166
Views
57
CrossRef citations to date
0
Altmetric
Review

Inhibitor of apoptosis proteins as targets for anticancer therapy

Pages 1255-1264 | Published online: 10 Jan 2014

References

  • Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature411, 342–348. (2001).
  • Hengartner MO. The biochemistry of apoptosis. Nature407, 770–776 (2000).
  • Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis21, 485–495 (2000).
  • Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell108, 153–164 (2002).
  • Fulda S, Debatin KM. Targeting apoptosis pathways in cancer therapy. Curr. Cancer Drug Targets4, 569–576 (2004).
  • Nachmias B, Ashhab Y, Ben-Yehuda D. The inhibitor of apoptosis protein family (IAPs): an emerging therapeutic target in cancer. Semin. Cancer Biol.14, 231–243 (2004).
  • Degterev A, Boyce M, Yuan J. A decade of caspases. Oncogene22, 8543–8567 (2003).
  • Nagata S. Apoptotic DNA fragmentation. Exp. Cell Res.256, 12–18 (2000).
  • Walczak H, Krammer PH. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp. Cell Res.256, 58–66 (2000).
  • Saelens X, Festjens N, Walle LV, van Gurp M, van Loo G, Vandenabeele P. Toxic proteins released from mitochondria in cell death. Oncogene23, 2861–2874 (2004).
  • Cande C, Cohen I, Daugas E et al. Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie84, 215–222 (2002).
  • Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer2, 647–656 (2002).
  • Cowling V, Downward J. Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ.9, 1046–1056 (2002).
  • Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell Biol.2, 589–598 (2001).
  • Okada H, Mak TW. Pathways of apoptotic and non-apoptotic death in tumor cells. Nat. Rev. Cancer4, 592–603 (2004).
  • Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nat. Rev. Mol. Cell Biol.3, 401–410 (2002).
  • Shiozaki EN, Shi Y. Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem. Sci.29, 486–494 (2004).
  • Chai J, Shiozaki E, Srinivasula SM. Structural basis of caspase-7 inhibition by XIAP. Cell104, 769–780 (2001).
  • Riedl SJ, Renatus M, Schwarzenbacher R. Structural basis for the inhibition of caspase-3 by XIAP. Cell104, 791–800 (2001).
  • Srinivasula SM, Hegde R, Saleh A. Conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature410, 112–116 (2001).
  • Shiozaki EN, Chai J, Rigotti DJ. Mechanism of XIAP-mediated inhibition of caspase-9. Mol. Cell11, 519–527 (2003).
  • Vaux DL, Silke J. IAPS, RINGS and ubiquitylation. Nat. Rev. Mol. Cell Biol.6, 287–297 (2005).
  • Damiano JS, Reed JC. CARD proteins as therapeutic targets in cancer. Curr. Drug Targets5, 367–374 (2004).
  • Kasof GM, Gomes BC. Livin, a novel inhibitor of apoptosis protein family member. J. Biol. Chem.276(5), 3238–3246 (2001).
  • Vucic D, Stennicke HR, Pisabarro MT, Salvesen GS, Dixit VM. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr. Biol.10, 1359–1366 (2000).
  • Altieri DC. Validating survivin as a cancer therapeutic target. Nat. Rev. Cancer3, 46–54 (2003).
  • O’Connor DS, Wall NR, Porter ACG, Altieri DC. A p34cdc2 survival checkpoint in cancer. Cancer Cell2, 43–54 (2002).
  • Wall NR, O’Connor DS, Plescia J, Pommier Y, Altieri DC. Suppression of survivin phosphorylation on Thr34 by flavopiridol enhances tumor cell apoptosis. Cancer Res.63, 230–235 (2003).
  • Altieri DC. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene22, 8581–8589 (2003).
  • Song Z, Yao X, Wu M. Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J. Biol. Chem.278, 23130–23140 (2003).
  • Blanc-Brude OP, Mesri M, Wall N. Therapeutic targeting of the Survivin pathway in cancer: initiation of mitochondrial apoptosis and suppression of tumor-associated angiogenesis. Clin. Cancer Res.9, 2683–2692 (2003).
  • Hofer-Warbinek R, Schmid JA, Stehlik C, Binder BR, Lipp J, de Martin R. Activation of NF-κ B by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J. Biol. Chem.275(29), 22064–22068 (2000).
  • Levkau B, Garton KJ, Ferri N et al. XIAP induces cell-cycle arrest and activates nuclear factor-κB : new survival pathways disabled by caspase-mediated cleavage during apoptosis of human endothelial cells. Circ. Res.88(3), 282–290 (2001).
  • Lewis J, Burstein E, Reffey SB, Bratton SB, Roberts AB, Duckett CS. Uncoupling of the signaling and caspase-inhibitory properties of X-linked inhibitor of apoptosis. J. Biol. Chem.279(10), 9023–9029 (2004).
  • Birkey Reffey S, Wurthner JU, Parks WT, Roberts AB, Duckett CS. X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-β signaling. J. Biol. Chem.276(28), 26542–26549 (2001).
  • Sanna MG, da Silva Correia J, Ducrey O et al. IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition. Mol. Cell Biol.22(6), 1754–1766 (2002).
  • Burstein E, Ganesh L, Dick RD et al. A novel role for XIAP in copper homeostasis through regulation of MURR1. EMBO J.23(1), 244–254 (2004).
  • Mufti AR, Burstein E, Csomos RA et al. XIAP is a copper binding protein deregulated in Wilson’s disease and other copper toxicosis disorders. Mol. Cell21(6), 775–785 (2006).
  • Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell102, 33–42 (2000).
  • Verhagen AM, Ekert PG, Pakusch M et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell102, 43–53 (2000).
  • Vaux DL, Silke J. Mammalian mitochondrial IAP binding proteins. Biochem. Biophys. Res. Commun.304, 499–504 (2003).
  • Wu G, Chai J, Suber TL et al. Structural basis of IAP recognition by Smac/DIABLO. Nature408(6815), 1008–1012 (2000).
  • Huang Y, Rich RL, Myszka DG, Wu H. Requirement of both the second and third BIR domains for the relief of X-linked inhibitor of apoptosis protein (XIAP) mediated caspase inhibition by Smac. J. Biol. Chem.278, 49517–49522 (2003).
  • Okada H, Suh WK, Jin J, Woo M, Du C, Elia A. Generation and characterization of Smac/DIABLO-deficient mice. Mol. Cell Biol.22(10), 3509–3517 (2002).
  • Martins LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, Lemoine NR. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J. Biol. Chem.277, 439–444 (2002).
  • Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R. Mitochondrial protease Omi/HtrA2 enhances caspase activation through multiple pathways. Cell Death Differ.11, 208–216 (2004).
  • Van Loo G, Van Gurp M, Depuydt B, Srinivasula SM, Rodriguez I, Alnemri ES. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ.9, 20–26 (2002).
  • Li W, Srinivasula SM, Chai J et al. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat. Struct. Biol.9(6), 436–441(2002).
  • Liston P, Fong WG, Kelly NL et al. Identification of XAF1 as an antagonist of XIAP anti-caspase activity. Nat. Cell Biol.3, 128–133 (2001).
  • Chakravarti A, Noll E, Black PM. Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J. Clin. Oncol.20, 1063–1068 (2002).
  • Tamm I, Kornblau SM, Segall H. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin. Cancer Res.6, 1796–1803 (2000).
  • Byun D-S, Cho K, Ryu B-K. Hypermethylation of XIAP-associated factor 1, a putative tumor suppressor gene from the 17p13.2 locus, in human gastric adenocarcinomas. Cancer Res.63, 7068–7075 (2003).
  • Dan HC, Sun M, Kaneko S et al. Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP) J. Biol. Chem.279(7), 5405–5412 (2004).
  • Dohi T, Okada K, Xia F et al. An IAP–IAP complex inhibits apoptosis. J. Biol. Chem.279, 34087–34090 (2004).
  • Velculescu VE, Madden SL, Zhang L et al. Analysis of human transcriptomes. Nat. Genet.23, 387–388 (1999).
  • Dierlamm J, Baens M, Wlodarska I. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood93, 3601–3609 (1999).
  • Schlette EJ, Medeiros LJ, Goy A, Lai R, Rassidakis GZ. Survivin expression predicts poorer prognosis in anaplastic large-cell lymphoma. J. Clin. Oncol.22, 1682–1688 (2004).
  • Adida C, Haioun C, Gaulard P. Prognostic significance of survivin expression in diffuse large B-cell lymphomas. Blood96, 1921–1925 (2000).
  • Wurl P, Kappler M, Meye A. Co-expression of survivin and TERT and risk of tumour-related death in patients with soft-tissue sarcoma. Lancet359, 943–945 (2002).
  • Sarela AI, Macadam RC, Farmery SM, Markham AF, Guillou PJ. Expression of the antiapoptosis gene, survivin, predicts death from recurrent colorectal carcinoma. Gut46, 645–650 (2000).
  • Monzo M, Rosell R, Felip E. A novel anti-apoptosis gene: re-expression of survivin messenger RNA as a prognosis marker in non-small-cell lung cancers. J. Clin. Oncol.17, 2100–2107 (1999).
  • Tanaka K, Iwamoto S, Gon G, Nohara T, Iwamoto M, Tanigawa N. Expression of survivin and its relationship to loss of apoptosis in breast carcinomas. Clin. Cancer Res.6, 127–134 (2000).
  • Kennedy SM, O’Driscoll L, Purcell R. Prognostic importance of survivin in breast cancer. Br. J. Cancer88, 1077–1083 (2003).
  • Carter BZ, Kornblau SM, Tsao TT et al. Caspase-independent cell death in AML: caspase inhibition in vitro with pan-caspase inhibitors or in vivo by XIAP or survivin does not affect cell survival or prognosis. Blood102, 4179–4186 (2003).
  • Ferreira CG, van der Valk P, Span SW et al. Chemotherapy triggers apoptosis in a caspase-8-dependent and mitochondria-controlled manner in the non-small cell lung cancer cell line NCI-H460. Cancer Res.7, 2468–2471 (2001).
  • Eckelman BP, Salvesen GS, Scott FL. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep.7, 988–994 (2006).
  • Lacasse EC, Kandimalla ER, Winocour P et al. Application of XIAP antisense to cancer and other proliferative disorders: development of AEG35156/ GEM640. Ann. NY Acad. Sci.1058, 215–234 (2005).
  • Bilim V, Kasahara T, Hara N, Takahashi K, Tomita Y. Role of XIAP in the malignant phenotype of transitional cell cancer (TCC) and therapeutic activity of XIAP antisense oligonucleotides against multidrug-resistant TCC in vitro. Int. J. Cancer103, 29–37 (2003).
  • Hu Y, Cherton-Horvat G, Dragowska V. Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin. Cancer Res.9, 2826–2836 (2003).
  • McManus DC, Lefebvre CA, Cherton-Horvat G et al. Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene23, 8105–8117 (2004).
  • Cao C, Mu Y, Hallahan DE, Lu B. XIAP and survivin as therapeutic targets for radiation sensitization in preclinical models of lung cancer. Oncogene23, 7047–7052 (2004).
  • Holcik M, Yeh C, Korneluk RG, Chow T. Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death. Oncogene19, 4174–4177 (2000).
  • LaCasse EC, Cherton-Horvat GG, Hewitt KE et al. Preclinical characterization of AEG35156/GEM 640, a second-generation antisense oligonucleotide targeting X-linked inhibitor of apoptosis. Clin. Cancer Res.12, 5231–5241 (2006).
  • Cummings J, Ranson M, Lacasse E et al. Method validation and preliminary qualification of pharmacodynamic biomarkers employed to evaluate the clinical efficacy of an antisense compound (AEG35156) targeted to the X-linked inhibitor of apoptosis protein XIAP. Br. J. Cancer95(1), 42–48 (2006).
  • Sasaki H, Sheng Y, Kotsuji F, Tsang BK. Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res.60, 5659–5666 (2000).
  • Naumann U, Bahr O, Wolburg H et al. Adenoviral expression of XIAP antisense RNA induces apoptosis in glioma cells and suppresses the growth of xenografts in nude mice. Gene Ther.14(2), 147–161 (2007).
  • Vogler M, Durr K, Jovanovic M, Debatin KM, Fulda S. Regulation of TRAIL-induced apoptosis by XIAP in pancreatic carcinoma cells. Oncogene26(2), 248–257 (2007).
  • Shrikhande SV, Kleeff J, Kayed H et al. Silencing of X-linked inhibitor of apoptosis (XIAP) decreases gemcitabine resistance of pancreatic cancer cells. Anticancer Res.26(5A), 3265–3273 (2006).
  • Li Y, Jian Z, Xia K et al. XIAP is related to the chemoresistance and inhibited its expression by RNA interference sensitize pancreatic carcinoma cells to chemotherapeutics. Pancreas32(3), 288–296 (2006).
  • Chawla-Sarkar M, Bae SI, Reu FJ, Jacobs BS, Lindner DJ, Borden EC. Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ.11, 915–923 (2004).
  • Lima RT, Martins LM, Guimaraes JE, Sambade C, Vasconcelos MH. Specific downregulation of bcl-2 and xIAP by RNAi enhances the effects of chemotherapeutic agents in MCF-7 human breast cancer cells. Cancer Gene Ther.11, 309–16 (2004).
  • Kashkar H, Seeger JM, Hombach A et al. XIAP targeting sensitizes Hodgkin lymphoma cells for cytolytic T-cell attack. Blood108(10), 3434–3440 (2006).
  • Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature406(6798), 855–862 (2000).
  • Shi Y. Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci.13, 1979–1987 (2004).
  • Fulda S, Wick W, Weller M, Debatin KM. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat. Med.8, 808–815 (2002).
  • Guo F, Nimmanapalli R, Paranawithana S et al. Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative- (BMS 247550) and Apo2L/TRAIL-induced apoptosis. Blood99, 3419–3426 (2002).
  • Arnt CR, Chiorean MV, Heldebrant MP, Gores GJ, Kaufmann SH. Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J. Biol. Chem.277, 44236–44243 (2002).
  • Yang L, Mashima T, Sato S. Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated smac peptide. Cancer Res.63, 831–837 (2003).
  • Li L, Thomas RM, Suzuki H et al. A small molecule Smac mimic potentiates TRAIL-and TNFα-mediated cell death. Science305(5689), 1471–1474 (2004).
  • Bockbrader KM, Tan M, Sun Y. A small molecule Smac-mimic compound induces apoptosis and sensitizes TRAIL- and etoposide-induced apoptosis in breast cancer cells. Oncogene24(49), 7381–7388 (2005).
  • Sun H, Nikolovska-Coleska Z, Chen J. Structure-based design, synthesis and biochemical testing of novel and potent Smac peptido-mimetics. Bioorg. Med. Chem. Lett.15, 793–797 (2005).
  • Sun H, Nikolovska-Coleska Z, Yang CY. Structure-based design of potent, conformationally constrained Smac mimetics. J. Am. Chem. Soc.126, 16686–16687 (2004).
  • Sun H, Nikolovska-Coleska Z, Yang CY. Structure-based design, synthesis, and evaluation of conformationally constrained mimetics of the second mitochondria-derived activator of caspase that target the X-linked inhibitor of apoptosis protein/caspase-9 interaction site. J. Med. Chem.47, 4147–4150 (2004).
  • Zobel K, Wang L, Varfolomeev E et al. Design, synthesis, and biological activity of a potent Smac mimetic that sensitizes cancer cells to apoptosis by antagonizing IAPs. ACS Chem. Biol.1(8), 525–533 (2006).
  • Sun H, Nikolovska-Coleska Z, Lu J et al. Design, synthesis, and evaluation of a potent, cell-permeable, conformationally constrained second mitochondria derived activator of caspase (Smac) mimetic. J. Med. Chem.49(26), 7916–7920 (2006).
  • Pei Z, Chu L, Zou W. An oncolytic adenoviral vector of Smac increases antitumor activity of TRAIL against HCC in human cells and in mice. Hepatology39, 1371–1381 (2004).
  • Ng CP, Bonavida B. X-linked inhibitor of apoptosis (XIAP) blocks Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis of prostate cancer cells in the presence of mitochondrial activation: sensitization by overexpression of second mitochondria-derived activator of caspase/direct IAP-binding protein with low pl (Smac/DIABLO). Mol. Cancer Ther.1, 1051–1058 (2002).
  • Okano H, Shiraki K, Inoue H. Over-expression of Smac promotes TRAIL-induced cell death in human hepatocellular carcinoma. Int. J. Mol. Med.12, 25–28 (2003).
  • Hunter AM, Kottachchi D, Lewis J. A novel ubiquitin fusion system bypasses the mitochondria and generates biologically active Smac/DIABLO. J. Biol. Chem.278, 7494–7499 (2003).
  • Oost TK, Sun C, Armstrong RC et al. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J. Med. Chem.47, 4417–4426 (2004).
  • Nikolovska-Coleska Z, Xu L, Hu Z. Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J. Med. Chem.47, 2430–2440 (2004).
  • Schimmer AD, Welsh K, Pinilla C. Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell5, 25–35 (2004).
  • Wang Z, Cuddy M, Samuel T. Cellular, biochemical, and genetic analysis of mechanism of small molecule IAP inhibitors J. Biol. Chem.279, 48168–48176 (2004).
  • Carter BZ, Gronda M, Wang Z. Small-molecule XIAP inhibitors derepress downstream effector caspases and induce apoptosis of acute myeloid leukemia cells. Blood105, 4043–4050 (2005).
  • Tamm I, Trepel M, Cardo-Vila M. Peptides targeting caspase inhibitors. J. Biol. Chem.278, 14401–14405 (2003).
  • Wu TYH, Wagner KW, Bursulaya B. Development and characterization of nonpeptidic small molecule inhibitors of the XIAP/caspase-3 interaction. Chem. Biol.10, 759–767 (2003).
  • Grossman D, Kim PJ, Schechner JS, Altieri DC. Proc. Natl Acad. Sci. USA98, 635 (2001).
  • Xia W, Bisi J, Strum J et al. Regulation of survivin by ErbB2 signaling: therapeutic implications for ErbB2-overexpressing breast cancers. Cancer Res.66(3), 1640–1647 (2006).
  • Kim EH, Kim SU, Shin DY, Choi KS. Roscovitine sensitizes glioma cells to TRAIL-mediated apoptosis by downregulation of survivin and XIAP. Oncogene23, 446–456(2004).
  • Altieri DC. Targeted therapy by disabling crossroad signaling networks: the survivin paradigm. Mol. Cancer Ther.5, 478–482 (2006).
  • Schmitz M, Diestelkoetter P, Weigle B et al. Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res.60(17), 4845–4849 (2000).
  • Schmidt SM, Schag K, Muller M et al. Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood102, 571–576 (2003).
  • Xiang R, Mizutani N, Luo Y et al. A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res.65, 553–561 (2005).
  • Fulda S, Debatin KM. Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventive agent resveratrol. Cancer Res.64, 337–346 (2004).
  • Delmas D, Rebe C, Lacour SJ et al. Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells. Biol. Chem.278, 41482–41490 (2003).
  • Yang L, Cao Z, Yan H, Wood WC. Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: implication for cancer specific therapy. Cancer Res.63, 6815–6824 (2003).
  • Ng KCP, Campos EI, Martinka M, Li G. XAF1 expression is significantly reduced in human melanoma. J. Invest. Dermatol.123, 1127–1134 (2004).
  • Fong WG, Liston P, Rajcan-Separovic E, St Jean M, Craig C, Korneluk RG. Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines. Genomics70, 113–122 (2000).
  • Lee MG, Huh JS, Chung SK et al. Promoter CpG hypermethylation and downregulation of XAF1 expression in human urogenital malignancies: implication for attenuated p53 response to apoptotic stresses. Oncogene25(42), 5807–5822 (2006).
  • Wang J, Peng Y, Sun YW et al. All-trans retinoic acid induces XAF1 expression through an interferon regulatory factor-1 element in colon cancer. Gastroenterology130(3), 747–758 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.