  • Sotobori T, Ueda T, Oji Y et al. Prognostic significance of Wilms’ tumor gene (WT1) mRNA expression in soft tissue sarcoma. Cancer106(19), 2233–2240 (2006).
  • Carbone M, Bedrossian CW. The pathogenesis of mesothelioma. Semin. Diagn. Pathol.23(1), 56–60 (2006).
  • Pershouse MA, Heivly S, Girtsman T. The role of SV40 in malignant mesothelioma and other human malignancies. Inhal. Toxicol.18(12), 995–1000 (2006).
  • Spugnini EP, Bosari S, Citro G et al. Human malignant mesothelioma: molecular mechanisms of pathogenesis and progression. Int. J. Biochem. Cell Biol.38(12), 2000–2004 (2006).
  • Davidson B, Zhang Z, Kleinberg L et al. Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from diffuse malignant peritoneal mesothelioma. Clin. Cancer Res.12(20), 5944–5950 (2006).
  • Ordóñez NG. What are the current best immunohistochemical markers for the diagnosis of epithelioid mesothelioma? A review and update. Hum. Pathol.38(1), 1–16 (2007).
  • Whitson BA, Jacobson BA, Frizelle S et al. Effects of insulin-like growth factor-1 receptor inhibition in mesothelioma. Ann. Thorac. Surg.9, 96–101 (2006).
  • Nishimura M, Itoh K, Ito K et al. Autocrine growth by granulocyte colony-stimulating factor in malignant mesothelioma. Ann. Thorac. Surg.82(5), 1904–1906 (2006).
  • Sinkovics JG. New biological therapeutics: competitors or collaborators of viral therapy for human cancers. In: Viral Therapy of Human Cancers. Sinkovics JG, Horvath JC (Authors & Editors). Marcel Dekker, New York, USA, 266 268, 338–339 (2005).
  • Sinkovics JG. Chondrosarcoma cell differentiation. Pathol. Oncol. Res.10(3), 174–187 (2004).
  • Sinkovics JG. A reappraisal of cytotoxic lymphocytes in human tumor immunology. In: Cancer Biology and Therapeutics. First H. Lee Moffitt International Symposium. Cory JG, Szentivanyi A (Ed). Plenum Press, New York, NY, USA & London, UK. 225–253 (1987).
  • Sinkovics JG, Horvath JC. Human natural killer cells: a comprehensive review. Int. J. Oncol.27(1), 5–47 (2005).
  • Vánky F, Stjernswärd J, Nilsonne U. Cellular immunity to human sarcoma. J. Natl. Cancer Inst.46, 1145–1151 (1971).
  • Klein E, Vánky F. Natural and activated cytotoxic lymphocytes which act on autologous and allogeneic tumor cells. Cancer Immunol. Immunother.11(3), 183 (1981).
  • Sinkovics JG, Cabiness JR, Shullenberger CC. In vitro cytotoxicity of lymphocytes to human sarcoma cells. Bibliotheca Haematologica39, 846–851 (1973).
  • Lee SY, Obata Y, Yoshida M et al. Immunomic analysis of human sarcoma. Proc. Natl. Acad. Sci. USA100(5), 2651–2656 (2003).
  • Segal NH, Blachere NE, Guevara-Patino JA et al. Identification of cancer-testis genes expressed by melanoma and soft tissue sarcoma using bioinformatics. Cancer Immun.5, 2 (2005).
  • Zendman AJ, Van Kraatz AA, Welde UH et al. The Xage family of cancer/testis-associated genes: alignement and expression profile in normal tissues, melanoma lesions and Ewing’s sarcoma. Int. J. Cancer99(3), 361–369 (2002).
  • Matsuzaki A, Suminoe A, Hattori H et al. Immunotherapy with autologous dendritic cells and tumor-specific synthetic peptides for synovial sarcoma. J. Pediatr. Hematol. Oncol.24(3), 220–223 (2002).
  • Ackermann B, Troger A, Glouchkova L et al. Characterization of CD34+ progenitor-derived dendritic cells pulsed with tumor cell lysate for a vaccination strategy in children with malignant tumors and a poor prognosis. Klin. Pädiatr.216(3), 176–182 (2004).
  • Pritchard-Jones K, SpendloveI, Wilton C et al. Immune responses to the 105AD7 human anti-idiotype vaccine after intensive chemotherapy, for osteosarcoma. Br. J. Cancer92(8), 1358–1365 (2005).
  • De Hooge ASK, Annals NE, Ten Dam M et al. PRAME: a target antigen for immunotherapy in Ewing’s sarcoma. Proceedings 96th Annual Meeting American Association Cancer Research. Anaheim, CA, USA. 46, 1112 (2005) (Abstract 4715).
  • Morrison DJ, English MA, Licht JD. WT1 induces apoptosis through transcriptional regulation of the proapoptotic Bcl-2 family member Bak. Cancer Res.65(18), 8174–8182 (2005).
  • Ito K, Oji Y, Tatsumi N et al. Antiapoptotic function of 17AA+WT1 (Wilms’ tumor gene) isoforms on the intrinsic apoptosis pathway. Oncogene25(30), 4217–4229 (2006).
  • Oka Y, Tsuboi A, Kawakami M et al. Development of WT1 peptide cancer vaccine against hematopoietic malignancies and solid cancers. Curr. Med. Chem.13(20), 2345–2352 (2006).
  • Morita S, Oka Y, Tsuboi A et al. A Phase I/II trial of a WT1 (Wilms’ tumor gene) peptide vaccine in patients with solid malignancy: safety assessment based on the phase I data. Jpn. J. Clin. Oncol.36(4), 231–236 (2006).
  • Tsuboi A, Oka Y, Ogawa H et al. Cytotoxic T-lymphocyte responses elicited to Wilms’ tumor gene WT1 product by DNA vaccination. J. Clin. Immunol.20(3), 195–202 (2000).
  • Gaiger A, Carter L, Greinix H et al. WT1-specific serum antibodies in patients with leukemia. Clin. Cancer Res.7(3), S761–S765 (2001).
  • Oka Y, Tsuboi A, Taguchi T et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc. Natl. Acad. Sci. USA101(38), 13885–13890 (2004).
  • Rosenfeld C, Cheever MA, Gaiger A. WT1 in acute leukemia, chronic myelogenous leukemia and myelodysplastic syndrome: therapeutic potential of WT1 targeted therapies. Leukemia17(7), 1301–1312 (2003).
  • Mailander V, Scheibenbogen C, Thiel E et al. Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in absence of hematological or renal toxicity. Leukemia18(1), 165–166 (2004).
  • Rauscher FJ 3rd, Benjamin LE, Fredericks WJ, Morris JF. Novel oncogenic mutations in the WT1 Wilms’ tumor suppressor gene: a t(11;22) fuses the Ewing’s sarcoma gene, EWDS1, to WT1 in desmoplastic small round cell tumor. Cold Spring Harb. Quant. Biol.59, 137–146 (1994).
  • Vonderheide RH anderson K, Hahn WC et al. Characterization of HLA-A3-restricted cytotoxic T lymphocytes reactive against the widely expressed tumor antigen telomerase. Clin. Cancer Res.7(11), 3343–3348 (2001).
  • Anderson MH, Soerensen RB, Becker JC, Thor Straten P. HLA-A24 and survivin: possibilities in therapeutic vaccination against cancer. J. Transl. Med. (2006) (Epub ahead of print).
  • Worley BS, van den Broeke LT, Goletz TJ et al. Antigenicity of fusion proteins from sarcoma-associated chromosomal translocations. Cancer Res.61(18), 6868–6875 (2001).
  • van den Broeke LT, Pendleton CD, Mackall C et al. Identification and epitope enhancement of a PAX-FKHR fusion protein breakpoint epitope in alveolar rhabdomyosarcoma cells created by a tumorigenic chromosomal translocation inducing CTL capable of lysing human tumors. Cancer Res.66(3), 1818–1823 (2006).
  • Tsuji T, Yasukawa M, Matsuzaki J et al. Generation of tumor-specific, HLA class I-restricted human Th1 and Tc1 cells by cell engineering with tumor-peptide specific T-cell receptor genes. Blood106(2), 470–476 (2005).
  • Barath S, Aleksza M, Keresztes K et al. Immunoregulatory T cells in the peripheral blood of patients with Hodgkin’s lymphoma. Acta Haematol.116(3), 181–185 (2006).
  • Banham AH, Powrie FM, Suri-Payer E. FOXP3+ regulatory T cells: current controversies and future perspectives. Eur. J. Immunol.36(11), 2832–2836 (2006).
  • Ralainirina N, Poli A, Michel T et al. Control of natural killer (NK) cell functions by CD4+CD25+ regulatory T cells. J. Leukoc. Biol. (2006) (Submitted).
  • Lizee G, Radvanyi LG, Overwijk WW, Hwu P. Improving antitumor immune responses by circumventing immunoregulatory cells and mechanisms. Clin. Cancer Res.12(16), 4794–4803 (2006).
  • Zom E, Ritz J. Studying human regulatory T cells in vivo. Clin. Cancer Res.12(18), 5265–5267 (2006).
  • Shevach EM. Fatal attraction: tumors beckon regulatory T cells. Nat. Med.10(9), 900–901 (2004).
  • Fruehauf S, Seeger T, Maier P et al. The CXCR4 antagonist AMD3100 releases a subset of G-CSF-primed peripheral blood progenitor cells with specific gene expression characteristics. Exp. Hematol.34(8), 1052–1059 (2006).
  • Guleng B, Tateishi K, Ohta M et al. Blockade of the stromal cell-derived factor-1/CXCR4 axis attenuates in vivo tumor growth by inhibiting angiogenesis in a vascular endothelial growth factor-independent manner. Cancer Res.65(13), 5864–5871 (2005).
  • Pasternak A, Marino D, Vicarioi PP et al. Novel, orally bioavailable γ-aminoamide CC chemokine receptor 2 (CCR2) antagonists. J. Med. Chem.49(16), 4801–4804 (2006).
  • Hatse S, Princen K, DE Clercq E et al. AMD3465, a monomacrocyclic CXC4 antagonist and potent HIV entry inhibitor. Biochem. Pharmacol.70(5), 752–761 (2005).
  • von Luettichau I, Nathrath M. Mononuclear infiltrates in osteosarcoma and chemokine receptor expression. Clin. Cancer Res.12(17), 5253 (2006).
  • Laverdière C, Gorlick R. CXCR4 expression in osteosarcoma cell lines and tumor samples: evidence for expression by tumor cells. Clin. Cancer Res.12(17), 5254 (2006).
  • Valenti R, Huber V, Filipazzi P et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β-mediated suppressive activity on T lymphocytes. Cancer Res.66(18), 9290–9298 (2006).
  • Frey AB. Myeloid suppressor cells regulate the adaptive immune response to cancer. J. Clin. Invest.116(10) 2587–2590 (2006).
  • Tsukahara T, Kawaguchi S, Ida K et al. HLA-restricted specific tumor cytolysis by autologous T-lymphocytes infiltrating metastatic bone malignant fibrous histiocytoma of lymph node. Orthop. Res.24(1) 94–101 (2006).
  • Anderson P. Liposomal maramyl tripeptide phosphatidyl ethanolamine: ifosfamide-containing chemotherapy in osteosarcoma. Future Oncol.2(3), 333–343 (2006).
  • Nardin A, Lefebvre ML, Labroquere K et al. Liposomal muramyl tripeptide phosphatidylethanolamine: targeting and activating macrophages for adjuvant treatment of osteosarcoma. Curr. Cancer Drug Targets6(2) 123–133 (2006).
  • Nakashima Y, Deie M, Yanada S et al. Magnetically labeled human natural killer cells, accumulated in vitro by an external magnetic force, are effective against HOS osteosarcoma cells. Int. J. Oncol.27(4), 965–971 (2005).
  • Oikawa K, Ishida T, Imamura T et al. Generation of the novel monoclonal antibody against TLS/EWS-CHOP chimeric oncoprotein that is applicable to one of the most sensitive assays for myxoid and round cell liposarcomas. Am. J. Surg. Pathol.30(3), 351–356 (2006).
  • Modak S, Guo HF, Humm JL et al. Radioimmunotargeting of human rhabdomyosarcoma using monoclonal antibody 8H9. Cancer Biother. Radiopharm.20(5), 534–546 (2005).
  • D’Adamo DR, Anderson SE, Albritton K et al. Phase II study of doxorubicin and bevacizumab for patients with metastatic soft-tissue sarcomas. J. Clin. Oncol.23(28), 7135–7142 (2005).
  • Aryee DNT, Muelbacher K, Kovar H. Single-chain antibodies from a phage display library differentiate endogenous EWS from its oncogenic derivative EWS-FLI1. Proccedings 96th Annual Meeting American Association Cancer Research. Anaheim, CA, USA. 46, 880 (2005) (Abstract 3733).
  • Sohn HW, Choi EY, Kim SH et al. Engagement of CD99 induces apoptosis through a calcineurin-independent pathway in Ewing’s sarcoma cells. Am. J. Pathol.153(6), 1937–1945 (1998).
  • Scotlandi K, Baldini N, Cerisano V et al. CD99 engagement: an effective therapeutic strategy for Ewing tumors. Cancer Res.60(18), 5134–5142 (2000).
  • Scotlandi K, Perdichizzi S, Bernard G et al. Targeting CD99 in association with doxorubicin: an effective combined treatment for Ewing’s sarcoma. Eur. J. Cancer42(1), 91–96 (2006).
  • Li W, Bertino JR. Fas-mediated signaling enhances sensitivity of human soft tissue sarcoma cells to anticancer drugs by activation of p53 kinase. Mol. Cancer Ther.1(14), 1343–1348 (2002).
  • Mitsiades N, Poulaki V, Kotoula V et al. Fas ligand is present in tumors of the Ewing’s sarcoma family and is cleaved into a soluble form by a metalloproteinase. Am. J. Pathol.153(6), 1947–1956 (1998).
  • Sinkovics JG. Malignant lymphoma arising from natural killer cells: report of the first case in 1970 and newer developments in the FasL→FasR system. Acta Microbiol. Immunol. Hungar.44(3), 295–307 (1997).
  • Horvath JC, Horvath E, Sinkovics JG et al. Human melanoma cells (HMC) eliminate autologous host lymphocytes (LyFasR+) and escape apoptotic death by utilizing the FasL→FasR system as an autocrine growth loop (HMCFasL+ → Ly FasR+). Proceedings 89th Annual Meeting American Association Cancer Research. New Orleans, LA, USA. 38, 2371 (1998) (Abstract 584).
  • Shinohara H, Yagita H, Ikawa Y, Oyaizu N. Fas drives cell cycle progression in glioma cells via extracellular signal-regulated kinase activation. Cancer Res.60, 1766–1772 (2000).
  • Tjandra SS, Yu C-Y, Goh I, Alman BA. Type 1 interferon promotes tumorigenesis in aggressive fibromatosis. Proceedings 97th Annual Meeting American Association Cancer Research. Washington, DC, USA. 47, 911 (2006) (Abstract 3874).
  • Sinkovics JG. Oncogenes and growth factors. CRC Crit. Rev. Immunol.8(4), 217–298 (1988).
  • Manara MC, Serra M, Benini S et al. Effectiveness of type I interferons in the treatment of multidrug resistant osteosarcoma cells. Int. J. Oncol.24(2), 365–372 (2004).
  • Muller CR, Smeland S, Bauer HC et al. Interferon-α as the only adjuvant treatment in high grade osteosarcoma: long term results of the Karolinska Hospital series. Acta Oncol.44(5), 475–480 (2005).
  • Benjamin RS, Patel SR, Gutterman JU et al. Interferon α2b as anti-angiogenesis therapy of giant cell tumors of bone: implications for the study of newer angiogenesis-inhibitors. Proceedings 35th Annual Meeting American Society Clinical Oncology, USA.18, 548a (1999) (Abstract 2114).
  • Gonzalez Vela JL, Lozano CE, Oyervides VMS et al. Therapy with α interferon for advanced and metastatic giant cell tumor of bone. Proceedings 41st Annual Meeting American Society Clinical Oncology. Orlando, FL, USA. J. Clin. Oncol.23(Suppl. 16) Part I, S835 (2005) (Abstract 9078).
  • Choi BS, Sondel PM, Hank JA et al. Phase I trial of combined treatment with ch14.18 and R24 monoclonal antibodies and interleukin-2 for patients with melanoma and sarcoma. Cancer Immunol. Immunother.55(7), 761–774 (2006).
  • Honorati MC, Neri S, Cattini L, Facchini A. IL-17 enhances susceptibility of U-2 OS osteosarcoma cells to NK cell lysis. Clin. Exp. Immunol.133(3), 344–349 (2003).
  • Papachristou DJ, Goodman MA, Cieply K et al. Comparison of allelic losses in chondroblastoma and primary chondrosarcoma of bone and correlation with fluorescence in situ hybridization analysis. Hum. Pathol.37(7), 890–898 (2006).
  • Wehrli BM, Huang W, De Crombrugghe B et al. Sox9, a master regulator of chondrogenesis, distinguishes mesenchymal chondrosarcoma from other small blue round cell tumors. Hum. Pathol.34(3), 263–269 (2003).
  • Kalinski T, Krueger S, Sel S et al. ADAMTS1 is regulated by interleukin-1β, not hypoxia, in chondrosarcoma. Hum. Pathol. (2006) (Epub ahead of print).
  • Pedeutour F, Maire G, Sirvent N; Groupe Francophone de Cytogenetique Oncologique. Bull. Cancer91(4), 317–323 (2004).
  • Storlazzi CT, Mertens F, Nascimento A et al. Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum. Mol. Genet.12(18), 2349–2358 (2003).
  • Mertens F, Fletcher CD, Antonescu C et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma and cloning of a novel FUS/CREB3L1 fusion gene. Lab.Invest.85(3), 408–415 (2005).
  • Panagopoulos I, Moller E, Dahlen A et al. Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes Chromosomes Cancer46(2), 181–191 (2007).
  • Prinz S, Amon A, Klein F. Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics146(3), 781–795 (1997).
  • Ishida M, Miyamoto M, Naitoh S et al. The SYT-SSX fusion protein down-regulates the cell proliferation regulator COM1 in t(X;18) synovial sarcoma. Mol. Cell Biol. (2006) (Submitted).
  • Sun BC, Sun Y, Zhao XL et al. Expression and significance of E-cadherin and β-catenin in synovial sarcoma. Zhonghua Zhong Liu Za Zhi27(12), 727–730 (2005).
  • Carey KA, Segal D, Klein R et al. Identification of novel genes expressed during rhabdomyosarcoma differentiation using cDNA microarrays. Pathol. Int.56(5), 246–255 (2006).
  • Khan J, Simon R, Bittner M et al. Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res.58(22), 5009–5913 (1998).
  • Engellau J, Bendahl PO, Persson A et al. Improved prognostication in soft tissue sarcoma: independent information from vascular invasion, necrosis, growth pattern and immunostaining using whole-tumor sections and tissue microarrays. Hum. Pathol.36(9), 994–1002 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.